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1. IntrodutionSine modern appliations in the realm of physis shrink more and more towards quan-tum sales, the question of how lassial thermodynamis ould be understood on thebasis of quantum mehanis has grown in importane. It has reently been shown thatentanglement between a small quantum system and its large environment leads to aloal equilibrium state and thus to thermodynami behavior, without any further as-sumptions to be invoked [1, 2℄. This has not been the ase so far for previous desriptionsof statistial mehanis introdued by Boltzmann [3℄, desribing the emergene of las-si marosopi behavior out of few mirosopi properties. For example, the widelyaepted Gibbsian ensemble theory does not get along without ergodiity [4℄, beingplausible but inapable of proof.The present work deals with thermodynami mahines on the quantum level. Anadequate desription of orresponding mahine yles �rst requires mapping of the es-tablished lassial thermodynami variables to quantum mehanial analogs, whih isdone by exploiting typial properties of quantum systems suh as energeti disreetness.For example, work and heat may be linked to the temporal hange of the spetrumand the oupation probabilities, respetively. Also the de�nition of a temperature inquantum systems is feasible if orrelations suh as entanglement are small [5℄.Like in the lassial ase, two basi onditions preedent to a quantum mahine yleare the presene of asymmetry, following the Curie priniple [6℄, and agreement with theseond law of thermodynamis. Thus, on the one hand, a quantum system running athermodynami yle needs to be oupled to two environments of di�erent temperaturesto exhange heat with. Moreover, internal asymmetry is required in order that work isreleased or onsumed by the system during interation with a work reservoir. On theother hand, it is generally laimed that the elebrated Carnot e�ieny an never beexeeded by a quantum mahine either.An early investigation of a quantum thermodynami yle is given in [7℄. More reentapproahes are found in [8℄ and [9, 10, 11℄, where externally driven disrete quantumsystems interating with environmental baths are analyzed. Further on, disussions ofquantum thermodynami mahines are provided in [12, 13℄. Eventually, [14℄ deals witha study on an autonomous mahine model.In the frame of this work a previously investigated model of an inhomogeneously splitHeisenberg spin hain loally oupled to two heat baths with di�erent temperatures[15, 16℄ is used. The baths are modeled by a master equation under Born-Markov ap-proximation featuring a non-equilibrium state as stationary solution [17, 18℄. Dependingon the global temperature gradient and the loal Zeeman splittings the system runs asa heat pump or heat engine if a part of the hain is periodially modulated by an ex-ternal �eld. The driven spin is in a thermal state due to the deohering bath in�uene1



1. Introdutionand thus has a loal temperature and thermal entropy. If it omes into resonane withthe bath ontat spins a heat urrent between the system and the baths ours. Thisthermodynami yle on the quantum level is identi�ed as Quantum Otto yle. Thethermodynami variables heat and work are ontrolled by the temporal hange of thespetrum and the oupation probabilities, respetively.After an overview of pertinent theoretial onepts in hapter 2, the quantum ther-modynami mahine model desribed above is introdued in 3 with respet to the idealQuantum Otto yle, assuming perfetly ontrolled yle steps. In the following, exten-sions to the three-spin model are numerially investigated and ompared to eah otherwith respet to essential thermodynami properties suh as e�ieny and heat transportapability. Hene hapter 4 deals with quantum mahines onneted in parallel whereashapter 5 points at serial iruits.Further on, hapter 6 gives a short outlook of more omplex quantum mahine iruitsof whih some examples are treated. Finally, the models presented in hapter 5 aremapped on a senario of a thermal Brownian motor [19℄ in hapter 7.
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2. Theoretial Basis2.1. Classial Thermodynamis2.1.1. Gibbsian Fundamental FormThe intrinsi energy U of a thermodynami system is generally desribed by the Gibbsianfundamental form
dU = d̄Q+ d̄A = TdS +

∑

i

ξidXi (2.1)where the entropy S and the generalized volumes Xi are energeti extensive variablesde�ned in phase spae. The onjugated energeti intensive variables are temperature Tand the generalized pressures ξi:
T =

∂U

∂S
ξi =

∂U

∂Xi

. (2.2)For any losed path in phase spae energy is onserved: ∮ dU = 0. A periodi proesstherefore returns to the initial state after one performed yle [20℄.2.1.2. The Seond Law of ThermodynamisThe seond law an be expressed in multiple ways. For example, it is impossible to on-strut a periodially working mahine whih simply onverts heat from a single reservoirinto mehanial work. Another way of explanation is to say that heat never sponta-neously �ows from a older to a hotter reservoir. In terms of entropy this is expressedas
dS ≥ 0 . (2.3)The equal sign holds for reversible proesses where no entropy is produed and thedesribed thermodynami system remains in a global stationary equilibrium state. Oth-erwise an irreversible proess is on hand whih does not autonomously run bakwards,rather entropy has to be produed somewhere else in the world in order to reverse it.From a marosopi point of view this behavior is intuitively lear as it orrespondsto everyday experiene. From a mirosopi point of view, however, one would notinitially expet that a system should evolve irreversibly into a stationary state sine thelassial mirosopi Hamilton equations as well as Hamiltonians are invariant undertime inversion and therefore should yield reversible dynamis.Thus, further assumptions are needed in order to derive the seond law from themirosopial equations of motion, the more so as those annot be alulated for eah3



2. Theoretial Basissingle partile. One approah is given by Boltzmann's postulate, linking entropy tothe number of aessible mirostates under given marosopi onstraints. Further, theGibbsian ensemble approah introdues a statistial ensemble in whih eah aessiblemirostate is virtually represented by a point in phase spae Γ. For big systems thedisrete ensemble of points passes into the density of states, giving the probability to �ndthe system in a ertain spae element of Γ. Sine the onept of quasi-ergodiity laimsthe system trajetory to ome arbitrarily lose to every possible point of Γ within itsevolution in time, the temporal system average is replaed by an ensemble average overall mirostates for in�nite timesales. However, these assumptions annot be generallyproved. In addition, irreversibility has to be introdued rather arti�ially by the oneptof �oarse graining�.These de�ienies are overome by the theory of quantum thermodynamis, being areent approah based on quantum mehanis where the evolution of a small quantumsystem weakly oupled to a bigger environmental system is investigated. It turns outthat the derivation of the seond law out of Shrödinger dynamis is possible withoutfurther assumptions suh as ergodiity or oarse-graining. More detailed desriptionsmay be found in [21, 2, 1℄.2.1.3. Carnot CyleIn the frame of this thesis about quantum thermodynami mahines their lassial equiv-alents shall be brie�y desribed �rst. See also [20℄.A Carnot yle is a periodi thermodynami proess where energy in the form of heatand work is transferred between two heat reservoirs of di�erent temperatures Th and T,referred to as the hot and the old bath, respetively, and a reversible work reservoirsuh as a piston. The latter always features onstant entropy sine it exhanges no heatwith the working gas, and neither do the heat reservoirs exert any work. In order toful�ll these onditions the yle has to run in the quasistati limit, that is, in�nitesimallyslow.Furthermore, an auxiliary system is needed whih must not ount for the overallenergeti balane. Thus, it neessarily has to be restored to its initial state after eahyle. It represents the virtual physial mahine and is realized by an ideal working gasin most instanes.If heat is about to be transferred into mehanial work, the system works as heatengine. If otherwise mehanial work is applied in order to transport heat from the oldto the hot reservoir, the system works as heat pump or refrigerator.The Carnot yle runs in four steps:1. Isothermal expansion: The working gas, initially at temperature Th, is oupled tothe hot bath and to the piston at the same time. Then a heat �ux ∆Qh emergesfrom the hot bath to the working gas. The latter therefore expands and transfersan amount of work ∆W1 to the piston.2. Adiabati expansion: The working gas is deoupled from the hot bath and under-goes an isentropi expansion until its temperature equals that of the old bath, T.4



2.1. Classial ThermodynamisA further amount of work ∆W2 is transferred to the piston.3. Isothermal ompression: The working gas gets oupled to the old bath into whihit ejets a heat quantity ∆Q while reeiving the work ∆W3 from the piston.4. Adiabati ompression: After having been deoupled from the old bath, the work-ing gas undergoes an isentropi ompression during whih it reeives the work ∆W4from the piston, until it reahes again the temperature Th in order to return to itsinitial state.The Gibbs relation for one ompleted yle reads
∆U = ∆W + ∆Q

!
= 0 , (2.4)orresponding to a losed path in phase spae. The entire amount of work exhangebetween the working gas and the piston then is

∆W = ∆Qh + ∆Q = ∆S(Th − T) (2.5)whih an be alulated with the help of the ST -diagram. Hereof the e�ieny of theCarnot engine follows, indiating the minimum heat quantity to be taken from the hotbath in order to exert a given amount of work:
ηCarnoten =

∆W

∆Q
= 1 − T

Th . (2.6)In analogy to this, the Carnot heat pump e�ieny is de�ned as
ηCarnotp =

∆Q

∆W
=

1

1 − T
Th = 1/ηCarnoten , (2.7)indiating the minimum amount of work to be arried out in order to pump a ertainheat quantity from the old to the hot bath. Aording to the seond law the entropybalane reads

−Qh
Th +

Q
T = Sprod ≥ 0 (2.8)where Sprod denotes the entropy prodution per yle [22℄. For the ideal (reversible)Carnot yle equality holds. For this reason ηCarnoten is the fundamental limit of a ther-modynami engine e�ieny whih annot be exeeded.In pratie, thermodynami yles neither run quasistatially nor ideally why, after(2.8) entropy is produed due to dissipation. This results in the engine e�ieny

η = ηCarnoten − TSprod
Qh . (2.9)

5



2. Theoretial BasisCarnot Engine E�ieny at Maximum Power OutputThe ideal Carnot mahine runs in�nitesimally slow and therefore has zero power output.In [23℄ the e�ieny for a heat engine with maximum power output running on �nitetimesales was derived,
ηPmax = 1 −

√

T
Th . (2.10)Sine the bath ontat times during the isothermal steps are limited, a �nite heat on-dutane within the supplies between the working gas and the baths is assumed. Thisleads to entropy prodution, ausing the yle to be irreversible. The working gas itselfstill performs an ideal Carnot yle but only �sees� e�etive bath temperatures.2.1.4. Otto CyleThe Otto yle onsists of two adiabati and two isohori steps. On the isohores theposition of the piston, i. e. the volume of the ideal working gas remains onstant whereasits temperature hanges. Thus, work is arried out only on the adiabats. The e�ienyof the Otto yle is given as

ηOttoen = 1 −
(
V2
V1)( cp

cv−1) (2.11)where V2 < V1 denote the volumes the working gas takes up on the isohores, and cpand cv are the spei� heats at onstant pressure and volume, respetively.At the beginning of an isohori step there is a �nite temperature gradient between theworking gas and the respetive bath it is exhanging heat with. Sine reversible operationrequires a quasi-statial heat �ux between the gas and the reservoir, an ideal isohoreannot simply be equivalent to one single bath ontat but rather to a series of ontatswith multiple baths at di�erent temperatures. For this reason the maximally ahievablelassial Otto yle e�ieny is always smaller than the Carnot e�ieny, ηOtto < ηCarnotsine, in order to ahieve maximum e�ieny, a reversible mahine proess must not runbetween more than two reservoirs at given temperatures. This, in turn, is exatly thease for the Carnot yle. See also [24, 20℄.2.1.5. Serial Ciruits of Thermodynami MahinesIn order to obtain an expression for the e�ieny of a serial iruit of thermodynamimahines, we onsider a hain of N oupled mahines of same type, say Carnot or Ottomahines, between two heat baths without any additional in�nite heat sinks or souresin between. Eah subunit may either run as heat engine or heat pump. If the entireiruit works as heat engine, its total e�ieny ηtoten an then be alulated out of theloal subunit e�ienies ηien = Wi/Qi with the following expression [25℄:
ηtoten =

1

Qh N∑

i=1

Wi =
1

Qh N−1∑

i=1

Qi −Qi+1 = 1 − QN

Qh = 1 −
N∏

i=1

(
1 − ηien) (2.12)6



2.2. Basi priniples of quantum mehanisPSfrag replaements
QH −W1 +Wi −WN

+Qi −Qi+1 −QNSubunit iHot bath Cold bathFigure 2.1.: Illustration of a serial thermodynami iruitwhere Qh, Qi and QN stand for the amounts of heat taken from the hot bath, �owing intosubsystem i and ejeted into the old bath, respetively. This is illustrated in Fig. 2.1.Eah subunit arries out or onsumes an amount of work Wi with W =
∑N

i Wi < 0.The loal e�ienies ηi of the subunits an be positive or negative, depending on theloal mode of operation. If W > 0, the entire system works as heat pump with a totale�ieny ηtotp = 1/ηtoten .In general, for one subunit the loal mode of operation as heat pump or engine isdetermined by those of the adjaent ones. If Carnot mahine units are onneted inseries, the loal modes of operation must be hosen suh that the working gases ofadjaent subunits exhibit idential temperatures if being in ontat. Contrarily, in thease of a hain of mutually oupled Otto mahines the strokes of subsequent mahineunits have to math.2.2. Basi priniples of quantum mehanis2.2.1. Shrödinger EquationThe dynami evolution of a quantum mehanial system in a time-dependent state |ψ(t)〉is governed by the Shrödinger equation
Ĥ(t) |ψ(t)〉 = iℏ

∂

∂t
|ψ(t)〉 (2.13)where Ĥ(t) denotes the system Hamiltonian and |ψ(t)〉 the system state at time t. Thelatter is a vetor in a N-dimensional Hilbert spae H and an be developed into aomplete orthonormal basis |n〉 spanning H:

|ψ(t)〉 =
N∑

n=1

cn(t) |n〉 with ∑

n

|n〉〈n| = 1̂ (2.14)where cn(t) = 〈n|ψ(t)〉 are time-dependent oe�ients. Following the statistial inter-pretation of quantum mehanis, a state has the meaning of a probability amplitude,7



2. Theoretial Basisthus its absolute square represents a probability density. For normalized states |ψ〉 with
〈ψ|ψ〉 =

∑

m,n

c∗mcn 〈m|n〉 =
∑

m,n

c∗mcnδmn =
∑

n

|cn|2 !
= 1 (2.15)the oe�ient squares |cn|2 denote the probabilities to �nd the system in the respetivestates |n〉. In this basis the Hamiltonian an be written as a matrix with the elements

Hmn = 〈m| Ĥ |n〉 . (2.16)For a time-independent Hamiltonian Ĥ(t) ≡ Ĥ the formal solution of (2.13) is
|ψ(t)〉 = e−i(t−t0)Ĥ/ℏ |ψ(t0)〉 ≡ Û(t, t0) |ψ(t0)〉 . (2.17)Here Û(t, t0) is the unitary time-evolution operator with

Û †Û = Û Û † = 1̂ . (2.18)Aording to the Ehrenfest theorem, the projetor P̂ = |n〉〈n| to an energy eigenstate
|n〉 of Ĥ obeys the relation

[

P̂ , Ĥ
]

= 0 =⇒ 〈P̂ 〉 = 〈|n〉〈n|〉 = 〈ψ|n〉 〈n|ψ〉 = |cn|2 = onst , (2.19)why the energy distribution is onserved.2.2.2. Density OperatorA quantum mehanial state an most generally expressed by the density operator ˆ̺.Some elementary properties of ˆ̺ are:
• Normalization:

Tr{ ˆ̺} = 1 (2.20)where Tr{. . .} is the trae operator.
• Hermitiity: ˆ̺ = ˆ̺† .
• The expetation value of an arbitrary operator B̂ is

〈B̂〉 = Tr
{

ˆ̺B̂
}

. (2.21)
• Purity: P = Tr{ ˆ̺2} ≤ 1Here the equal sign only holds for a pure state ˆ̺ = |ψ〉〈ψ| whih is exatly known.Otherwise the state is alled non-pure or mixed, that is, maximal information about itis not available. In the ase of a disrete spetrum the spetral representation of a mixedstate reads

ˆ̺ =
∑

i

pi |ψi〉〈ψi| . (2.22)8



2.2. Basi priniples of quantum mehanisDue to the onditions given above, ˆ̺ is positively de�nite. The eigenvalues pi are realpositive numbers and their sum equals unity:
∑

i

pi = 1 pi = p∗i 0 ≤ pi ≤ 1 . (2.23)They an thus be interpreted as probabilities of the system to be in one ertain stateout of the mixture of pure states |ψi〉.2.2.3. von-Neumann equationFor the density operator, the equivalent to the Shrödinger equation (2.13) is the von-Neumann equation
d

dt
ˆ̺(t) = − i

ℏ

[

Ĥ(t), ˆ̺(t)
]

≡ L̂(ˆ̺(t)) (2.24)whih desribes the system evolution under Shrödinger dynamis. The super-operator
L̂ is de�ned in Liouville spae and ats on the density operator ˆ̺ de�ned in Hilbertspae. In general, a Liouville super-operator transforms one Hilbert spae operator intoanother.Interation PitureIf the system Hamiltonian is given as the sum of a onstant and a time-dependent part,

Ĥ(t) = Ĥ0 + V̂ (t) , (2.25)the von-Neumann equation an be written as
d

dt
ˆ̺I(t) = − i

ℏ

[

V̂I(t), ˆ̺I(t)
] (2.26)with

ˆ̺I(t) = eiĤ0(t−t0)/ℏ ˆ̺(t) e−iĤ0(t−t0)/ℏ ≡ Û †
0(t, t0)ˆ̺(t)Û0(t, t0) (2.27)and

V̂I(t) = Û †
0(t, t0)V̂ (t)Û0(t, t0) (2.28)with the unitary time evolution operator Û †(t, t0) (see e. g. [26℄). Passing to the inter-ation piture, the time dependene of the density matrix is partially transferred to theHilbert spae H. The ase of V̂ (t) = 0 marks the Heisenberg piture, if Ĥ0 = 0 we areagain in the Shrödinger piture.2.2.4. Von-Neumann EntropyFor a state ˆ̺ the von-Neumann entropy S(ˆ̺) is de�ned as

S(ˆ̺) = −kB Tr{ ˆ̺ ln ˆ̺} (2.29)9



2. Theoretial Basiswhere kB is the Boltzmann fator. The von-Neumann entropy is invariant under unitaryevolution,
S
(

Û †(t, t0)ˆ̺(t0)Û(t, t0)
)

= S(ˆ̺(t0)) . (2.30)Likewise the purity de�ned above, the entropy is a measure for the pureness of states.A pure state has zero entropy, a maximally mixed state with ̺ij = 1
n
δij has maximalentropy Smax = kB lnn and minimal purity Pmin = 1/n, where n is the dimension of theHilbert spae H. See also [27, 2℄.2.2.5. Composite Quantum SystemsA Hilbert spae H onsisting of two or more subspaes H1,H2, . . . ,HN an be writtenas the tensor produt of these subspaes. For a bipartite system, e. g.,

H = H1 ⊗H2 . (2.31)The dimension n of H is a produt of the subspae dimensions ni, here
n = n1n2 . (2.32)In general, the Theorem of Araki and Lieb applies for the loal and global entropy:

|S(ˆ̺1) − S(ˆ̺2)| ≤ S(ˆ̺) ≤ |S(ˆ̺1) + S(ˆ̺2)| . (2.33)The right equality sign only holds if the subsystems are unorrelated. In this ase theloal entropies S(ˆ̺1) and S(ˆ̺2) add up to the global entropy S(ˆ̺), and the entire state
ˆ̺(t) an be written as a produt state out of its substates [2℄. Otherwise, if the produtform is non-appliable, this is due to orrelations between both partial states (see below).If one is interested in only one partial subspae, e. g. H1, the respetive state ˆ̺1(t)an be obtained by traing out the degrees of freedom of the other subspae,

ˆ̺1(t) = Tr2{ ˆ̺(t)} (2.34)where Tri{. . .} denotes the partial trae over subspae Hi [27℄.2.2.6. Entropy, Correlations and EntanglementIf a omposite system state is non-separable, i. e. annot be written as a tensor produtout of its partial states, this is aused by orrelations suh as entanglement originatingfrom the interation between di�erent subsystems. Non-separability of partial states alsore�ets in that the respetive loal entropies are non-additive (see Eq. (2.33)). Thus,entropy gives an appropriate measure of orrelations.Traing out a substate after Eq. (2.34) leads to a loss of information about orrelationsbetween partial states, and due to (2.33) loal entropies generally inrease in time duringthe system evolution. This also applies for the ase a small quantum system interatswith an environment [28℄. In ontrast, global entropy is onstant in time due to (2.30).10



2.3. Open Quantum Systems and Master EquationAn adequate distane measure for two states ˆ̺ and ˆ̺′ is given by the Bures metri [2℄,
D2

ˆ̺ˆ̺′ = Tr
{
(ˆ̺− ˆ̺′)2

}
. (2.35)If ˆ̺ is the atual omposite state and ˆ̺′ some produt form, D2

ˆ̺ˆ̺′ an be used as ameasure for orrelations.Entanglement is a purely quantum mehanial phenomena. A standard example fora maximally entangled quantum state is the Einstein-Podolsky-Rosen (EPR) state [29℄
|ψ〉 =

1√
2

(|1〉 |0〉 − |0〉 |1〉) (2.36)desribing two interating spins, where |0〉 and |1〉 stand for �spin up� and �spin down�,respetively. If, in a measurement, the �rst spin is found to be in �up� state, the seondspin will automatially be in �down� state. This holds without the need for a furthermeasurement, even if both spins are outside the range of interation. Hene the en-tangled state only ontains olletive information on both subsystems. This prinipalnon-loality is an essential ingredient of entanglement. See also [30℄.2.3. Open Quantum Systems and Master Equation2.3.1. Derivation of the Quantum Master EquationA onvenient method to desribe the interation of a small quantum system with a largeenvironment (heat bath) is by means of a quantummaster equation (QME). Sine usuallythe degrees of freedom of the environment are too numerous for further investigation,they are traed out and disregarded ab initio. This leads to an e�etive equation ofmotion for the dissipative dynamis the redued density matrix ˆ̺S of the onsideredopen quantum system is subjet to.Several di�erent approahes to open quantum systems exist, see e. g. [26, 31, 32℄.The master equation used in this work is desribed in [17℄. A reent desription andomparison to other models an be found in [18℄ and also in [16℄ in the ontext ofquantum thermodynami mahines.The ompound of the system of interest S and its environmental bath B is desribedby the Hamiltonian
Ĥ = ĤS + ĤB + Ĥint (2.37)where the bath is modeled by an in�nite number of unoupled harmoni osillators
ĤB =

∞∑

k=1

ωk b̂
†
k b̂k (2.38)with the bosoni reation and annihilation operators b̂†k and b̂k. The interation Hamil-tonian Ĥint is spei�ed as

Ĥint =
∑

α

Âα ⊗ B̂α (2.39)11



2. Theoretial Basiswhere Âk and B̂k, respetively, are hermitian system and bath operators to be asertainedbelow. The time evolution of the whole system's density operator ˆ̺ is governed by thevon-Neumann Eq. (2.24), written in the interation piture (ℏ ≡ 1):
dˆ̺(t)

dt
= −i

[

Ĥint(t), ˆ̺(t)] . (2.40)The formal solution hereof is
ˆ̺(t) = ˆ̺(0) − i

t∫

0

[

Ĥint(s), ˆ̺(s)]ds (2.41)The density operator of the subsystem of interest is then obtained by
ˆ̺S = TrB{ ˆ̺(t)} . (2.42)Inserting (2.41) into (2.40) and applying (2.42) yields

dˆ̺S(t)

dt
= −

t∫

0

TrB

{[

Ĥint(t), [Ĥint(s), ˆ̺(s)]]} (2.43)where it is assumed that
TrB

{[

Ĥint, ˆ̺(0)
]}

= 0 (2.44)Now one performs the Born approximation, laiming the oupling between system andbath to be weak enough so that the bak-ation of the system on the bath is negligible.Hene the state of the entire system may be approximated by a tensor produt:
ˆ̺(t) ≈ ˆ̺S(t) ⊗ ˆ̺B . (2.45)The bath state is assumed to be anonial,
ˆ̺B =

e−βĤB

TrB{e−βĤB}
(2.46)with β = 1/T being the inverse temperature and kB ≡ 1.A further simpli�ation is introdued by the Markov approximation, assuming oarsegrained time sales. This means the exitations in the baths are not resolved as theyhappen on muh smaller time sales τB than those on whih the system evolves (τS).Furthermore, the same is assumed to apply for the deay of the bath orrelation funtionsor memory e�ets. Thus, in Eq. (2.45) we replae ˆ̺(s) by ˆ̺(t), and s is substituted by

t− s while the upper bound of the integral is set to t → ∞. This makes the integrandvanish rapidly enough for s≫ τB. Then,
dˆ̺S(t)

dt
= −

∞∫

0

dsTrB

{[

Ĥint(t), [Ĥint(t− s), ˆ̺(t) ⊗ ˆ̺B

]]}

. (2.47)
12



2.3. Open Quantum Systems and Master EquationSkipping some lengthy alulations, the QME beomes, again in the Shrödinger piture,
dˆ̺S(t)

dt
= − i

[

ĤS, ˆ̺S(t)
]

−
∞∫

0

ds

∞∫

−∞

dωeiωs ×

∑

α,γ

(

Γαγ(ω)
[

Âγ(−s)ˆ̺S(t), Âα

]

+ Γγα(−ω)
[

Âα, Âγ(−s)ˆ̺S(t)
])

(2.48)with
Âγ(−s) = e−iĤSsÂγe

iĤSs . (2.49)Here the bath orrelation funtions
Γαγ(s, β) =

〈

B̂α(s)B̂γ(0)
〉

B
≡ TrB

{

B̂α(s)B̂γ(0)ˆ̺B

} (2.50)with ˆ̺B given by (2.46) have been introdued. Their Fourier transformations, represent-ing transition rates, lead to the bath orrelation tensor
Γαγ(ω, β) =

∞∫

−∞

dseiωs Γαγ(s, β) . (2.51)For terms of Γ(−ω) the Kubo-Martin-Shwinger (KMS) ondition gives
Γαγ(ω) = e−βωΓγα(−ω) . (2.52)The �rst term of Eq. (2.48) desribes the oherent unitary dynamis of the systemwhile the seond term, the dissipator D̂(ˆ̺S(t)), de�ned in Liouville spae, represents thedeohering and damping environmental in�uene. The Liouville-von Neumann equationdesribing the redued dynamis of the system is thus rewritten as

dˆ̺S(t)

dt
= −i

[

ĤS, ˆ̺S(t)
]

+ D̂(ˆ̺S(t)) ≡ L̂(ˆ̺S(t)) . (2.53)where L̂ is the orresponding Liouville super-operator ating on ˆ̺S(t).Now, in the frame of this thesis only loal oupling of a spin hain to a heat bathvia the outermost spin will be onsidered. Hene the system part of the interationHamiltonian (2.39) is hosen as:
Â1 = σ̂(1)

x ⊗ 1̂(2) ⊗ . . .⊗ 1̂(n) , (2.54)and there remains but one pair of interation operators (α = γ = 1), therefore theseindies are omitted in the following.The bath operator B̂ is set to be linear in the osillator amplitudes (f. (2.38)),
B̂ =

∞∑

l=1

clb̂
†
l + c∗l b̂l (2.55)13



2. Theoretial Basiswhere the ck are oupling onstants. Inserting (2.55) into (2.50) and applying the Fouriertransformation (2.51), the bath orrelation tensor an be written in terms of the spetraldensity J(ω),
Γ(ω, β) = κ

J(ω) − J(−ω)

eβω − 1
, (2.56)introduing the system-bath oupling parameter κ. A usual form of J(ω) is that of anOhmi bath,

J(ω) = ωΘ(ω) , (2.57)where Θ(ω) is the Heaviside step funtion,
Θ(ω) =

{

1 ω > 0

0 ω ≤ 0 .
(2.58)The expression for the dissipator D̂(ˆ̺S(t)) derived so far is not yet onvenient for nu-merial purpose. Therefore D̂(ˆ̺S(t)) is now expressed in terms of the energy eigenstatesof the system via the projetors |i〉. As an example this is done here for the �rst termof (2.48):

〈k| D̂(ˆ̺S(t)) |n〉 =
∑

l,m

∞∫

0

ds

∞∫

−∞

dωeiωs
(

Γ(ω) 〈k| Â(−s) |l〉
︸ ︷︷ ︸

(∗)

〈l| ˆ̺S(t) |m〉〈m| Â |n〉 + . . . .(2.59)The term labeled (∗) beomes
〈k| Â(−s) |l〉 = 〈k| e−isĤSÂeisĤS |l〉 = 〈k| e−iEksÂeiEls |l〉

= e−i(Ek−El)s 〈k| Â |l〉 = e−iωkls 〈k| Â |l〉 .
(2.60)where Ei are system eigenvalues belonging to the eigenstates |i〉 of ĤS, and ωkl = Ek−El.The integrals an then be dissolved with the help of the formula

∞∫

0

ds ei(ω−ωkl)s = δ(ω − ωkl) + P i

ω − ωkl
, (2.61)negleting the Cauhy prinipal value P. Now the traeless transition operator R̂ isintrodued whose matrix elements are

〈l| R̂ |m〉 = 〈l| Â |m〉Γ(ωlm) (2.62)where, by insertion of (2.56)-(2.58), and with regard to (2.52) the bath orrelation tensorwrites
Γ(ωlm) = Γ(El −Em) = κ

(
θ(ωlm)

eωlmβ − 1
+
θ(ωml)e

ωmlβ

eωmlβ − 1

)

, (2.63)with Γ(ωll ≡ 0) = 0.14



2.3. Open Quantum Systems and Master EquationThe transition rates introdued in (2.51) obviously depend on both the temperature
T = 1/β and the system-environment oupling strength κ, whih must be small to justifythe Born approximation (2.45). Finally the dissipator is ompatly written as

D̂(ˆ̺S(t)) =
[

Â, R̂ ˆ̺S(t)
]

+
[

Â, R̂ ˆ̺S(t)
]† (2.64)It is easily shown that the stationary solution of (2.53), ˙̺̂

S(t) = 0, is the anonialequilibrium state with the Boltzmann distribution
ˆ̺statS =

e−βĤS

TrS{e−βĤS}
, (2.65)being the eigenstate of the Liouvillian L̂ to the eigenvalue zero. Independently on initialonditions, a system loally oupled to only one heat reservoir is expeted to end up ina state of anonial equilibrium due to the deohering bath in�uene represented by thetransition operator R̂.2.3.2. Open Quantum Systems in Thermal Non-EquilibriumAs in the further proeeding a non-equilibrium senario of a spin hain between twoheat baths will be investigated, a seond dissipator representing the additional reservoiris added to (2.53),

dˆ̺S(t)

dt
= −i

[

ĤS, ˆ̺S(t)
]

+ D̂h(ˆ̺S(t)) + D̂c(ˆ̺S(t)) ≡ L̂(ˆ̺S(t)) (2.66)where h and c denote the hot and old heat reservoir, respetively. The stationarysolution of Eq. (2.66) is a non-equilibrium state sine, in the eigenrepresentation ofthe system Hamiltonian ĤS, it exhibits non-vanishing o�-diagonal elements desribingorrelations between the di�erent system eigenstates.At the same time a �nite stationary heat urrent through the system emerges, runningfrom the hot to the old reservoir (see Se. 2.5.2) and obviously linked to the remainingorrelations in the system [33℄.Although there is no global equilibrium established, single subunits of the system maynevertheless be found in a loal equilibrium state (f. Se. 2.4.1) sine it turns out that,loally, orrelations are damped out by the baths.
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2. Theoretial Basis2.4. Thermal Properties of Spin Systems2.4.1. Two-Level Systems in Thermal EquilibriumIn Pauli σ̂z-representation, the Hamiltonian of a two-level system (TLS) suh as a spin-
1/2 partile ("spin") reads

ĤTLS =
1

2
∆Eσ̂z (2.67)where ∆E is the loal energy splitting. The ground and exited states are −1

2
∆E and

+1
2
∆E, loated symmetrially around the zero energy level. If the TLS density matrixis diagonal in this basis, i. e.

ˆ̺ =

(
̺00 0
0 ̺11

) (2.68)with ̺00 and ̺11 being the oupation probabilities of the lower and upper energy state,respetively, the TLS is always in a anonial equilibrium state [34℄,
ˆ̺eq =

e−βĤTLS
Tr{e−βĤTLS} . (2.69)The von-Neumann entropy of the same system,

S = −Tr{ ˆ̺ ln ˆ̺} = −(̺00 ln ̺00 + ̺11 ln ̺11) (2.70)an then be interpreted as the thermal entropy [2℄.For a TLS or spin in a anonial state it is also possible to de�ne a loal temperature
T = 1/β (kB ≡ 1),

̺11

̺00

= e−β∆E (2.71)The spin energy expetation value 〈E〉, onsidered as intrinsi energy U of the TLS,writes [2℄
U ≡ 〈E〉 = Tr{ ˆ̺ĤTLS} = −∆E

2
(̺00 − ̺11) = −∆E

2
tanh

(
∆E

2T

) (2.72)Realling the standard thermodynami temperature de�nition T = ∂U
∂S

one �nds, inagreement with (2.71),
T = − ∆E

ln(̺11/̺00)
(2.73)Generalizations to multi-level systems are possible, see [5, 35, 36℄.2.4.2. Global versus Loal TemperatureIn general, it is a possible ondition for the existene of temperature on nanosales thatthe orresponding system has to be in a anonial state. In [36, 5, 37℄ it was shown16



2.5. Heat Transport in Spin Chainsthat this holds for a subgroup of spins or a single spin within a oupled spin system iforrelations between the respetive subgroups are small.This was validated in [38, 35℄ by means of a Heisenberg spin hain of a few subunitswhih, in terms of (2.54), is loally oupled to a bath modeled after (2.64). The hainas a whole is found to relax into a stationary anonial state, exhibiting the same globaltemperature as the bath, independently of the internal spin-spin oupling strength λ.However the loal spin temperatures do depend on λ and are only desriptive if theinternal oupling strength is weak enough ompared to the loal spin energy splittings
∆Ei. In this ase, as a good approximation, the system energy is extensive in the numberof spins and temperature is intensive sine global and loal temperatures oinide.Otherwise orrelations between single spins and spin groups and thus the loal entropyinrease, making loal temperatures deviate more and more from the global one withinreasing λ. In this ase the system energy is not extensive in the number of spins anylonger sine energy is inreasingly stored in the interation between single units.2.5. Heat Transport in Spin ChainsThis setion shall give a brief overview of the theoretial framework of heat ondutionin spin hains, aording to [34, 38℄ and also to [39, 40℄.2.5.1. Heisenberg Spin ChainThe Hamiltonian of a hain onsisting of N spins with a nearest neighbor interationreads

Ĥ =

N∑

µ=1

Ĥlo(µ) + λ

N−1∑

µ=1

Ĥint(µ, µ+ 1) (2.74)The loal Hamiltonian Ĥlo(µ) of spin µ is given by (2.67), λ denotes the site-independentpair oupling strength and Ĥint is the interation Hamiltonian. In this work only theanti-ferromagneti Heisenberg spin hain is used where λ > 0 and
Ĥint(µ, µ+ 1) =

∑

i=x,y,z

σ̂i(µ) ⊗ σ̂i(µ+ 1) (2.75)with a non-resonant oupling part σ̂z ⊗ σ̂z. The operators σ̂i are the Pauli matries.2.5.2. Heat CurrentAn analytial expression for the heat urrent through a system of several subunits, e. g.a spin hain, an be obtained after [34, 26℄. Starting from the Liouville-von NeumannEq. (2.53) for the redued system dynamis
˙̺̂
S(t) = −i

[

ĤS, ˆ̺S(t)
]

+ D̂(ˆ̺S(t)) (2.76)17



2. Theoretial Basismultiplying this with the system Hamiltonian ĤS and applying the trae yields
Tr
{

ĤS
˙̺̂
S

}

= −i
∂

∂t
Tr
{

ĤS ˆ̺S

}

= Tr
{

ĤSD̂(ˆ̺S)
} (2.77)where the trae over the system ontribution [ĤS, [ĤS, ˆ̺S]] vanishes. The left-hand sideof this expression denotes for the total hange of energy in the system,

d

dt
〈E〉 =

d

dt
Tr{ĤS ˆ̺S} ,and therefore may be identi�ed with a heat urrent J between the system and the heatbath modeled by the dissipator D̂,

J = Tr{ĤSD̂(ˆ̺S)} . (2.78)With regard to the the stationary solution ˙̺̂
S = 0 of Eq. (2.66) in the non-equilibriumsenario desribed in Se. 2.3.2, the overall energy hange in the system must be equalto zero due to energy onservation. Thus, with (2.78),

d

dt
〈E〉 = Tr

{

ĤSD̂h(ˆ̺S)
}

+ Tr
{

ĤSD̂c(ˆ̺S)
}

≡ Jh + Jc
!
= 0 . (2.79)Hene a stationary leakage urrent Jh = −Jc through the system emerges, running fromthe hot (h) to the old (c) reservoir. By onvention a heat urrent �oating into thesystem is signed positive.2.5.3. Fourier's Law in Open Quantum SystemsA ommon way to desribe heat transport through a material is a harateristi di�eren-tial equation widely known as Fourier's law, linking the heat urrent J and an externaltemperature gradient ∇T (r, t) via the ondutivity K,

J = −K∇T (r, t) (2.80)Fourier's law in an open quantum system an be investigated by realizing a stationarysetup of a homogeneously split spin hain with a weak nearest neighbor Heisenberginteration (see (2.75)) loally oupled to two heat baths via the outermost spins of thehain, aordingly to (2.66). This is possible sine, after [34, 39℄, the heat urrent in aHeisenberg spin hain is not a onserved quantity, leading to a �nite ondutivity andtherefore allowing for regular heat transport.As mentioned in Se. 2.3.2, the system as a whole is in a stationary thermal non-equilibrium state. However, the single spins may still be found in loal equilibriumstates due to the bath-indued damping and therefore exhibit loal temperatures (see(2.73)) under the onstraints noted in Se. 2.4.2.It turns out that the spin hain exhibits a linear temperature gradient ∆T with respetto the single units in the hain. This omes along with a stationary heat urrent running18



2.5. Heat Transport in Spin Chainsthrough the system (f. Se. 2.5.2) and linearly depending on the temperature gradient
∆T imposed by the baths. Thus, Fourier's law is ful�lled for this kind of quantumsystems, f. [34, 38, 40℄.Ref. [16℄ mentions the strong dependene of the heat urrents Jh,c on the loal energysplittings. The urrents are maximal at overall resonane, i. e. for a homogeneouslysplit hain, and derease to zero the more the energy splittings are detuned. This isequivalent to a derease in heat ondutivity and thus to an inrease of the spin hainresistane [41℄.It is therefore possible to deouple a part of the spin hain from one or both bathsfatually by simply detuning the loal energy gaps of adjaent spins. As it will bedisussed below, this aspet is fundamental for the onept of a quantum thermodynamimahine realized by an inhomogeneously split spin hain between two heat baths.
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3. Quantum ThermodynamiMahines3.1. Quantum Thermodynami VariablesA desription of thermodynami proesses requires adequate de�nitions of the variablesheat and work. For a quantum system Ĥ with a disrete spetrum, being in a statedesribed by the density operator ˆ̺, we start from the energy expetation value
U = 〈E〉 = Tr

{

Ĥ ˆ̺
}

=
∑

i

piEi (3.1)where pi are the oupation probabilities of the energeti levels belonging to the eigen-values Ei. The total di�erential of Eq. (3.1) beomes
dU =

1

2

∑

i

Eidpi
︸ ︷︷ ︸

d̄Q

+ pidEi
︸ ︷︷ ︸

d̄W

(3.2)Identifying this with the Gibbs relation (2.1), the heat Q and the work W are assoiatedwith the hange of oupation probabilities and the spetral deformation, respetively.In analogy to lassial thermodynamis, the spetrum is thus interpreted as a "volume"sine an amount of mehanial work ∆W is always related to a hange of volume ∆V .A yli proess requires, following (2.30),
∆U = ∆Q+ ∆W

!
= 0 or ∆W = −∆Q . (3.3)The work is alulated by integrating over the ST -diagram whih is losed for a yliproess:

∆W = −
∮

TdS . (3.4)The heat ∆Q results from integrating the respetive heat urrents Jα obtained with(2.78) over one period τ = 2π/ω if the system is onneted with the bath α,
∆Qα =

τ∫

0

Jαdt , (3.5)For a yli mahine proess where two heat baths are present, we arrive at
∆Q = ∆Qh + ∆Qc . (3.6)21



3. Quantum Thermodynami Mahineswhere ∆Qh and ∆Qh denote the heat transferred between the system and the hot (α = h)and old bath (α = c). From Eqns. (3.4) and (3.5) the e�ienies for the heat engine(en) and heat pump (p) result as
ηen = ∆W/∆Qh ηp = ∆Qh/∆W . (3.7)For a TLS in a anonial state the further needed thermodynami variables entropy andtemperature are given by Eqns. (2.70) and (2.73).3.2. Quantum Otto Cyle3.2.1. The Three-Spin Quantum MahineThe elementary quantum thermodynami mahine model underlying all further modelsto be investigated in this thesis is depited in �gure 3.1 and has been widely disussedand treated numerially in [15, 16℄. It onsists of an inhomogeneously split hain ofthree spins loally oupled to a hot (h) and old (c) heat bath via the outermost spins.The interation between nearest neighbors is of Heisenberg type, f. (2.75). The systemHamiltonian reads, in analogy to (2.74),

Ĥ =
3∑

µ=1

(

1

2
∆Eµσ̂

µ
z + λ

∑

i=x,y,z

σ̂µ
i ⊗ σ̂µ+1

i

) (3.8)where ∆Eµ is the loal energy splitting of spin µ and σ̂µ
i are the Pauli matries. Thebath ontat spins 1 and 3 exhibit di�erent onstant loal energy splittings, imposingan energy gradient on the system and thus spatial asymmetry. Following the Curiepriniple [6℄ this is one elementary requirement for any mahine funtion. Furthermore,the presene of two heat baths satis�es the laim for thermal non-equilibrium, being theondition for any onversion of heat out of a thermal bath into work after the seondlaw. In the approah of this work external ontrol on the system is implemented viaa semilassial σ̂z-driver whih only ats on spin 2 by periodially modulating its loalenergy gap ∆E2. From a lassial point of view the driven spin takes the role of a�working gas� running a yli proess while the external driver may be interpreted as a"piston", ontrolling the work in the system.In a possible experimental senario the σ̂z-driver might be realized via an externalmagneti �eld. However, this is not suitable as work reservoir sine, lak of any retro-ation on the driver, the work released by the driven spin annot be piked o�. For thisreason the hosen driver is rather lassial than quantum mehanial. Nevertheless thisproblem may be irumvented by oupling the gas spin to an autonomous driver suhas a harmoni osillator. This was investigated e. g. in [14℄.At the same time the driver is also enabled to ontrol heat transfer between the systemand the reservoirs. This is aomplished by the resonane e�et ited in Se. 2.5.3,provided spin 2 is alternately driven into resonane with both bath ontat spins. For22



3.2. Quantum Otto CylePSfrag replaements

Th Tc

Hotbath ColdbathSpin 1 Spin 2 Spin 3
κκ λλ

∆E1 ∆E2(t) ∆E3Figure 3.1.: Elementary quantum mahine model of a three-spin hain between two heatbaths. Th and Tc are the bath temperatures, λ and κ are oupling onstantsand ∆Eµ are the loal energy gaps of spins µ = 1, 2, 3. ∆E2 depends ontime sine the middle spin is driven.this the resonane onditions
∆E1 ≥ ∆E2(t) ≥ ∆E3 (3.9)must be ful�lled. Heat urrents between the system and the baths only our if theenergy splitting of spin 2 equals one of the onstant bounds, i. e. ∆E1 = ∆E2 or

∆E3 = ∆E2. In between, heat urrents are negligible so that the oupation probabilitiesof spin 2 remain onstant while its energy splitting is modulated.Following Eq. (3.2), the �rst ase is related to heat transport at onstant spetrumwhereas the seond ase is related to work at onstant entropy. Sine in Se. 3.1 it wasargued that a spetral deformation orresponds to a volume deformation in lassialterms, this quantum thermodynami yle an be identi�ed as the quantum analog tothe lassial Otto yle, featuring isohori steps with onstant spetrum and adiabatisteps with onstant entropy. Therefore it is referred to as the Quantum Otto yle. Withregard to the yle steps, this analogy will be demonstrated in detail in the followingsetion.3.2.2. Cyle StepsSimilarly to a lassial thermodynami Otto yle, the quantum Otto yle runs in foursteps.1. Isohori step: Spin 2 is in resonane with spin 3 and therefore oupled to theold reservoir at temperature Tc. The heat urrent Jc between this bath and thesystem gets large, while Jh remains negligibly small. The oupation probabilitiesand thus the loal temperatures of spins 2 and 3 approah as both evolve towardsontat equilibrium.2. Adiabati step: Spin 2 is driven out of resonane with spin 3, leading to a dereaseof Jc. The oupation probabilities, i. e. entropy remains almost unhanged,whereas work is applied or released due to the spetral deformation. 23



3. Quantum Thermodynami Mahines3. Isohori step: Spin 2 is in resonane with spin 1. The heat urrent Jh gets largewhile Jc is negligible. As both spins equilibrate, loal temperatures approah eahother.4. Adiabati step: ontrarily analog to step 2.There are two possible working modes: either the system runs as heat engine, trans-porting heat from the hot to the old bath and releasing work, or it runs as heat pump,ating the other way round and onsuming work.3.2.3. Numerial ImplementationIn order to alulate the time-dependent system state ˆ̺S, the master equation (2.66)is solved numerially sine the super-operator L̂ is too high-dimensional for a losedanalytial solution to be available. Independently of its initial state ˆ̺S(0) the system isfound to reah a stable time-dependent attrator state. This also applies for all numerialsimulations presented further on and therefore will not be mentioned expliitly any more.For more details on numerial methods used in this work it is referred to Se. A in theappendix.Sine numerial reasons require a smooth modulation funtion for ∆E2(t), sinusoidaldriving is onsidered in the frame of this work,
∆E2(t) = ∆E0

2 + a sinωt (3.10)where the o�set ∆E0
2 = 1

2
(∆E1 +∆E3) and the detuning parameter a = 1

2
(∆E1−∆E3)are hosen to agree with ondition (3.9).The driving frequeny ω and the bath temperatures Th > Tc are given in units of theloal spin energy splittings ∆Ei. The same holds for the oupling parameters λ and κwhih, due to the Born approximation and Se. 2.4.2, must stay in the weak ouplinglimit,

κ, λ≪ ∆Ei (3.11)The Markov assumption enters by laiming the driving frequeny ω to be small enoughin order to su�iently damp the system:
ω ≪ ∆E2 (3.12)Otherwise, energy transfer between the system and the heat reservoirs via spin resonanewould not be possible any more, ausing the mahine funtion to break down. On theother hand, hoosing a too small driving frequeny, i. e. ω ≪ κ would make the systemrun in the quasi-stationary limit where only leakage urrents remain and the usefulsystem work turns to zero [16℄.This marks an essential di�erene to onventional lassial thermodynami mahineyles whih are normally onsidered in the quasistati limit, running in�nitesimallyslowly but produing a �nite amount of work per yle. In ontrast, the Quantum Ottoyle desribed above must be run in �nite time in order to yield a �nite work outputfor the hosen manner of driving.24



3.3. The Ideal Quantum Otto Cyle3.3. The Ideal Quantum Otto CyleFor any kind of mahine funtionality ruially depends on the ahievable degree ofexternal ontrol on the yle steps. Obviously this ontrol is limited in the ase of time-dependent driving as disussed in the previous setion, whih will also be shown lateron by means of numerial investigations.In general, one is interested in idealized, fully manageable yle steps in order toobtain an upper bound for the harateristis of arbitrary mahine proesses. Regardingthe Quantum Otto yle, a orresponding model shall be brie�y reviewed, following[42, 11, 16℄. Here, the spetrum and the oupation probabilities within the drivenquantum system underlie total ontrol, and so do the yle steps desribed in Se. 3.2.2.Consequently, in this ideal mahine proess heat is only exhanged during bath ontatsand work is only performed on the adiabats. Furthermore, any kinds of losses are ruledout and perfet ontat equilibrium is assumed between two spins oming into resonane.It is now possible to obtain analytial expressions for the work, heat and e�ieniesby simply taking into aount the energy expetation values of the driven spin beforeand after eah step.After the driven spin has been in ontat with ontat spin at the old bath, it is inthe same anonial state:
ˆ̺2 =

1

Z

(
e∆E3/2Tc 0

0 e−∆E3/2Tc

) (3.13)where the partition funtion reads
Z = e∆E3/2Tc + e−∆E3/2Tc = cosh

(
∆E3

2Tc

)

. (3.14)After the following adiabati step it is ∆E2 = ∆E1 while ˆ̺2 remains unhanged. Thework is given by the energeti di�erene before and after the step (see (2.72)):
W3→1 =

1

2
(∆E3 − ∆E1) tanh

∆E3

2Tc

. (3.15)Together with the ontrating adiabati step the total work beomes
∆Wtot =

1

2
(∆E1 − ∆E3)

(

tanh
∆E1

2Th
− tanh

∆E3

2Tc

)

. (3.16)In analogy to this the heat transferred between spins 1 and 2 is
∆Qh =

1

2
∆E1

(

tanh
∆E1

2Th
− tanh

∆E3

2Tc

)

. (3.17)whih orresponds to an entire swap of the states of both spins. Calulating Qc analo-gously, the Gibbs relation (2.4) is easily veri�ed. With (3.16) and (3.17) the heat engineand heat pump e�ienies for the ideal Quantum Otto yle result as
ηOttop =

∆Qh

∆Wtot =
∆E1

∆E1 − ∆E3
, ηOttoen =

∆Wtot
∆Qh

= 1 − ∆E3

∆E1
. (3.18)These expressions remind of the lassial Otto e�ieny (2.11) as they only depend onthe spetrum (the �volume�) but not on the bath temperatures. 25



3. Quantum Thermodynami Mahines
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ηen heat engine and orresponding Carnot e�ienies ηCaren/p as funtions of
∆T . Note the di�erent saling with regard to pump and engine e�ienies.3.3.1. Three-Spin Mahine with Arti�ial DeouplingFor numerial veri�ation of the ideal Quantum Otto yle introdued in Se. 3.3 andpartiularly of Eq. (3.18), the present author performed numerial simulations of a dy-namially driven three-spin mahine inluding an arti�ial deoupling between adjaentspins in order to impose a high degree of ontrol on the yle steps and, in partiular, toeliminate leakage urrents being omnipresent for a permanent oupling (f. Se. 4.2). Inpratie, the Heisenberg ouplings are �swithed on� only within a given interval duringwhih the driven spin and the respetive bath spin are in resonane and set to zero else.Although one may question whether this proedure is pratiable in physial regard,it turns out to be an e�etive numerial tool to hek the plausibility of (3.18) bysimulating its premises.The oupling parameter between the spin pair 1 and 2 is hosen as periodially on-tinued smooth pieewise funtion λ(t) whih, over one period τ = 2π/ω, is de�ned as

λ12(t) =

{

λ sin2
[

aω
(
t− bπ

ω

) ]

bπ
ω
≤ t ≤ (b+ 1

a
)π

ω

0 else . (3.19a)Similarly, the oupling parameter for the seond spin pair 2 and 3 gets
λ23(t) =

{

λ sin2
[

aω
(
t− cπ

ω

) ]

cπ
ω
≤ t ≤ (c+ 1

a
)π

ω

0 else . (3.19b)Here λ = 0.01 denotes the spin-spin oupling onstant and ω = 2π/128 = 804.25 isthe driving frequeny. The parameters a, b, c have to be seleted appropriately suh26



3.3. The Ideal Quantum Otto CylePSfrag replaements
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Figure 3.3.: Three-spin mahine with deoupling: Work ∆W and heat ∆Qh, ∆Qc asfuntions of ∆T . The ritial temperature gradient is ∆T idrit = 0.714.that interation times between resonant spins are su�iently long and, on the otherhand, leakage urrents are suppressed. An adequate set of parameters is a = 2.5, b =
π
2
(1− 1

a
) = 0.3π and c = 1+b = 1.3π. The loal energy splittings are ∆E1 = 2.25, ∆E2 =

2.0 + 0.25 sinωt and ∆E3 = 1.75. The old bath temperature Tc = 1/βc = 2.5 is keptonstant while that of the hot bath, Th, is varied. Sine the additional deformation ofthe spetrum due to the time-dependent oupling λ(t) is only of magnitude 10−2 [∆E]it may be negleted.Further information on numerial treatment are found in Se. 3.2.3 and Se. A in theappendix.E�ienies, Heat and WorkFor the three-spin quantum mahine with arti�ial deoupling, the heat pump and heatengine e�ienies ηp and ηen are obtained via (3.7) and plotted in Fig. 3.2 as funtions ofthe temperature gradient ∆T = Th −Tc, together with the respetive Carnot e�ienies
ηCarp and ηCaren (f. (2.6) and (2.7)). Indeed the results agree with the preditions fromSe. 3.3. In partiular, the e�ienies ηen/p oinide perfetly with the Quantum Ottoe�ienies for the given loal energy splittings. Aording to Eq. (3.18), these take thevalues ηOttop = 4.5 for the heat pump and ηOttoen = 0.22 for the heat engine. They areindependent of ∆T exept at a ritial external temperature gradient ∆T idrit where theyreah their respetive Carnot equivalents. This is however not a violation of the seondlaw of thermodynamis. Fig. 3.3 shows the transferred heat ∆Qh and ∆Qc betweenthe system and the hot and old reservoir obtained with (3.5) as well as the work ∆W ,27
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3. Quantum Thermodynami Mahinestwo isohores (1,3) where both entropy and temperature T2 hange with zero workperformane. Hereby the entropy and temperature of the gas spin 2 result from (2.70)and (2.73), respetively.The engine senario qualitatively would yield the same ourse in opposite diretion.Towards the ritial temperature gradient ∆T idrit, the ST -diagram takes more and morea retangle shape like in a Carnot yle as illustrated in the right part of Fig. 3.5, sinealso the Quantum Otto e�ieny approahes the Carnot e�ieny. At the same timethe shape of the ST -diagram and thus the work derease to zero (note the di�erene inthe saling of the S2 axes).Summarizing, this numerial model is able to simulate adequately a three-spin systemrunning an ideal Quantum Otto yle under nearly perfetly ontrolled yle steps.Disussion and analysis of the dynamially driven three-spin mahine at permanentoupling an be found in [15, 16℄.
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4. Parallel Quantum Mahine CiruitsIn the ourse of this hapter several dynamial driving senarios are onsidered. Thegas spins may either be driven in-phase (see Se. 4.2) or with a relative phase shift(Se. 4.3). In both ases they are mutually unoupled by default (λ1 = 0).The e�ets of a strong oupling between the gas spins (λ1 6= 0) are investigated inSe. 4.2.2. Finally, the dependene of the proess harateristis on the driving frequeny
ω is disussed in Se. 4.2.1.4.1. Stati Heat Current SenarioBefore investigating the mentioned dynami quantum mahine senarios, the stati heaturrent behavior in the parallel four-spin iruit has to be analyzed in order to verifywhether the statements ited in Se. 2.5.3 also hold in this ase, even if a a di�erentbehavior ompared to a linear spin hain setup is not expeted. In partiular, thedependene of the heat urrents on the loal energy gaps in terms of spin hain resonaneis of interest. In the following, orresponding numerial examinations are performedqualitatively by means of onrete examples.First, the loal energy gaps of the bath ontat spins are hosen ∆E1 = ∆E3 = 1.0,and the bath temperatures are Th = 2.63 and Tc = 2.5, whereas the splittings of themiddle spins, ∆E2a and ∆E2b are simultaneously varied.The resulting stationary heat urrents J4

h from the hot bath into the system and J4
cfrom the system into the old bath are alulated with the help of (2.78) and depitedin Fig. 4.2. Both approah zero for a strong detuning and reah their respetive maximaat overall resonane where ∆E2a = ∆E2b = 1.0, in analogy to the explanations given inSe. 2.5.3. As expeted, the relation Jc = −Jh is ful�lled anytime.For reasons of omparison, Fig. 4.2 also shows the developing of the orrespondingheat urrents J3

h and J3
c in a three-spin hain in dependene of the detuning of the middlespin, f. [16℄.In a �rst order approximation both systems obviously exhibit the same stationaryheat urrent harateristis. Hene one may onlude that the bath ontat spins 1 and3 at as �lters only allowing for a limited heat throughput whih does not predominantlydepend on the internal on�guration of the spin system, the more so as the system-bathoupling strength remains unhanged. Sine there are no heat sinks or soures within thesystem, the heat urrent is onserved. Thus, depending on the spin hain resistane interms of the detuning of ∆E2a,2b, the heat urrent Jh splits up into two partial urrentsrunning through the "branh" spins 2a and 2b [41℄.At this point analogies to eletri urrent and the Kirhho� node rule for eletriiruits an be dedued, omparing the former to heat urrent and the spins in a spinhain to resistanes in a parallel eletri iruit, the more so as eletrial urrent isonserved as well and would thus split up into partial urrents at a branhing point,depending on the strength of the resistanes in the branhes.The small but not negligible disrepanies between both urves in Fig. 4.2 result fromthe di�erent forming of orrelations, omparing the simpler geometry of a three-spinhain to the more omplex one in a paralleled spin hain. Correlations suh as entangle-32
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h,c througha 3-spin hain as funtion of the energy splitting ∆E2 of the middle spin.ment typially arise in anti-ferromagneti Heisenberg hains at low temperatures. Theirmagnitude ruially depends on temperature as well as on the loal magneti �elds. Thisis shown e. g. in [35℄ with the help of the Bures distane measure given in (2.35).A onrete example for the relationship between the heat urrent and orrelationsin the parallel four-spin iruit is shown in Fig. 4.3. Here only ∆E2a is varied while
∆E2b = 1.0 remains onstant and ∆E1 = ∆E3 = 1.0 as above. Over a wide range ofdetuning the stationary heat urrent J2a

h takes the maximal resonane value of J3
h foundfor the three-spin hain, whereas for ∆E2a = 1.0 = ∆E2b the maximum urrent of J4

hfound in the four-spin iruit for overall resonane is ahieved, f. Fig. 4.2. The analogholds for J2a
c = −J2a

h , omitted here.Obviously, in the ase only one of the middle spins is strongly detuned, all heattransport would obviously happen via the other one being in resonane with the bathspins, sine the total urrent approximately equals that through a three-spin hain, f.Fig. 4.2. One again this resembles very muh the behavior of eletrial urrent in aparallel iruit with two branhes, say. If one branh featured a high resistane whilethe resistane of the other branh was low, the major amount of eletrial urrent wouldrun through the latter.Comparing J2a
h to the Bures distane measure for the parallel four-spin iruit (f. (2.35)),

D2 = Tr
{
(ˆ̺S − (ˆ̺1 ⊗ ˆ̺2 ⊗ ˆ̺3 ⊗ ˆ̺4))

2} 33
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4.2. Dynamially Driven Parallel Four-Spin Ciruityields that both qualitatively exhibit the same harateristis. Thus, Fig. 4.3 revealsagain that the di�erene in heat ondutivity between the three-spin hain and thefour-spin iruit is assoiated with the di�ering forming of orrelations in both systems.It must be noted that at present neither the e�ets of lassial nor quantum orre-lations on the treated non-equilibrium senarios are inluded in the model desriptionon a quantitative level yet. A promising ansatz for this purpose is given in [43℄, linkingheat urrents in a spin hain to entanglement, whih in turn is a funtion of the globaltemperature gradient and the loal spin energy splittings.In analogy to Se. 2.5.3 all spins in the parallel iruit are always found in loalequilibrium states and thus exhibit loal temperatures. The validity of Fourier's lawfor the present senario is again veri�ed qualitatively by exemplarily hoosing the bathtemperatures as Th = 3.3 and Tc = 2.5, the loal energy gaps of the bath spins as
∆E1 = ∆E3 = 1.0 and the oupling parameters as λ = 0.01 and κ = 0.001. Fig. 4.4shows that an internal linear temperature gradient is found in the system, depending onthe detuning of ∆E2a,2b. In all ases The temperatures of spins 2a and 2b are both foundat about the same value and lose to the average temperature T2a,2b ≃ 2.9 = 1

2
(Th +Tc).A stronger detuning of both spins, e. g. ∆E2a = ∆E2b = 1.3 ompensates the internaloupling strength in the spin hain. The bath ontat spins 1 and 3 thus approah therespetive bath temperatures Th,c but are shifted to slightly higher values (dashed line).The external and internal temperature gradients approximately oinide as it would bethe ase for a weaker internal oupling strength, e. g. λ = 0.001. Following Fig. 4.2 theorresponding stationary heat urrent is very small. Referene is made here to [35℄.On the other hand, if all spins are resonantly split, ∆E2b = ∆E2a = 1.0 the internaltemperature gradient is �atter (solid line) due to the stronger internal oupling, omingalong with strong heat urrents.All in all, it has beome evident that, as general property of spin hain systems betweentwo heat baths, the bath ontat spins at as �lters limiting the heat urrent throughthe hain. In a �rst order approximation the heat urrents do not depend on the internalon�guration of the spin system. This limitation will ome up again in the followingsetions, presenting numerial results of the dynamially driven parallel four-spin iruit.4.2. Dynamially Driven Parallel Four-Spin CiruitThis setion deals with the senario of driving the four-spin iruit depited in Fig. 4.1dynamially by modulating the middle spins 2a and 2b periodially in time. The moti-vation hereof is to demonstrate that both driven spins run a Quantum Otto yle eah,orresponding to the yle steps listed in Se. 3.2.2, and to draw omparisons to thethree-spin mahine yle.In the following, spins 2a and 2b are sinusoidally modulated with a frequeny ω =

1/128 and zero relative phase (ϕ = 0). Initially they are unoupled (λ1 = 0). Again theold reservoir temperature is set onstant, Tc = 1/βc = 2.5 while Th is varied. The loalspin energy gaps are hosen as ∆E1 = 2.25, ∆E2a(t) = ∆E2b(t) = 2.0 + 0.25 sinωt and35



4. Parallel Quantum Mahine Ciruits
∆E1 (hot bath) ∆E3 (old bath) ω Th Tc λ κ2.25 1.75 1/128 2.5 - 5.0 2.5 0.01 0.001Table 4.1.: Standard parameters for the quantum mahine setups in the present work,given in units of loal energy splittings ∆E

∆E3 = 1.75, ful�lling the resonane ondition
∆E1 ≥ ∆E2a,2b(t) ≥ ∆E3 .It beomes lear that both spins indeed perform Quantum Otto yles with onseutiveisohori and adiabati steps, see Se. 3.2.1 and Se. 3.2.2. During the isohores thedriven spins simultaneously ome into resonane with the same bath spin, resulting in aheat �ux between the system and the respetive bath. In between, during the adiabats,the loal energy gaps of the gas spins are modulated and thus brought out of resonanewith the bath spins why heat urrents are negligibly small. In the following this behaviorwill be substantiated by numerial simulations.Table 4.1 lists some standard parameters whih from now on will be used for thevarious models treated this work if not mentioned otherwise.Fig. 4.5 shows the heat urrents Jh < 0 and Jc > 0, obtained via (2.78) for the asethe dynamially driven parallel iruit works as heat pump. The numbers 1 to 4 denotethe four yle steps, f. Se. 3.2.2. Heat transfer between the system and the hot andold bath ours during the isohori steps 1 and 3, respetively, while steps 2 and 4 areadiabats.A major di�erene to the idealized senario with arti�ial deoupling desribed inSe. 3.3.1 arises in the symmetri shape of the urrents. The reason hereof is a leakageurrent JL �oating from the hot to the old bath. Due to the permanent oupling betweenthe driven and bath spins a unontrollable bak-�ow of heat urrent within the spin hainours during the isohori steps, ausing a leakage heat transfer of QL =

∮ τ

0
JLdt peryle. In all models treated in this work we onsider a net urrent balane, i. e. JL isalways inluded in the total heat urrents.As a onsequene, the net heat urrents are smaller in magnitude and deay to zeromuh faster than seen in Fig. 3.4 for the arti�ial deoupling senario sine a onsiderableamount of heat �oats bak into the diretion of the internal temperature gradient in anunontrolled manner whereas, in the ase of a heat pump, heat is to be transported intothe opposite diretion.On the one hand, leakage is responsible for redued heat transport whih also meansless work to be applied or released. For this reason, the absolute values and therewiththe inlinations of the heat and work funtions depending on the global temperaturegradient are dereased as seen later on. On the other hand, additional work has to beapplied to the driven spins in order to ompensate losses. Sine this work is e�etivelydissipated, the dynamially driven Quantum Otto yle is an irreversible proess lak offull hek on the yle steps.36



4.2. Dynamially Driven Parallel Four-Spin CiruitIn partiular, the presene of losses is indiated by the dips observed in the ST -diagrams of the driven spins 2a and 2b. These are depited in Fig. 4.6 for the ases theiruit runs as heat pump and heat engine, respetively, where the temperatures T2a and
T2b are obtained with (2.73) and the entropies S2a and S2b with (2.70). At the end ofthe isohori steps, heat evidently �ows into the diretion of the temperature gradientin the system. Thus, losses are espeially profound in the ase of a heat pump sine,based on the dip size, more work performane is lost.In Fig. 4.6 only one orresponding ST -diagram is shown for both gas spins. Sine themodulation is symmetrial, it is found that both run the same thermodynami yle,that is, they both reeive and deliver one half of the total of heat urrent and thus exertor onsume the same amount of work ∆W2a = ∆W2b, adding up to the total systemwork ∆Wtot. This is indiated in Figs. 4.9 and 4.10.As a onsequene, the e�ienies of the entire iruit and those of the single drivenunits are all idential, ηtoten/p = η2aen/p = η2ben/p.Another interesting aspet arises from the �ltering nature of the bath spins, mentionedin Se. 4.1, and from the desription of the ideal Quantum Otto yle in Se. 3.3. Henethe harateristi system properties suh as ritial temperature gradient, heat, workand e�ienies should basially be governed by the bath temperatures and the loalenergy gaps of the bath spin splittings and not predominantly depend on the internalspin hain on�guration. In partiular, the ideal Quantum Otto e�ienies given byEq. (3.18) take the same values for the parallel four-spin iruit as for a linear hain.The heat pump and heat engine e�ienies of the dynamially driven parallel four-spin iruit are obtained via Eq. (3.7) and depited in Fig. 4.7 as funtions of thetemperature gradient ∆T = Th − Tc, together with the Carnot e�ienies. Fig. 4.9shows the related heat ∆Qh and ∆Qc, obtained by (3.5), the loal work ∆W2a and
∆W2b of the single driven units 2a and 2b, obtained via (3.4) and, �nally, the totaliruit work ∆Wtot = ∆W2a + ∆W2b. Fig. 4.10 is a zoom into the same.The ritial temperature gradient lies at ∆Trit = 0.63, being smaller than the idealvalue of ∆T idrit = 0.714 obtained with (3.21). Here the mahine is idle, ∆Wtot = ∆W2a =
∆W2b = 0 and likewise the stationary ase only a leakage urrent JL and thus a sta-tionary heat transport ∆QL = ∆Qh = −∆Qc remain. Moreover, the engine and pumpe�ienies are always inferior to the respetive Carnot bounds and deay to zero onapproah to ∆Trit. For ∆T → 0 the heat pump e�ieny ηp does not diverge sineasymmetry within the system persists, introdued by the inhomogeneous spin hainsplitting.Following Fig. 4.10, ∆Qc hanges sign before ∆Qh does, whih is due to leakage.In the region where ∆Qh and ∆Wtot are both positive, all work input is dissipated toompensate losses.In Fig. 4.8 the e�ienies of the dynamially driven iruit are ompared to those of anideal Quantum Otto yle whih after (3.18) take the values ηOttop = 4.5 and ηOttoen = 0.222for the bath spin energy splittings being ∆E1 = 2.25 and ∆E3 = 1.75. Although thelatter are supposed to be upper bounds, the dynamial heat pump e�ieny ηp mayobviously exeed ηOttop for small ∆T . Apparently the attribute `ideal' must be handledarefully with regard to the Quantum Otto yle. 37
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4.2. Dynamially Driven Parallel Four-Spin Ciruit
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4.2. Dynamially Driven Parallel Four-Spin CiruitThe losses underlying the desribed deviations from the behavior originally expetedfor a Quantum Otto yle may be introdued from a phenomenologial point of view [16℄.Here the gas spins are assumed to approah a thermal state whih is not in aordanewith the respetive bath temperatures. By onsequene ∆Qh and ∆Qc are dereased.On the other hand also less work is done, whih explains the possibility that ηqmp mayexeed ηOttoen . In general, these losses are asymmetri sine they are always diretedtowards the temperature gradient in the system. This feature �nally makes the heatpump and engine e�ienies vanish on approahing ∆Trit whih usually is inferior to
∆T thrit. Thus, e�etively, the emergene of the engine funtion is favored.Comparing the numerially found properties of the parallel four-spin iruit to thoseof the linear three-spin mahine [15, 16℄, one �nds good aordane. Thus, in �rst orderapproximation it is feasible to map both models on eah other in that both systems runequivalent Quantum Otto yles and exhibit the same harateristis provided the bathtemperatures and the energy gaps of the bath spins are identially hosen.Though, disrepanies between the di�erent systems remain whih are unexplainedyet. In order to obtain a more onvenient theoretial desription it will beome neessaryto inlude the e�ets of orrelations on the heat urrents f. [43℄.In partiular, it is presumably inappropriate to assume ideal heat exhange under per-fet ontat equilibrium if two spins are oupled in parallel to a third one. As mentionedalready in Se. 4.1, in the ase of a spin "ladder" orrelations will form in a di�erentmanner than in a simple spin hain. Nevertheless, ontat equilibrium does develop upto a ertain degree, that is why the mahine �nally works.4.2.1. Impat of the Driving FrequenyAs skethed in Se. 3.2.3, our quantum mahine iruits run on �nite time sales. Inontrast to an ideal lassial proess the work turns zero in the quasi-stati limit (ω → 0),orresponding to the stationary senario desribed in Se. 4.1. On the other hand,following ondition (3.12) a too fast driving speed (ω → ∞) would also lead to a break-down sine the dynamial timesale of the system would then approah that of the baths,inhibiting su�ient damping.In the following the dependene of some heat pump and the heat engine harateristison the driving frequeny ω are disussed by means of the parallel four-spin iruit withthe gas spins driven in-phase. We hoose the temperature gradients as ∆T = 0.13 and
∆T = 1.5, respetively, and leave all other parameters as listed in table 4.1.Fig. 4.11 shows the work ∆W en released by the engine and the heat ∆Qp

h transportedto the hot reservoir by the pump. Both absolute values ease for slow and very fastdriving frequenies and show a relative maximum around ω ≃ 1/2000. It remains yetunlear down to what speed the mahine an be run before the quasi-stati limit isreahed. A orresponding long enough periodi time τ = 2π/ω has not even beenreahed for a lower-dimensional three-spin mahine [41℄, onsuming by far less numerialruntime.In Fig. 4.12 the e�ienies of the heat engine and heat pump are depited as fun-tions of ω. While ηen deays quasi-monotonially with dereasing ω, ηp exhibits a max-41
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4.2. Dynamially Driven Parallel Four-Spin CiruitPSfrag replaements
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h as funtions of ωimum plateau starting at ω ≃ 10−2 where also work and heat are still su�iently large(f. Fig. 4.11). This justi�es the hoie of ω = 1/128 as driving frequeny if the othersystem parameters are omparably seleted.The power harateristis is given in Fig. 4.13. For the engine, power is de�ned as
Pen = −∆W enω, for the heat pump pp = −∆Qp

hω. In both ases the power dereasesmonotonially with ω. From an eonomi point of view a higher driving frequeny inagreement with (3.12) is thus favorable for the engine, whereas the heat pump shouldbe operated at lower speed to redue work input, f. Fig. 4.12.Beyond this qualitative analysis it would be favorable to know the e�ieny of theendoreversible Quantum Otto yle at maximum power output rather than trying allpossible sets of parameters. In other words, we are looking for an expression analogto the Curzon-Ahlborn e�ieny (2.1.3) in the ase of a Carnot yle. Although aorresponding relationship is not yet available, it supposedly would have to depend fromthe bath ontat energy splittings as well as from the bath temperatures.4.2.2. Driven Spin Pair with Mutual CouplingIn this setion we disuss the impats of oupling the driven spins in the parallel four-spin iruit by means of a oupling onstant λ1. Otherwise the iruit is equivalent tothat of Se. 4.2, using the standard parameters from Tab. 4.1. The gas spins are drivenin-phase, i. e. ϕ = 0.As a onsequene, heat is now transported by a pair of spins labeled 2ab whih, due tothe mutual oupling, is found in a anonial state as a whole and an thus be assigned aloal spin group temperature T2ab, to be alulated by the �tting routine TempFit [44℄43
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iand the redued state ˆ̺2ab.It turns out that, for rather weak oupling (λ1 = λ = 0.01) the anonial temperature
T2ab is equivalent to the loal spin temperatures T2a and T2b obtained via (2.73).Setting λ1 = 0.1 hanges the situation drastially, though. Now, the loal tempera-tures of the single spins are higher than the spin pair temperature, i. e. T2a = T2b > T2ab,to be observed in Fig. 4.15. This behavior is plausible due to the explanations in 2.4.2,aording to whih the loal temperature of a spin or group of spins is desriptive onlyin the ase of weak interation with neighbored groups, say λ = 0.01. Else orrelationsmake loal entropies inrease, why loal temperatures are no longer intensive.Fig. 4.16 shows the ST -diagrams of the spin pair 2ab running its own thermodynamiyle as heat pump or heat engine, where T2ab is obtained as desribed above and S2abresults from (2.29). At the same time the single spins 2a and 2b still run their individualyles, f. Se. 4.2. The dependenies of heat, work and e�ienies on ∆T turn out tobe the same as for the unoupled ase where λ1 = 0. Despite of the presene of strongorrelations between the driven spins, it is found that the work performed by the singlegas spins simply adds up to that of the spin pair, ∆W2a + ∆W2b ≃ ∆W2ab as shown inFig. 4.14. Hene the inrease in loal temperatures and entropies aused by orrelationsonly leads to an approximately onstant o�set in the ST -diagrams whih rules out onintegration.Summarizing, this senario is rather equivalent to the unoupled ase and obviouslydoes not furnish any improvement, whih one ould have assumed beause of the internalsymmetry. 45



4. Parallel Quantum Mahine Ciruits4.3. Driving with Relative Phase ShiftIn Se. 4.2 it was disussed that driving the gas spins in the parallel four-spin iruitwith zero relative phase would yield the same result as for a omparable three-spinmahine, i. e. no improvement ould be ahieved by an additional spin due to the�ltering funtion of the bath spins determining the system. It shows, however, that thisan be irumvented by introduing a relative phase shift ϕ 6= 0 into the modulation ofthe gas spin energy gaps.In this setion the impliations hereof are investigated by means of a relative phase
ϕ = π. The modulation funtions of the energy gaps beome ∆E2a(t) = 2.0+0.25 cosωtand ∆E2b(t) = 2.0−0.25 cosωt. Hene both driven spins alternately ome into resonanewith the bath spins and therefore reeive the "full" heat quantity per period as it wouldalso be the ase for a three-spin mahine. For that reason the model an be interpretedas ombination of two independent three-spin mahines rather than as parallel iruit.In the following this feature and its onsequenes are demonstrated numerially.Fig. 4.19 displays the heat urrents for the ase the entire system works as heat pump.Sine heat is transferred between the system and eah heat bath twie per period, bothurrent urves now exhibit two peaks, eah with about the same magnitude as if thegas spins were driven in-phase. In aordane, both ST -diagrams given in Fig. 4.17approximately omprehend twie the shape ompared to Fig. 4.6. Hene eah drivenspin transports about the double heat quantity and also performs the double of work perperiod sine the modulation is still uniform. The osillations observed in both diagramsresult from transitions in the spin system indued by the baths during the adiabats dueto the permanent system-bath oupling.Correspondingly, one would expet the total work and heat per period to sale byabout fator two, ompared to the three-spin mahine and the four-spin iruit drivenin-phase. This behavior is indeed on�rmed by Fig. 4.21 and Fig. 4.22. Eah of the spinsoupled in parallel now transports about the same amount of heat and exerts or onsumesthe same work per period than the single driven spin in a three-spin mahine would do.Thus, the heat engine power output P = ∆W/τ = ∆Wω/2π is also doubled, makingthe parallel four-spin iruit with phase-shifted modulation about twie as good as athree-spin mahine. However, in a possible experimental setup this would inevitablyombined with higher e�ort as two external modulation �elds within a narrow rangewould be needed.As a further onsequene, Fig. 4.20 shows that the engine and heat pump e�ieniesfor phase-shifted driving qualitatively show the same harateristis ompared to in-phase driving, exept the ritial temperature gradient is marginally shifted to ∆Trit =
0.675.It must be noted that the found saling behavior of heat and work by fator two isnot exat. The deviations hereof may again be traed bak to orrelations. In Se. 4.1 itwas shown that the stationary heat urrents derease for a spin "ladder" on�gurationat overall resonane, ompared to the ase where only one spin is detuned. Althoughthis behavior annot be simply mapped one-to-one to the present dynamial senario,analogies do exist.46
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4. Parallel Quantum Mahine Ciruits
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4. Parallel Quantum Mahine CiruitsIf the gas spins are driven with relative phase-shift and alternately exhange heatwith the reservoirs, the heat urrent �ux through the system and thus heat and workare more than only doubled, ompared to the ase where both gas spins are driven in-phase. This an be interpreted as a onsequene from the stati senario and is on�rmedby omparing the respetive heat urrents for the ases the gas spins are either drivenin-phase (Fig. 4.5) or with relative phase shift (Fig. 4.19).Moreover, the respetive Bures measures for both ases plotted in Fig. 4.18 over oneperiod yield the double amount of orrelations for driving with phase-shift. They alsotrae the osillations resulting from bath-indued transitions and being more distintivefor phase-shifted driving.At this point a lear relationship between heat urrents on the one hand and thespin hain geometry and orrelations on the other hand appears, where, in omparison,the latter are linked to di�erent ondutivities for both driving senarios. So far ananalytial desription hereof is not available, but a promising ansatz is provided by [43℄.
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5. Serial Quantum Mahine CiruitsIn this hapter the interest is pointed at serial quantum mahine iruits, that is, severalmahine units suh as disussed in Se. 3.2.1 shall be onneted in series in order to obtaina linear mahine hain with more than one driven spin. For omputational reasons werestrit ourselves to ompounds of two serially onneted units. As displayed in Fig. 5.1our model onsists of a hain of �ve Heisenberg-oupled, inhomogeneously split spinsbetween two heat baths, two of whih are driven. The system Hamiltonian is that ofthe Heisenberg spin hain, given by extending (3.8) to �ve spins.Based on numerial simulations it shall be pointed out that eah of the subunits Aand B and thus the iruit as a whole run a Quantum Otto yle for given resonaneonditions between adjaent spins. Similarly the other models investigated so far, theyle harateristis suh as work, heat et. mainly depend on the loal energy gaps andtemperatures of the outermost spins in the hain loally oupled to the baths. Dependingon their respetive anonial distributions, the entire iruit either works as heat engineor as heat pump. As it will turn out, the loal working mode of units A and B areglobally determined as well.5.1. Ciruit of Oppositely Direted QuantumMahinesWe onsider �rst the spin hain setup depited in Fig. 5.1. Due to the partiular internalenergeti geometry of this model, spins A and B are expeted to run oppositely diretedyles, i. e. one works as heat pump while the other runs as heat engine. In this ontexta partiular role devolves to spin 3 in the middle. Imagine that, if the loal energy gapsof spins 2 and 4 are dereased during an adiabati step, their temperatures T2 and T4are lowered also unless they arrive in resonane with spin 3. With regard to a systemattrator state it is therefore plausible that spin 3 is found at a lower temperature thanthe baths, i. e. T3 < Tc < Th. Provided that both units run ideal Quantum Otto yles,the temperature T3 orresponds to the average anonial distribution out of those ofthe bath spins. These exhibit the same temperatures as the baths they are oupled to,respetively.For this reason it is justi�ed to onsider spin 3 as a �nite e�etive old bath via whihunits A and B exhange heat. Although it ertainly has nothing in ommon with anin�nite heat reservoir, i. e. is not a heat soure or sink, spin 3 nevertheless ats asenvironment, shielding the hot reservoir from unit B and the old reservoir from unit A.Due to the tapered internal temperature gradients resulting hereof, the yles performedby the gas spins 2 and 4 are indeed of opposite diretion. 51



5. Serial Quantum Mahine Ciruits
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5.1. Ciruit of Oppositely Direted Quantum Mahines4. Adiabati step: The loal energy gaps of spins 2 and 4 are dereased with onstantoupation probabilities, that is, work has to be applied while heat urrents aresuppressed.5.1.1. Serial Ciruit E�ieniesIn the serial Quantum Otto iruit both subunits A,B exhibit loal e�ienies as theye�etively transport heat between two heat reservoirs eah. Let now the entire iruitwork as heat engine with net transport from the hot to the old reservoir. Then, duringone period the heat quantity ∆Qh > 0 �ows from the hot reservoir into subunit A,working as heat engine between the hot reservoir and the old e�etive bath spin 3.Thus, an amount of work ∆WA < 0 is released and, via the e�etive bath, the heatquantity ∆Q∗ = ∆Qh − ∆WA reahes subsystem B working as heat pump. Here theamount of work ∆WB > 0 has to be reinvested to transport the heat ∆Qc < 0 to theold bath, aording to our sign onventions. The loal engine e�ienies then yield,aording to (3.7),
ηenA = −WA/Qh > 0

ηenB = −WB/(Qh +WA) ≡ −WB/(−Qc +WB) < 0Note that, sine subsystem B works as heat pump, it is assigned a negative enginee�ieny beause we are interested in the engine e�ieny of the entire iruit. Asexpeted, with (2.12) the global engine e�ieny beomes
ηentot = −(WA +WB)/Qh (> 0)and, for a heat pump, ηptot = −Qh/(WA +WB).The ideal Quantum Otto e�ieny for the serial heat pump/engine iruit is obtainedsimilarly. If we assume perfetly ontrolled yle steps and energy onservation withregard to heat transport through spin 3, the heat urrent from spin 2 to spin 4 mustsatisfy

J2→3 = −J3→4 (5.1)or, aording to Eq. (3.17),
∆E3

2

(

tanh
∆E1

2Th
− tanh

∆E3

2T3

)

=
∆E3

2

(

tanh
∆E3

2T3
− tanh

∆E5

2Tc

)

. (5.2)Compared to (2.72) this leads to a normalized average energy expetation value 〈E∗
3〉onstant in time,

1

∆E3
〈E∗

3〉 = tanh
∆E3

2T3
=

1

2

(

tanh
∆E1

2Th
+ tanh

∆E5

2Tc

) (5.3)and hene to the average temperature
T ∗

3 = ∆E3

[

2 arctanh
[1

2

(

tanh
∆E1

2Th
+ tanh

∆E5

2Tc

)]
]−1 (5.4)53



5. Serial Quantum Mahine CiruitsWith the help of (5.3) the ideal Quantum Otto e�ienies of the heat engine and heatpump for units A and B beome, in analogy to Se. 3.3,
ηOttoen,A = 1 − ∆E3

∆E1
= 0.444 ηOttop,A =

∆E1

∆E1 − ∆E3
= 2.25

ηOttoen,B = 1 − ∆E3

∆E5
= 0.286 ηOttop,B =

∆E5

∆E5 − ∆E3
= 3.5

(5.5)where the values of the ∆Ei from Se. 5.1 have been inserted.The ideal Quantum Otto e�ienies for the entire serial iruit are obtained withEq. (2.12),
ηOttoen = 1 − ∆E5

∆E1

= 4.5 ηOttop =
∆E1

∆E1 − ∆E5

= 0.22 (5.6)It is remarkable that these expressions only depend on the energy splittings of the bathspins but not of ∆E3. The same holds for the ritial temperature gradient, taking againthe value ∆T idrit = 0.714 after (3.21).These riteria may be heked for omparing di�erent quantum mahine models fea-turing the same boundary on�gurations. As it will get lear below, this manner ofdesription partially fails to desribe dynami senarios in some serial iruit setups andhas to be improved.5.1.2. Dynami engine-pump senarioNow the serial �ve-spin iruit presented in the previous two setions shall be run dy-namially, using the listed parameters. In the following, the results of orrespondingnumerial alulations are presented.For the ase the entire system works as heat pump, the heat urrents are shown inFig. 5.2. Relating to the yle steps desribed in Se. 5.1, the visible urrent peaksrepresent heat transfer between the iruit and the hot and old reservoir during theseond isohori step. On the other hand, internal heat transfer is not resolved sineit is not onsidered in (2.78). The urrent peaks are not of equal height due to theasymmetri energeti geometry set by the loal energy gaps. Further on they are ofweaker magnitude ompared to orresponding three- and four-spin mahine yles. Firstof all this is due to the spin hain �resistane� whih is expeted to inrease with eahspin added and the more di�erent frequenies are present in the system [41℄. Seondly,as will be revealed further on, the loal energy gap and the temperature of the e�etivebath spin 3 are deisive here.After heat transfer between the system and the reservoirs, osillations our whihan again redued to bath-indued transitions. This e�et is also visible on the adiabatsin the ST -diagrams depited in Fig. 5.4. As antiipated, spins 2 and 4 work as heatpump and heat engine, respetively, both running Quantum Otto yles orrespondingto the yle steps in Se. 5.1, while the entire iruit pumps heat from the old to thehot reservoir. Likewise before, the harateristi dips in the ST -diagrams indiate the54



5.1. Ciruit of Oppositely Direted Quantum Mahinesemergene of leakage urrents. While the large dips represent losses ourring during thebath ontats, the small ones indiate the presene of internal losses during the drivenspins exhange heat via the e�etive bath spin.Fig. 5.3 shows the serial iruit e�ienies ηen/p of the heat engine and heat pump aswell as the respetive Quantum Otto e�ienies ηOttoen/p , both as funtions of the globaltemperature gradient ∆T . Like for omparable three- and four-spin mahines the orre-sponding Carnot e�ienies ηCaren/p are never exeeded. As expeted, the harateristisof ηen/p are similar as for di�erent models with idential bath spin on�gurations. Minordi�erenes arise in that the heat pump e�ieny is signi�antly smaller whereas theengine e�ieny reahes higher values. The reason hereof is found in Fig. 5.5 showingthe heat ∆Qh,c, the global iruit work ∆Wtot and the loal subunit work ∆WA,B. Whilethe quantity of work onsumed or exhausted per yle remains in the same range om-pared to other similar models, the heat transfer between the system and the reservoirsis substantially smaller here. This goes along with the redued intensity of the heaturrent peaks as shown above.Fig. 5.6 shows that, unexpetedly, the subunits hange their loal modes of operationat di�erent temperature gradients. With inreasing ∆T , �rst unit B swithes from heatengine to heat pump mode at ∆TBrit = 0.71 where ∆WB hanges sign. Then the signs of
∆Qc and ∆Qh hange, and �nally ∆WA = 0 follows at ∆TArit = 0.77. As a onsequenehereof the transition of the entire iruit where the total work ∆Wtot = ∆WA + ∆WBhanges sign is signi�antly shifted rightwards to ∆Trit = 0.833 > ∆T idrit = 0.714.For ∆TBrit ≤ ∆T ≤ ∆TArit both units A and B work as heat pumps. Primarily, a workquantity WA/B > 0 has to be inserted per yle to ompensate losses due to leakageurrents in the diretion of the internal temperature gradients. Sine spin 3 is a �niteheat bath and annot be ooled down or heated up arbitrarily, it is evidently impossiblethat both heat pumps ould work against eah other in an e�ient way. Thus all workinput is dissipated within this range of ∆T , and the energy of spin 3 remains e�etivelyunhanged after one performed yle.For ∆TArit ≤ ∆T ≤ ∆Trit both units work as heat engine and heat pump, respetively.However, a smaller amount of work ∆WA < 0 is released from unit A than the quantity
∆WB > 0 to be applied to the latter. This is due to dissipation arising from the mutualin�uene of both units as explained later on. Hene ∆Wtot > 0 and ∆Qh > 0 at the sametime, therefore the iruit heat pump e�ieny ηp is arbitrarily set to zero in Fig. 5.3.In Fig. 5.7 the loal heat pump (p) and heat engine (en) e�ienies of units A and Bare depited, de�ned as

ηAp = −∆Qh/∆WA ηBp = −∆Qc/∆WB

ηAen = −∆WA/∆Qh ηBen = −∆WB/∆Qc .
(5.7)Again it is visualized that, between the loal ritial temperature gradients ∆TBrit and

∆TArit both units work as heat pumps. Far from these values, however, the loal QuantumOtto e�ienies obtained with (5.5) are approahed and may even be exeeded.Hene both units do behave like three-spin mahines, and onsequently the entireiruit does so. At those ∆T where ∆WB > 0 and ∆Qc > 0 in Fig. 5.6 the heat pump55
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+ tanh
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. (5.8)This holds beause, assuming ideal adiabats, the driven spins 2 and 4 arry the sameoupation probabilities as the respetive bath spins 1 and 5 just before heat transfervia spin 3, i. e. 〈Ẽ2〉 = 〈Ẽ1〉 and 〈Ẽ4〉 = 〈Ẽ5〉. If spin 3 featured the ideal averageenergy 〈E∗
3〉, the entire iruit as well as both units would simultaneously swith theirrespetive modes of operation at ∆T idrit where the anonial distributions of both bathspins are equal. In this ase, 〈E∗

3〉 = 〈Ẽ1〉 = 〈Ẽ5〉.However, spin 3 is found with an energy 〈Ẽ3〉 > 〈E∗
3〉. The o�set

C ′ = 〈Ẽ3〉 − 〈E∗
3〉 = 0.0064 [∆E]only marginally depends on ∆T over a wide range. This onsiderably hanges thesituation.Following Fig. 5.9, for ∆T ≤ ∆TB the entire iruit works as heat pump due to theenergeti order of the involved spins,

〈Ẽ5〉 = 〈Ẽ4〉 > 〈Ẽ3〉 > 〈Ẽ2〉 = 〈Ẽ1〉 57
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5.1. Ciruit of Oppositely Direted Quantum MahinesAt ∆TB = 0.52 the anonial distributions of spins 3 and 5 are equal, whih marks theexpeted swith from heat engine to heat pump mode in unit B. For unit A the heatpump should emerge at ∆TA = 0.96 where 〈Ẽ1〉 = 〈Ẽ3〉.Comparing Fig. 5.9 and Fig. 5.6 one would expet that ∆TB = ∆TBrit and ∆TA =
∆TArit. Due to the presene of leakage urrents, however, both transition points areshifted towards lower internal temperature gradients whih, for unit B, orresponds to ahigher global temperature gradient. For this reason, Fig. 5.6 shows the atual situation.In addition, the zero points of ∆Qh,c are displaed as well. This behavior is the sameas for the three- and four-spin models desribed above where leakage urrents ausethe breakdown of the heat pump and the emergene of the engine funtion at smallerritial temperature gradients than ideally expeted. Furthermore, sine heat and workfuntions are proportional to eah other, their absolute values and inlinations derease,ompared to the ase of lossless transport in the ideal Quantum Otto yle.The energeti inrease C ′ in spin 3 is of magnitude 10−2 in units of the loal energysplittings ∆E . To hek whether this an be attributed to the weak but present orre-lations within the spin hain, the Bures distane measure between the atual state andthe produt of the unorrelated loal states (f. (2.35)),

D2 = Tr
{
(ˆ̺S − (ˆ̺1 ⊗ ˆ̺2 ⊗ ˆ̺3 ⊗ ˆ̺4 ⊗ ˆ̺5))

2}is plotted in Fig. 5.8 over one period τ , yielding only a magnitude of 10−5[∆E]. Thisis muh too small to explain the mentioned up-shift e�et sine also the spin-spin in-teration has been hosen in the weak oupling limit (λ = 0.01). Nevertheless, strongsimilarities to the harateristis and magnitude of the heat urrents (Fig. 5.2) are ob-servable, indiating lear mutual dependenies. The smaller peak in Fig. 5.8 representsthe internal heat urrent Jint via the e�etive bath spin whih is invisible in the heaturrent harateristis. Only the higher peak an be diretly linked to the heat urrents
Jh,c between the system and the hot and old reservoir.The explanation for the up-shift C ′ may �nally be founded in that during the evolutionof the system towards its non-equilibrium attrator state some of the heat transportedthrough the hain e�etively remains stuk in the �bottlenek� spin 3 due to internalleakage urrents. As shown in Fig. 5.10, the energy expetation value of spin 3 〈Ẽ3(t)〉asymptotially approahes the stable average energy 〈Ẽ3〉�nal ≃ −0.2135[∆E] for aninitial energy 〈E∗

3〉 ≃ −0.22 and ∆T = 0.4. For better visibility osillations of 〈Ẽ3(t)〉are omitted.We remark that the driven spins ould also be modulated with other relative phasesthan done here. The best heat transport through this kind of serial iruit has howeverbeen found for the ase that both driven spins simultaneously are in resonant ontatwith spin 3, sine only in this ase the latter features a onstant energy and temperature,allowing for easier investigation. If otherwise the driven spins alternately exhange heatwith the e�etive bath, its energy and temperature osillates around an average value.Finally the setup as in �gure 5.1 ould be altered suh that two idential subunits hadto work against eah other. Then ∆WA = −∆WB and, as laimed by the Curie priniplefor the absene of any asymmetry, the total work would vanish and solely an e�etive61
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5.1. Ciruit of Oppositely Direted Quantum Mahinesas well during heat in�ow from the old bath (labeled C), the energy of spin 2 does notfully reah that of spin 1 although both interat (labeled H). It is generally found that,if unit A works as heat pump and B as engine, spin 2 features a higher temperaturethan it would under idealized onditions, i. e. optimal heat transfer. The same happensto spin 4 in the ontrary ase. For ∆TB ≤ ∆T ≤ ∆TA where units A and B work asheat pumps (see Fig. 5.6) both gas spins do not fully equilibrate with the bath spins.As pointed out in the following, Eq. (5.2) remains valid for T3 6= T ∗
3 by a phenomeno-logial modi�ation. Firstly, Eq. (5.3), giving the distribution of spin 3, is rewrittenas
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) (5.9)where
C = 4C∗/∆E3 (5.10)with C∗ taken from �gure 5.9 and introdued as a phenomenologial onstant. For thepresently used parameters the value C = 0.0192 is found. The loal ritial gradients

∆TB and ∆TA are now given by
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) − Tc < ∆T idrit .(5.12)These expressions only depend on the initially unknown parameter C to be obtainedfrom the numeris and, in general, are supposed to be a funtion of ∆E3, the drivingfrequeny ω and the other onstant model parameters (see table 4.1).Over a wide range a slight dependene on ∆T is visible whih, however, may benegleted within the frame of this phenomenologial ansatz. If C = 0 it would be again
∆TB = ∆T idrit = ∆TA = Tc(∆E1/∆E5 − 1) .On the other hand, the elevated energy that e. g. spin 4 exhibits after having been in res-onant ontat with spin 5 is inluded by assuming the old bath at a raised temperature
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5. Serial Quantum Mahine CiruitsAn analog expression is obtained for spin 2 if ∆T ≤ ∆TB:
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− C (5.15)From a physial point of view, the spin system evolves into a stationary non-equilibriumstate where either spin 2 or 4 do not su�iently equilibrate with the respetive bathontat spins. Eventually this an be explained as well with the ourrene of leakageurrents. Even if unit A works as engine at ∆T > ∆TA, spin 2 transports less heatdue to the raised onstant average temperature of spin 3 why, in turn, spin 4 engagestowards a state with inreased temperature in order that (5.13) is ful�lled. The analoginverse holds if the entire iruit works as heat pump for ∆T < ∆TB . In between, if
∆TB ≤ ∆T ≤ ∆TA, both units work as heat pumps and onsume work only to om-pensate losses. Here, both the hot and old reservoir are assumed to feature elevatedtemperatures T ∗∗

h and T ∗∗
c , respetively. This may be modeled by
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− aC (5.17)where a for the rest is an unknown funtion of ∆T and the other system parameters,and 0 ≤ a ≤ 1 for ∆TB ≤ ∆T ≤ ∆TA.Finally, the ritial temperature gradients for units A and B alulated above leadto the one for the entire system. Taking into aount that WB = 0 at ∆TB, the workfuntion ∆WB(∆T = Th − Tc) of unit B writes
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) (5.18)This funtion is also assumed to hold for ∆T ≥ ∆TA, taking into aount the dissipationoriginating from the exess work to be applied to system B sine here the driven andbath spin do not fully equilibrate. Otherwise Tc ould be replaed by T ∗
c from Eq. (5.14)whih would give rise again to the ideal ritial gradient ∆T idrit.In analogy to this, the work funtion ∆WA(∆T ) beomes
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− Tc (5.21)This expression depends on the internal geometry in terms of ∆E3 as well as on theenergeti up-shift in spin 3 read out from Fig. 5.9 with (5.10).For C > 0 and ∆E3 < ∆E1, ∆E5 we have ∆Trit > ∆T idrit. As a result, the mutual in-�uene between the subunits via the e�etive bath spin auses the entire iruit to hangeits mode of operation at a higher ritial temperature gradient than ideally expeted.This is also lari�ed by onsidering the energy expetation values 〈Ẽi〉 normalized to
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)Moreover, the fator 1/4 appearing in the expressions derived for ∆WA/B indiates ageneral redution of both work and transported heat due to the presene of spin 3, even if

C = 0. This also applies to other models ontaining an e�etive bath spin (see Se. 5.2)and an be linked to the elevated resistane of the �ve-spin hain. Considering e. g. athree-spin mahine, the fator 1/2 rules instead, f. (3.4), (3.5). 65



5. Serial Quantum Mahine CiruitsAll in all, the given ansatz is rather phenomenologial but, at least, it an roughlyexplain the shift of the global ritial temperature gradient in a �bottlenek� model.Compared to the desription of the ideal Quantum Otto yle, only one additionalextension has been introdued, namely C.A plot of the work funtions for the entire iruit and both subunits, alulated with(5.18), (5.19) and (5.21), is depited in Fig. 5.12 for ∆E3 = 1.25 and C = 0.0192. Asexpeted, the zero points ∆TA/B oinide with the intersetion points from Fig. 5.9.While, qualitatively, the alulated work funtions are quite similar to the numeriallyobtained ones displayed in Fig. 5.5 and Fig. 5.6, the obtained ritial temperature gra-dient of the entire iruit, ∆T alrit = 1.45 is muh too large ompared to the atual valueof ∆Trit = 0.83.Hene, the e�ets of leakage urrents must neessarily be taken into aount. As men-tioned, this will indue shifts of the loal ritial gradients ∆TA/B and also a downsalingof the work funtions. Up to now, however, this an only be done with other ad-hoapproahes, introduing more orretion terms suh as saling fators and zero shifts
∆T → ∆T ± ∆ to ∆WA/B into Eqns. (5.18) - (5.20), likewise the approah in [16℄.As it will be shown below, the o�set C hanges if ∆E3 is altered. This behavior and itsimpats on the global iruit harateristis will now be investigated further by meansof some more examples.5.1.4. Modi�ed Ciruit Con�gurations � Variation of theEnergeti GeometryIn order to determine the dependene of the iruit harateristis on the loal energysplittings, we examine an additional example where the loal energy gap of spin 3 is setto ∆E3 = 0.25 and the amplitudes of spins 2 and 4 are adjusted in order to to agree withthe new resonane onditions. This model, referred to as iruit 2, is found to exhibit asubstantially di�erent behavior than the prior one.For the ase the iruit works as heat pump, the ST -diagrams of units A,B aredisplayed in Fig. 5.13. Compared to the previously investigated iruit (Fig. 5.4) theirshapes are rather reti�ed, indiating that leakage urrents are onsiderably suppressedhere. In partiular, the small dips related to leakage within the spin hain fatuallyvanish.This quasi-reti�ation follows from the low value of ∆E3, leading to faster �strokeveloities� of the gas spin energy gaps and thus to shortened resonane times betweenneighbored spins. In physial terms the time derivatives of the loal Hamiltonian of gasspins 2 and 4 read

˙̂
H2,4 = 1

2
ω∆E0

2,4 cosωt (5.22)with inreased amplitudes ∆E0
2,4 = 1

2
(∆E1,5 − ∆E3). In the following we onentrateon the in�uene of variations of ∆E3 on the system harateristis whereas the impatsof di�erent driving frequenies ω has not been researhed yet.The redution of leakage is also apparent from the heat urrents depited in Fig. 5.14,featuring asymmetri shapes with �at slopes. This is quite similar to the model with66
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∆WA = ∆Qh = 0 at ∆TArit = 0.743, revealing again that loally dissipation is minimized.Globally seen, however, the situation remains unhanged. For ∆TBrit ≤ ∆T ≤ ∆TAritboth subsystems again work as heat pumps and onsume work only to ompensate losses.67
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5. Serial Quantum Mahine CiruitsAs mentioned, this is neessary to keep the e�etive bath spin 3 on its onstant averageenergy.Likewise, within ∆TArit ≤ ∆T ≤ ∆Trit subsystem A works as heat engine and Bas pump. Again, ∆Qh > 0 and ∆Wtot > 0 beause of ∆WB > −∆WA, i. e. unit
B onsumes more work than A releases and, e�etively, work must be expended totransport heat from the hot to the old reservoir.For the present model the energeti up-shift C∗ = 0.0009[∆E] of spin 3 is found fromin Fig. 5.18, yielding C = 4C∗/∆E3 = 0.014 whih is smaller than before. As indiatedabove, the redued value of ∆E3 leads to a raised "stroke" veloity and thus to shortenedresonane times sine driving is e�etively faster. Consequently, internal leakage urrentsare more e�etively suppressed and the heat quantity stuk in the bottlenek spin istherefore redued. As a result, the di�erene in anonial distributions between the bathspins on the one hand and spin 3 on the other hand is inreased, leading to inreased heattransport through the iruit via spins 2 and 4 whih, in relation, release or onsumeeven more work due to the larger internal energy gradients. At the same time, Fig. 5.17indiates that more work has to be expended for dissipation balane in unit B sine,for ∆T > ∆Trit the global engine e�ieny ηen undergoes its pendant from the priormodel.Following Eq. (5.11) and (5.12), the zero points of the loal subunit work funtions
∆WA/B should be shifted to lower loal internal temperature gradients for smaller valuesof C as well, whih is on�rmed by Fig. 5.18. Compared to Fig. 5.16, additional leakage-indued adjustments in this sense appear also. However these are less distintive sineleakage urrents are redued. After (5.20) the zero point of the entire iruit workfuntion ∆Wtot(∆T ) is expeted at ∆Trit = 2.0, being far too big to math with theatual value of ∆Trit = 0.87 from Fig. 5.16. Hene, in order to obtain the right zeropositions and slopes of ∆WA/B and ∆Wtot adequate orretion fators re�eting lossesare needed one more.A loser look on the proesses during the isohores is furnished in Fig. 5.21 by meansof the energy expetation values 〈Ei〉 for all spins i plotted over one period τ = 2π/ω.Compared to Fig. 5.11, resonane times between adjaent spins are shortened here.During the internal isohori step with heat transfer via spin 3, labeled F , the energiesof spins 2,3 and 4 approah quite well, indiating su�ient ontat equilibrium. However,like in the previous ase, the driven spin 2 does not su�iently approah the averageenergy level 〈E1〉 of spin 1 (labeled H) and thus remains at a higher temperature. Sinethis is related to dissipation in unit B, the engine funtion of the entire iruit emergesat an even more inreased gradient ∆Trit where, �nally, unit A starts to release morework than B an onsume.Finally, weak orrelations of magnitude and harateristis omparable to the heaturrents (Fig. 5.14) are found in the system, displayed in Fig. 5.19 by means of theBures distane measure over one period (see (2.35)). Again the internal heat urrentsare made visible by peaks.72
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5. Serial Quantum Mahine CiruitsPSfrag replaements
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5.1. Ciruit of Oppositely Direted Quantum Mahines
∆E3 ω C ∆TA ∆TArit ∆TB ∆TBrit ∆Trit with (5.21)1.25 1/128 0.02 0.96 0.771 0.52 0.708 0.833 1.450.75 1/128 0.015 0.88 0.747 0.564 0.707 0.827 1.70.50 1/128 0.0135 0.863 0.743 0.577 0.704 0.836 1.80.25 1/128 0.013 0.859 0.743 0.581 0.7 0.87 2.0Table 5.1.: Serial iruit: Charateristi results for di�erent values of ∆E3Further Examples: Ciruits 3 and 4In a third example for a bottlenek model, referred to as iruit 3, we hoose ∆E3 = 0.75and adjust the amplitudes of the driven spins, whereas all other parameters are leftunhanged, see Tab. 4.1. From Fig. 5.22 one �nds the energy up-shift C = 0.015.Aordingly, ∆TA ≃ 0.827 and ∆TB ≃ 0.564. Provided that the driving frequeny isunaltered, the stroke veloity dereases beause of smaller internal energy gradients.This leads to longer spin ontat times than in iruit 2 (p. 66), why internal leakageurrents are invoked again. As displayed in Fig. 5.23, all heat and work funtions equalzero at di�erent ∆T and mainly ome with absolute values in between those of iruits1 and 2, aording to the intermediate value of C.Apparently, the parameter C ruially in�uenes the heat transport apability inthese systems and therefore is a resistane indiator. C de�nitely depends on ∆E3 and,assumedly, also on ω whih however is to be veri�ed numerially yet.Following Fig. 5.23, the atual ritial temperature gradients ∆TArit = 0.74 and

∆TBrit = 0.71 of the subunits are shifted inbound ompared to ∆TA/B from Fig. 5.22.The ritial gradient of the whole iruit lies at ∆Trit = 0.827.Example No. 4 omes with ∆E3 = 0.5 and C = 0.0135, taken from Fig. 5.24. Itsheat and work funtions provided in Fig. 5.25 only yield small disrepanies to those ofiruit 3. Here, the ritial gradient is found at ∆Trit = 0.836.Summary and overviewThe stroke veloities, given by the time derivatives of the loal Hamiltonians of the drivenspins 2 and 4 in Eq. (5.22) have been found to determine the spin resonane ontat timeswhih are deisive for the performane of heat transfer. Therefore they onsiderablya�et the internal leakage urrent behavior and thus the parameter C. Expetedly, inaddition to ∆E3 the impat of the driving frequeny ω on C is onsiderable as well,whih is yet subjet to veri�ation. Depending on ∆E3 (and ω), the heat ondutivityof the iruit is altered by hanging the resistane of spin 3 via the parameter C. On theother hand, the global iruit e�ienies are omparable for di�erent sets of parameters.An overview of obtained harateristi values depending on ∆E3 for all presentedexamples is given in table 5.1. In �rst approximation, the atual ritial temperaturegradient obtained from the numeris an be onsidered independent of ∆E3, althoughit is expliitly ontained in (5.21) as well as via C. This is made plausible in that theinvestigated models feature about the same ritial gradient ∆Trit. Solely iruit 275



5. Serial Quantum Mahine Ciruitswhere ∆E3 = 0.25 breaks ranks. This, however, seems to be a speial ase sine onlyhere internal leakage urrents are su�iently suppressed.For the rest, all other values in table 5.1 monotonously depend on ∆E3. It is easilyveri�ed that the ansatz from Se. 5.1.3 orretly desribes the positions of the loal riti-al gradients ∆TA/B where ∆WA/B = 0. It takes into aount the dissipation arising dueto the fat that at least one of the driven spins does not equilibrate with the respetivebath spin during heat transfer between the system and the aeptor bath. Additionally,one an state that, even if for this lass of serial quantum mahine iruits diret leakageurrents from the hot to the old bath are not present, the same e�ets arise as if thiswas the ase sine, in some sense, the iruit subunits work against eah other due tothe e�etive bath funtion of the �bottlenek� spin.It must be noted that the right-shift of ∆Trit annot be exploited up to the fullrange like in models with linear energeti gradients beause, within the ritial range,all expended work is needed to balane dissipative losses.In general, even if adequate �tting parameters for leakage urrents an be found, theatual proesses within these rather omplex systems are di�ult to haraterize.Summarizing, the serial �ve-spin iruit with a "bottlenek" spin does indeed run aQuantum Otto yle, however, a better performane and more e�ient heat transport ispossible with a three-spin or four-spin mahine, so as with the parallel four-spin iruitdriven with relative phase shift.5.2. Serial Ciruit of Direted Quantum MahinesAfter having looked at oppositely direted quantum mahines in the previous setion, weinvestigate now a serial iruit with a funnel-shaped global energy gradient as depitedin Fig. 5.26. Di�erently to the "bottlenek" model, units A and B are expeted to runQuantum Otto yles in the same diretion and work in unison either as heat engines orheat pumps due to the direted energeti gradient. This inludes a direted temperaturegradient within the iruit as well. The Quantum Otto yle steps performed analogouslyto the desription in Se. 5.1.Likewise before the iruit is a Heisenberg spin hain whose Hamiltonian is givenby (3.8) extended to �ve spins. For numerial investigations the spin energy splittingsare hosen as ∆E1 = 3.0, ∆E2(t) = 2.75 + 0.25 cosωt, ∆E3 = 2.5, ∆E4(t) = 2.25 −
0.25 cosωt and ∆E5 = 2.0, ful�lling the resonane onditions

∆E1 ≥ ∆E2(t) ≥ ∆E3 ≥ ∆E4(t) ≥ ∆E5Similarly, for the loal temperatures one �nds
Th = T1 > T3 > T5 = TcSpins 2 and 4 are driven with a relative phase shift of half a period in order to bring theminto resonane with spin 3 simultaneously, sine in this ase a onsiderable redution ofleakage urrents is found and heat transport is improved. The temperature of the old76



5.2. Serial Ciruit of Direted Quantum Mahines
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5. Serial Quantum Mahine CiruitsPSfrag replaements 1
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1 − ∆E∗
5 = x(∆E1 − ∆E5), 0 < x < 1 wouldtransport more heat with the same work to be applied. Therefore, it would exhibit ahigher ideal Quantum Otto e�ieny for the heat pump and a lower one for the engine.Sine, however, these e�ienies depend on onrete values of the bath spin splittings,a detailed omparison is not possible.Fig. 5.32 shows the loal heat engine and heat pump e�ienies ηA/Ben/p as well asthe orresponding Quantum Otto e�ienies for units A and B whih take the values

ηA,Ottop = 6.0, ηB,Ottop = 5.0, ηA,Ottoen = 0.167 and ηB,Ottoen = 0.2.Both heat pump e�ienies deease simultaneously to zero, whereas the emergeneof the heat engine funtion in unit B is slightly shifted ompared to that of unit A,i. e. ∆TBrit > ∆TArit, sine, as mentioned, a small work input into system B is requiredto ompensate the losses in A (f. Fig. 5.31). Far away from ∆T
A/Brit both heat pumpe�ienies rapidly approah their respetive Quantum Otto bounds, whereas the en-gine e�ienies also onverge but e�etively stay below. Following Fig. 5.28, the same80
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5. Serial Quantum Mahine Ciruitsbehavior is found for the entire iruit.From a general point of view, the dependenies between global and loal enginee�ienies are the same as in Se. 5.1.1. A heat quantity ∆Qh from the hot bath�oats into unit A where the work ∆WA < 0 is emitted, leading to the engine e�-ieny ηAen = −∆WA/∆Qh. Via spin 3 the remaining heat ∆Q∗ = ∆Qh − ∆WA isforwarded to unit B where another amount of work ∆WB < 0 is released. This leads to
ηBen = −∆WB/(∆Qh + ∆WA) = −∆WB/(∆Qc + ∆WB).For the entire iruit, the self-onsistent relation

ηtoten = ηAen + ηBen − ηAenηBen = −(WA +WB)/Qh and ηptot = 1/ηentotholds by virtue of the Gibbs relation or the ontinuity ondition for the heat �ux throughthe e�etive bath, respetively, i. e. ∆Qh + ∆WA = −(∆Qc + ∆WB).Summarizing, this iruit of two unidiretionally working quantum mahine unitsomes pretty lose to the desription of the ideal Quantum Otto yle sine the iruite�ienies rapidly approah their Quantum Otto bounds. The ritial temperaturegradient neither is too di�erent from the ideal one. In spite of all, a simple three- orfour- spin mahine iruit is preferable due to its higher heat transport apability, relatedto a lower spin hain resistane.It must also be remarked that, possibly, the speial harater of the presented modelis only a onsequene of the relative phase the gas spins 2 and 4 are driven with, guar-anteeing simultaneous resonane to spin 3 and therefore better heat transfer. For otherrelative phases a signi�antly di�erent behavior of the iruit might emerge, onerninge�ienies, heat transport and leakage urrents.
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6. Complex Quantum MahineCiruitsIn this hapter generalized quantum mahine iruits shall be investigated with regardto e�ieny and heat transport behavior. This is purely meant to be an extension ofthe ideal Quantum Otto yle disussed in Se. 3.3, that is, full step ontrol is assumed,and neither leakage urrents nor orrelations are taken into aount. Two or moreresonant spins are supposed to equilibrate, approahing an average energy. In pratiethis is feasible only in a �rst approximation, as seen in the previous hapters. However,these simplifying assumptions have to be made for lak of a fully quantum mehanialdesription and beause numerial alulations have not been available due to insu�ientomputing apaities for orresponding high-dimensional systems.6.1. E�ienies of Elementary Quantum MahineNetworks6.1.1. Ciruit of Three Mahine UnitsPSfrag replaements BathABathB
BathC TC TA

TB
Unit A

Unit B
Unit C ∆EA
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∆Em

Figure 6.1.: Quantum mahine network with one onnetor spin. Unit A works as heatengine, B and C as heat pumps. Symbols for ouplings are same as above.Consider a model of three quantum mahine subunits labeled A,B and C as depitedin Fig. 6.1. Eah unit is oupled to an in�nite heat bath with temperature Ti (i =
A,B,C) on one side via a bath spin with loal energy gap ∆Ei. All mahines are83



6. Complex Quantum Mahine Ciruitsmutually onneted via a onnetor spin with energy gap ∆Em and temperature Tm,interpreted again as e�etive heat bath. The interation between two neighbored spinsis of Heisenberg type, staying in the weak oupling limit (f. Se. 2.5.1).System A shall work as heat engine, the others as heat pumps. Therefore the energygaps of the bath spins are ordered ∆EA > ∆EB,∆EC > ∆Em and, without loss ofgenerality,
e−∆EA/TA > e−∆EB/TB > e−∆EC/TC (6.1)whih is also of the order of the respetive energy expetation values of the bath spins,

〈EA,B,C〉. For further simpli�ation all mahines are operated in-phase, i. e. all drivenspins are simultaneously brought into resonant ontat with the onnetor spin. Providedan ideal Quantum Otto yle senario, the latter exhibits the average distribution (f.Se. 5.1.1 and Eq. (2.72))
〈Em〉 /∆Em = tanh

∆Em

2Tm

=
1

3

(

tanh
∆EA

2TA

+ tanh
∆EB

2TB

+ tanh
∆EC

2TC

)

. (6.2)In the following the shorthand notation Xi ≡ tanh ∆Ei

2Ti
is used where i = A,B,C refersto one of the subunits, and i = m labels the onnetor spin.In order to determine the heat engine e�ieny of the entire iruit related to thereservoir of unit A, we �rst make an ansatz for the joint engine e�ieny of units B and

C oupled in parallel,
ηBCen = 1 − b∆EB + c∆EC

∆Em
< 0where the oe�ients b and c desribe the amount of heat transferred into the respetiveunit. This expression is negative sine B and C atually work as heat pumps, however weare looking for a global heat engine e�ieny. Together with the loal engine e�ienyof unit A, ηAen = 1 − ∆Em

∆EA
and (2.12) the engine e�ieny of the entire iruit reads

ηtoten = ηAen + ηBCen − ηAenηBCen = 1 − b∆EB + c∆EC

∆EA

. (6.3)The orresponding heat pump e�ieny is the inverse hereof, ηtotp = 1/ηtoten .Furthermore, with Eqns. (3.16) and (3.17) the work done by eah unit and the or-responding heat �uxes an be obtained. The heat transport out of unit A through theonnetor spin per yle,
∆QA→m =

∆Em

2
(Xm −XA)is onserved and splits up into

∆QA→m = −(∆Qm→B + ∆Qm→C) =
∆Em

2
(XB −Xm) +

∆Em

2
(XC −Xm) .Thus, identify

b ≡ Xm −XB

XA −Xm

c ≡ Xm −XC

XA −Xm

b+ c = 1 . (6.4)
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6.1. E�ienies of Elementary Quantum Mahine NetworksSpeial asesProvided that the bath ontat spins of the �reeptor� units B,C feature the sameanonial probability distributions, ∆EB

TB
= ∆EC

TC
. Then b = c = 1

2
, and (6.3) simpli�esto

ηtoten = 1 − ∆EB + ∆EC

2∆EA
.If, on the other hand, ∆EB = ∆EC ≡ ∆EBC , one obtains (f. Se. 2.1.5)

ηtoten = 1 − ∆E

∆EA
.Comparison to a Swap SenarioIn a possible senario of a network of quantum mahines one might desire seletiveontrol on between whih subunits heat transport e�etively takes plae. Hene, insteadof assuming heat transfer via ontat equilibrium let us now simulate this ontrol in thata yli swapping of states between the gas spins in Fig. 6.1 is assumed, governed bysome �playing rules� that de�ne the order of swapping. Eah time the onnetor spinspin is in resonant ontat with one of the gas spins of units A, B or C, both shallexhange their respetive state. In suession the involved gas spin shall run a QuantumOtto yle, f. Se. 3.3. Note that in this ase swapping does not require additionalwork expense beause the energy gaps of the spins to be swapped are equally split [41℄.With regard to Fig. 6.1, let the onnetor spin initially feature the same state as thegas spin of unit A, or Xm = XA in shorthand notation. Then it swaps with the gasspin of unit B, Xm ↔ XB. This is repeated ounter-lokwise until the onnetor spinreturns to its initial state XA. Skipping some alulations, the engine e�ieny relatedto reservoir A beomes for this �protool�:

ηswapen = 1 − c∆EC + b∆EB

∆EAwith the oe�ients c = XB−XA

XC−XA
and b = XC−XB

XC−XA
. It is easy to show that this exeeds theengine e�ieny obtained for the ase where ontat equilibrium was assumed, providedthat the order of the loal energy splittings is ∆EA > ∆EC > ∆EB. Similarly, the sameapplies to ∆EA > ∆EB > ∆EC for lokwise operation. The onverse holds for the heatpump e�ienies related to the bath of unit A, respetively.This simple senario points at a muh more fundamental onlusion, namely, the bestway to transport heat in spin systems an be performed by swapping of states, beingrather a quantum mehanial way of ontrol (f. [45℄). Therefore this may be thefavorable operation method for quantum mahine networks.
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6. Complex Quantum Mahine CiruitsPSfrag replaements Connetor Unit AUnit B1

B2

B3

BN

ReservoirGas spinBath ontat spinFigure 6.2.: Quantum mahine network. The onnetor spins ouples unit A, runningas heat engine, to units B1, . . . , BN whih are heat pumps.6.1.2. Ciruit of N Mahine UnitsThe three-mahine iruit from Se. 6.1.1 is now extended to N heat pump lients
Bj, j = 1, . . . , N as depited in Fig. 6.2. The order of loal energy gaps of bath andonnetor spins is hosen as ∆EA > ∆EBj

> ∆Em for any j. The average distributionof the onnetor spin now reads
Xm ≡ tanh

∆Em

2Tm
=

1

N + 1

(
N∑

j=1

tanh
∆EBj

2TBj

+ tanh
∆EA

2TA

)

. (6.5)Using analog shorthand notations (e. g. XBj
= tanh

∆EBj

2TBj

), the heat transported out ofthe heat engine unit A through the onnetor spin and the respetive work beome
QA→m =

∆Em

2
(XA −Xm) and WA =

1

2
(∆EA − ∆Em) (XA −Xm)while all heat pump lients Bj together perform the work

W = −1

2

N∑

j=1

∆EBj
(Xm −XBj

) .The global engine e�ieny yields
ηtoten = 1 −

∑N
j=1 ∆EBj

(Xm −XBj
)

∆EA(Xm −XA)
. (6.6)Espeially for equal energy splittings ∆EB1

= ∆EB2
= . . . = ∆EBN

≡ ∆E this beomes
ηtoten = 1 − ∆E

∆EA

.If all bath spins exhibit the same distributions, XB1
= XB2

= . . . = XBN
, we wouldobtain

ηtoten = 1 −
∑N

j=1 ∆EBj

N∆EA

.86



6.2. Generalized quantum mahine networksFinally, for M heat engines A1, A2 . . . AM and N heat pump lients B1, B2, . . . , BN ,Eq. (6.6) is modi�ed to
ηtoten = 1 −

∑M
j=1 ∆EBj

(XBj
−Xm)

∑N
i=1 ∆EAi

(XAi
−Xm)

(6.7)For the �rst speial ase, ∆EAi
≡ ∆EA and ∆EBj

≡ ∆EB, we obtain
ηtoten = 1 − ∆EB

∆EAFor the seond speial ase where all XAi
and all XBj

are equal amongst eah other,
ηtoten = 1 −

N
∑M

j=1 ∆EBj

M
∑N

i=1 ∆EAi

.By simply ombining all these expressions it should be able to alulate the e�ienies forarbitrary omplex quantum mahine iruits within the frame of the ideal desriptionof the Quantum Otto yle. Therefore only some simple elementary ases have beenpresented here. In pratie, however, it remains yet unlear what would happen inatual network senarios under onsideration of orrelations and leakage urrents and,primarily, an energeti up-shift of the onnetor spin in analogy to Ch. 5.6.2. Generalized quantum mahine networksFinally, onsider a simple array of four elementary quantum mahine iruits as displayedin Fig. 6.3. They are all driven in-phase and oupled to a heat bath on one side and toan edge or node spin of a spin network mesh on the other side. All node spins featurethe same loal energy splitting ∆Em. The energies of the bath spins are determinedby their loal energy gaps ∆EAi
and the respetive bath temperatures TAi

. The energyexpetation values shall be ordered
〈EA1

〉 > 〈EA2
〉 > 〈EA3

〉 > 〈EA4
〉When the gas spins of all units simultaneously are in resonant ontat with the respe-tive node spins, the latter will adopt the orresponding bath spin distributions afterequilibration, being

Xmi
≡ tanh

∆Em

2Tmi

= tanh
∆EAi

2TAiwhere Tmi
are the respetive node spin temperatures.In the following the whole spin mesh is supposed to relax into equilibrium, leadingto an overall average distribution. This is ompleted by heat urrents equalizing thedi�erenes between the distributions XAi

of the node spins. Indeed suh a behavior isfound in Heisenberg-oupled spin rings [46℄. 87



6. Complex Quantum Mahine Ciruits
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Figure 6.3.: Network mesh of four quantum mahines Ai (i = 1, 2, 3, 4) onneted vianode spins mi (see text). The gas, node and bath ontat spins are repre-sented by arrows, small and big dots, respetively.In analogy to an eletri iruit, it is thus manifest to interpret the di�erent dis-tributions XAi

of the node spins as potentials. Then the potential di�erene Uij =
∆Em

2
(XAi

−XAj
) between the nodes of units Ai and Aj an be onsidered as a kind ofvoltage. It is easily veri�ed that along one mesh all Uij-terms add up to zero,

∑

i,j

Uij = 0 .This is analog to the Kirhho� mesh rule for eletrial iruits, exept that here thevoltage only exists at the beginning but not during the whole yle beause equilibriumshall be attained within the mesh at the end of eah yle. Nevertheless, aording toSe. 6.1.1 heat urrents emerge due to the potential di�erenes sine a heat quantity ise�etively transported per period.At all edges of the mesh the heat urrent in�ows and out�ows add up to zero due toenergy onservation,
∑

i

Ji ≡
∆Em

2

∑

i

(XAi
−Xmi

) = 0 ,f. Se. 4.1. This an be seen in relation to the Kirhho� node rule, in turn.Summarizing, under the simplifying assumptions of the ideal Quantum Otto ylemodel a iruit of quantum thermodynami mahines an be ompared to an eletriiruit. Hereof analogs to the Kirhho� rules arise. These should prinipally be applia-ble also for more general suhlike heat pump networks where nodes are not neessarilyoupled to in�nite heat reservoirs as indiated in Fig. 6.3, but also to neighbored meshes,serving as e�etive heat baths likewise in Ch. 5.
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7. Quantum Mahines versusBrownian MotorIn this thesis, only mahine models realized with spin hains have been investigatedso far. Another lass of mirosopi systems being able to onvert heat into work areBrownian motors. A Brownian motor is generally understood to be based on somepartiles in ontat with one or several heat baths from whih thermal �utuations arise.Consequently, the partiles are exposed to non-equilibrium. A further typial ingredientis a spatial rathet potential whih has the funtion to retify these �utuations, resultingin a net urrent of partiles.If a load fore is added against the diretion of this urrent, mehanial work maybe extrated. This an be interpreted as an energeti transfer from the motor to theload, or in that the potential energy of the partiles raises [22℄. A famous exampleis the rathet-and-pawl setup by Feynman [47℄, see also [48℄. Further appliations arewidespread in ell biology and nanotehnology.A speial lass of Brownian motors is given by the Sakaguhi model, see e. g. [49℄where the Brownian partile moves in a spatially periodi and asymmetri potential andalternately interats with two thermal baths of di�erent temperatures in spae. Thisrathet piture in ombination with non-equilibrium is allows to break detailed balane,i. e. di�erent probabilities to ross the potential barriers in either diretion are neededfor direted partile �ux. In general, the motion of partiles is governed by a Langevinequation
ẋ(t) = −1

γ
U ′(x, t) − 1

γ
Fext +

√

2D(x, t) ξ(t) (7.1)relating the partile veloity ẋ to the gradient of the spatial potential U ′(x, t), theexternal fore Fext and a Gaussian noise ξ(t) following the auto orrelation funtion
〈ξ(t)ξ(t′)〉 = δ(t− t′). The visous drag oe�ient γ and the di�usion oe�ient D(x, t)obey the dissipation relation γD(x, t) = kBT (x, t) where T denotes the absolute tem-perature and kB the Boltzmann onstant [19℄.In the same referene the model depited in the upper part of �gure 7.1 is disussed,being similar to the Sakaguhi ase. The potential U(x) is time-independent but inho-mogeneous in spae. A partile moving in x-diretion is mainly in ontat with a hotreservoir at temperature Th, only on small segments it is exposed to a old reservoir attemperature Tc. The partile motion is reti�ed rightwards as the ooling happens on adesending part of the potential. At the potential barriers the hot reservoir raises thepartile's energy by ∆E = ∆W , whereas the heat ∆Q is transferred to the old bath.If this work is expended against some load, the hot reservoir has to be reharged with89



7. Quantum Mahines versus Brownian Motor
PSfrag replaements

U

U

TcTc

ThTh

ThTh

∆E∆E

∆E∆E

x

xEngineEngine
Th, TcTh, Tc

∆Q,∆E ∆Q,∆E∆Q,∆E

L L

LL

Figure 7.1.: Upper part: generalized rathet piture of a Brownian motor, lower part:mahine hain piture
∆W + ∆Q. On the other hand, in the load-free ase where all of the work ∆E = ∆Wis dissipated bak into the hot reservoir as the partile moves along the down-slides oflength L, only a reharging with ∆Q is neessary. As depited in the lower part ofFig. 7.1 this senario an be mapped onto a periodi array of heat engines onneted viathe said down-slides at temperature Th. Supposed that the heat engines work reversiblyin the load-free ase, the heat ∆Q to reharge the engines is

∆Q+ ∆E

Th
=

∆Q

Tc
=⇒ ∆Q =

Tc

Th − Tc
∆EThis may be realized by reversibly operating a heat pump between both reservoirs:

∆Q

Th
=

∆Q−Ein
Tcyielding a minimum energy input per period of Ein = (Tc/Th)∆E. Otherwise the heat

∆Q is simply lost.With regard to direted heat transport, this model of serially onneted heat enginesis very similar to the serial quantum mahine iruits from Ch. 5. It may be argued thata heat engine ombined with a down-slide in the Brownian Motor model orresponds toone pair of a heat engine and a heat pump in the serial iruit model. As depited inFig. 7.2 the latter is arranged as a hain between two heat baths. Spatial asymmetry90
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∆En = const reads (f. (3.17) and (5.2))
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.This an �nally be redued to an expression only depending on spins 1 and N whih,respetively, exhibit the same temperatures temperatures Th and Tc as the baths,
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7. Quantum Mahines versus Brownian Motorwhere ∆E1 = ∆Eb and ∆EN = ∆Esm.Thus, the anonial distributions of all onstantly split spins mark a gradient diretedfrom the hot to the old bath whih is tantamount to global non-equilibrium. If now thegas spin between spins n− 1 and n works as heat pump, i. e. ∆En−1 = ∆Esm < ∆En =
∆Eb (f. Fig. 7.2), the work to be applied is

∆Wn−1,n =
1

2(N − 1)
(∆Esm − ∆Eb)(tanh

∆E1

2Th
− tanh

∆EN

2Tc

)

> 0and, onsequently, in the heat engine between spins n and n+1 the same amount of work
∆Wn,n+1 = −∆Wn−1,n < 0 is released. In this most ideal situation the obligatory heatquantity ∆∆Q = ∆Esm

2(N−1)
tanh ∆Esm

2Tc
must be paid only one to the old bath at the endof the spin hain. In ontrast, for N potential barriers in the rathet the heat quantity

N∆∆Q is lost.Interpreting both model systems as possibilities for direted heat transport, the quan-tum mahine hain would be favored under ideal onditions, the more so as phase-oherent driving may be enabled.The presene of leakage urrents would hange the situation, however. Losses withineah partial heat pump then do require ompensation, to be furnished by the externaldriving soure. Therefore the said advantage of the spin hain model is likely to beredued for dynamial senarios. On the other hand, losses might be kept small for asu�iently large global temperature gradient.Ref. [19℄ mentions further that the spatial temperature dependene in the rathetmodel (upper part of Fig. 7.1) may be dissolved by applying the transformation {T, U, x} →
{κT, κU, κx} with κ = Th/Tc to the segments at temperature Tc, hanging their heightand length. In the following all potential barriers vanish and all down-slides line upas one straight slope along whih the Brownian partile moves unidiretionally, drivenby alternating segments at temperature Th and Tc representing the heat engines in thelower part of Fig. 7.1.Similarly, for the sole purpose of direted heat transport, the desribed senario ofa hain of quantum mahines and heat pumps may likewise be replaed by a simplehomogeneously split spin hain, featuring unidiretional heat transport from the hot tothe old heat reservoir.It remains an open question if the onsidered hain of quantum mahines representssomething like the quantum limit of a Brownian motor, i. e. if one an be mapped ontothe other. The similarity of both models nevertheless alls for further researh.
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8. Summary and OutlookHow small an quantum systems be in order to work as thermodynami mahines? Downto what sales is it possible to downsale modern devies for this purpose, and wheredoes the transition from lassial to quantum thermodynami behavior atually our?In this work numerial simulations on several quantum mahine models realized withmodulated spin hains have been presented and haraterized with regard to e�ienyas well as heat and work harateristis.All this has been built on a basi approah given in [16, 15℄, where it was �rst shownthat a single spin an run a thermodynami yle, more preisely a Quantum Otto yle.For further omparison, an idealized desription of suh a Quantum Otto yle [11℄was onsulted and veri�ed numerially by manipulating the spin-spin oupling strengthwithin the three-spin mahine.With regard to extended quantum mahine iruits, it has been found that, in a �rstorder approximation, extended models suh as paralleled units also run Quantum Ottoyles, show a similar behavior as the basi three-spin mahine model. The same appliesto serial iruits inluding their subunits. Here the onnetor spins not only arrangefor lower heat ondutivity but also appear as e�etive �nite heat baths, shielding thesubunits from eah other and determining their loal mode of operation as heat engineor pump. This in�uene beomes ruial for models with tapered internal temperaturegradients sine, in this ase, the e�etive bath spins are heated up. This eventually leadsto onsiderable dissipation e�ets.The onept of serial and parallel quantum mahine networks an be expanded tomore omplex arrangements. Some examples hereof have been presented with respetto the ideal Quantum Otto yle. It has been shown that the behavior of heat urrentin a spin hain an be mapped to that of eletrial urrent in an eletri iruit, andanalogs to the Kirhho� rules apply.Moreover, omparisons with other models of direted heat transport are feasible, whihhas been shown for the rathet model for a Brownian motor.All these quantummahine models share the general problem of being high-dimensional,why analytial quantum mehanial desriptions are hardly available and numerial in-vestigation ould only be arried out so far for dynami models with no more than�ve spins. For these reasons more detailed omprehension of atual proesses in theseomplex systems is hard to set. Thus, ommon e�ets suh as leakage urrents and dis-sipation had to be approahed via a phenomenologial ansatz while orrelations ouldonly be invoked on a qualitative level.Remedy an possibly be found in a promising reent approah to quantum thermo-dynami proesses with external ontrol [50℄ whih also may be able to yield analytialexpressions for the e�ieny of a quantum mahine at maximum power output. A93



8. Summary and Outlookomparison to the results obtained so far will be subjet of future investigation. Theinlusion of quantum e�ets into the disussed models will be of similar importane. Apotential starting point for this purpose is furnished by [43℄.Nevertheless, the presented approahes and underlying onepts are able to deliver atleast qualitative insight into the ompliated dynamis of the treated lass of thermo-dynami mahine models from a theoretial viewpoint.Anyway, it will �nally be left to experiment to realize thermodynami proesses inquantum systems suh as spin hains. Not until then will it reveal if the oneptspresented here are really appliable in physial sense.
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A. Appendix: Note on NumerialMethodsAll models treated in the present work have been solved in Mathematia with the help ofa four-step Runge-Kutta algorithm and the notepads Temp-tools [44℄ and QMDef [51℄.As mentioned, losed analytial solutions are impossible to obtain due to the highdimensionality of the Liouville spaes orresponding to the onsidered spin systems. Forreasons of insu�ient memory and enormous runtime requirements numerial investiga-tion of these dynamial senarios had to be limited to �ve spins up to the present.In order to solve the master equation for the redued density matrix ˆ̺ of the spinsystem after [17℄ (see hapter 2.3) the Liouville super-operator L̂ is alulated for agiven number of sampling points using [44℄, then interpolated over one period τ = 2π/ωand periodially ontinued. This handling is possible beause L̂ does not depend onthe atual state of the system but only on the (known) time-dependent eigenvaluesand onstant given parameters (temperatures, oupling onstants et.), and providesan enormous advantage in runtime, ompared to the alulation of L̂ four times peralulation step. Furthermore, the initial system state ˆ̺int is usually hosen a globalthermal state for reasons of simpliity.The hosen step size is h = 0.2 time steps whih is small enough to avoid the traeor the diagonal elements of ˆ̺ from diverging. At the same time, arriving at the non-equilibrium attrator state of L̂ requires evaluation over a large enough number of timesteps. For three- and four-spin models a total time of Tf = 10, 000 time steps is su�ient,whereas for �ve-spin models Tf = 30, 000 is neessary. In general, a too small value of
Tf will be indiated by non-ompliane of the Gibbs relation for the whole system,
∆W + ∆Q 6= 0. In addition, the relative numerial error herein only remains negligible(< 1%) for adequately small intervals in terms of the periodi time τ = 2π/ω in whihdata points are saved to a �le for further evaluation.Another di�ulty arises from the fat that Mathematia, but also other interpreters,usually sort numerial eigenvalues by order. Whenever energy level rossings our inthe observed four-and �ve-spin systems, the order of energy eigenvalues and eigenvetorsis therefore altered. As a onsequene, alulating the system state in the system energyeigenbasis leads to a wrong Liouvillian L̂ and to meaningless results. This problem anbe irumvented by moving to a produt basis, but for the sake of runtime, sine thenall matries to be multiplied ontain onsiderably more non-zero entries.For evaluation, the density matrix entries are interpolated again over the whole rangeof time evolution. The heat urrents follow from (2.78) while the loal states of the singlespins and spin groups are obtained by the routines RedStateQubit and TraeOutQubit[51℄, respetively. The loal temperatures are extrated by the funtion TempSpin [44℄.95



A. Appendix: Note on Numerial MethodsThe Work ∆W and heat ∆Q result from integrating the ST -urves and heat urrents Jover one period as disussed in Se. 3.1, using a simple Newton integration algorithm.This work has been written in LATEX. All �gures were reated in Inksape, diagramswere plotted with Gnuplot.
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