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〉�nal ≃ −0.2135[∆E] during the temporal evolution ofthe system into its nonequilibrium attra
tor state. . . . . . . . . . . . . . 605.11. Energy expe
tation values 〈Ei

〉 of spin i for ∆T = 0.13. Losses o

ur dueto long times of resonant 
onta
t between adja
ent spins, labeled F, Hand C (see text). While spins 2,3 and 4 equilibrate (F ), Spin 2 does notrea
h the energy level of spin 1 (H). . . . . . . . . . . . . . . . . . . . . . 625.12. Work ∆W 
al

A/B of units A,B and total 
ir
uit work ∆W 
al
tot , 
al
ulated withEqns. (5.18) - (5.20) for ∆E3 = 1.25 and C = 0.0192. ∆W 
al
tot 
hangessign at ∆T 
al

rit = 1.45, 
f. Eq. (5.21). . . . . . . . . . . . . . . . . . . . . 655.13. Cir
uit 2 (de�ned on p. 66) working as heat pump (∆T = 0.13): ST -diagrams of the driven spins of units A and B, working as heat pump andheat engine, respe
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.14. Cir
uit 2 (p. 66) working as heat pump ( ∆T = 0.13 ): Heat 
urrents Jh,cbetween system and baths over one 
y
le. . . . . . . . . . . . . . . . . . . 68ix



List of Figures5.15. Cir
uit 2 (p. 66): Heat ∆Qh,c, total 
ir
uit work ∆Wtot and work ∆WA/Bof the subunits per period τ . . . . . . . . . . . . . . . . . . . . . . . . . . 685.16. Zoom into Fig. 5.15. One �nds ∆Qc = ∆WB = 0 at ∆TB
rit = 0.7 and
∆Qh = ∆WA = 0 at ∆TA
rit = 0.743 (see text). The 
riti
al gradient forthe entire 
ir
uit is ∆T
rit = 0.87, here only the leakage heat ∆QL remains. 695.17. Cir
uit 2 (p. 66): e�
ien
ies of global engine and pump ηen/p, ideal Quan-tum Otto bounds ηOttoen/p and Carnot bounds ηCaren/p. Now, ∆T
rit = 0.87 >

∆T id
rit = 0.714. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.18. Energy expe
tation values for 
ir
uit 2 (p. 66): 〈Ẽi
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〉 and
〈
E∗

3

〉 (ideal), i = 1, 3, 5 (
f. p. 57). We �nd C∗ = 0.00168 → C = 0.0135(Eq. (5.10)). Further on, ∆TA = 0.836 and ∆TB = 0.577. . . . . . . . . . 745.25. Work and heat for 
ir
uit 4 (p. 75). Here ∆TA
rit = 0.743, ∆TB
rit = 0.704,and ∆T
rit = 0.836. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.26. Serial 
ir
uit of two quantum heat pumps/engines between two heat baths. 775.27. ST -diagrams of two serially 
onne
ted ma
hine units A,B, working in uni-son as heat pumps here. The diagrams are roughly rotationally-symmetri
al. 785.28. Dire
ted serial 
ir
uit: The e�
ien
ies ηen/p of the heat engine and heatpump rapidly approa
h the ideal Quantum Otto bounds ηOttoen/p far from
∆T
rit = 0.68, 
lose to ∆T id
rit = 0.714. The Carnot e�
ien
ies are ηCaren/p. . 795.29. Dire
ted serial 
ir
uit: Heat ∆Qh,c, total 
ir
uit work ∆Wtot and work
∆WA ≈ ∆WB of units A,B per period. . . . . . . . . . . . . . . . . . . . 795.30. Dire
ted serial 
ir
uit running as heat pump (∆T = 0.13): Heat 
urrents
Jh, Jc over one period τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80x



List of Figures5.31. Zoom into Fig. 5.29. The subunit work fun
tions ∆WA, ∆WB. are mu-tually shifted and 
hange sign symmetri
ally around ∆T
rit = 0.68 wherethe 
ir
uit is idle and only the leakage heat ∆QL persists. . . . . . . . . . 815.32. Dire
ted serial 
ir
uit: Lo
al e�
ien
ies of units A,B, 
oevally runningas heat pumps, ηA/Bp , or as heat engines, ηA/Ben . Operation modes areswit
hed at ∆TA
rit ≈ ∆TB
rit = 0.68. For ∆T afar hereof the ideal QuantumOtto e�
ien
ies ηA/B ,Ottoen/p are approa
hed. . . . . . . . . . . . . . . . . . 816.1. Quantum ma
hine network with one 
onne
tor spin. Unit A works asheat engine, B and C as heat pumps. Symbols for 
ouplings are same asabove. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.2. Quantum ma
hine network. The 
onne
tor spins 
ouples unit A, runningas heat engine, to units B1, . . . , BN whi
h are heat pumps. . . . . . . . . 866.3. Network mesh of four quantum ma
hines Ai (i = 1, 2, 3, 4) 
onne
tedvia node spins mi (see text). The gas, node and bath 
onta
t spins arerepresented by arrows, small and big dots, respe
tively. . . . . . . . . . . 887.1. Upper part: generalized rat
het pi
ture of a Brownian motor, lower part:ma
hine 
hain pi
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.2. Chain of pairwise arranged quantum heat engines and heat pumps be-tween two thermal reservoirs. ∆Esm,∆Eb are the lo
al energy gaps of the
onstantly split spins n = 1, . . . , N . . . . . . . . . . . . . . . . . . . . . . 91

xi



xii



List of Tables4.1. Standard parameters for the quantum ma
hine setups in the present work,given in units of lo
al energy splittings ∆E . . . . . . . . . . . . . . . . . 365.1. Serial 
ir
uit: Chara
teristi
 results for di�erent values of ∆E3 . . . . . . 75

xiii



xiv



1. Introdu
tionSin
e modern appli
ations in the realm of physi
s shrink more and more towards quan-tum s
ales, the question of how 
lassi
al thermodynami
s 
ould be understood on thebasis of quantum me
hani
s has grown in importan
e. It has re
ently been shown thatentanglement between a small quantum system and its large environment leads to alo
al equilibrium state and thus to thermodynami
 behavior, without any further as-sumptions to be invoked [1, 2℄. This has not been the 
ase so far for previous des
riptionsof statisti
al me
hani
s introdu
ed by Boltzmann [3℄, des
ribing the emergen
e of 
las-si
 ma
ros
opi
 behavior out of few mi
ros
opi
 properties. For example, the widelya

epted Gibbsian ensemble theory does not get along without ergodi
ity [4℄, beingplausible but in
apable of proof.The present work deals with thermodynami
 ma
hines on the quantum level. Anadequate des
ription of 
orresponding ma
hine 
y
les �rst requires mapping of the es-tablished 
lassi
al thermodynami
 variables to quantum me
hani
al analogs, whi
h isdone by exploiting typi
al properties of quantum systems su
h as energeti
 dis
reetness.For example, work and heat may be linked to the temporal 
hange of the spe
trumand the o

upation probabilities, respe
tively. Also the de�nition of a temperature inquantum systems is feasible if 
orrelations su
h as entanglement are small [5℄.Like in the 
lassi
al 
ase, two basi
 
onditions pre
edent to a quantum ma
hine 
y
leare the presen
e of asymmetry, following the Curie prin
iple [6℄, and agreement with these
ond law of thermodynami
s. Thus, on the one hand, a quantum system running athermodynami
 
y
le needs to be 
oupled to two environments of di�erent temperaturesto ex
hange heat with. Moreover, internal asymmetry is required in order that work isreleased or 
onsumed by the system during intera
tion with a work reservoir. On theother hand, it is generally 
laimed that the 
elebrated Carnot e�
ien
y 
an never beex
eeded by a quantum ma
hine either.An early investigation of a quantum thermodynami
 
y
le is given in [7℄. More re
entapproa
hes are found in [8℄ and [9, 10, 11℄, where externally driven dis
rete quantumsystems intera
ting with environmental baths are analyzed. Further on, dis
ussions ofquantum thermodynami
 ma
hines are provided in [12, 13℄. Eventually, [14℄ deals witha study on an autonomous ma
hine model.In the frame of this work a previously investigated model of an inhomogeneously splitHeisenberg spin 
hain lo
ally 
oupled to two heat baths with di�erent temperatures[15, 16℄ is used. The baths are modeled by a master equation under Born-Markov ap-proximation featuring a non-equilibrium state as stationary solution [17, 18℄. Dependingon the global temperature gradient and the lo
al Zeeman splittings the system runs asa heat pump or heat engine if a part of the 
hain is periodi
ally modulated by an ex-ternal �eld. The driven spin is in a thermal state due to the de
ohering bath in�uen
e1



1. Introdu
tionand thus has a lo
al temperature and thermal entropy. If it 
omes into resonan
e withthe bath 
onta
t spins a heat 
urrent between the system and the baths o

urs. Thisthermodynami
 
y
le on the quantum level is identi�ed as Quantum Otto 
y
le. Thethermodynami
 variables heat and work are 
ontrolled by the temporal 
hange of thespe
trum and the o

upation probabilities, respe
tively.After an overview of pertinent theoreti
al 
on
epts in 
hapter 2, the quantum ther-modynami
 ma
hine model des
ribed above is introdu
ed in 3 with respe
t to the idealQuantum Otto 
y
le, assuming perfe
tly 
ontrolled 
y
le steps. In the following, exten-sions to the three-spin model are numeri
ally investigated and 
ompared to ea
h otherwith respe
t to essential thermodynami
 properties su
h as e�
ien
y and heat transport
apability. Hen
e 
hapter 4 deals with quantum ma
hines 
onne
ted in parallel whereas
hapter 5 points at serial 
ir
uits.Further on, 
hapter 6 gives a short outlook of more 
omplex quantum ma
hine 
ir
uitsof whi
h some examples are treated. Finally, the models presented in 
hapter 5 aremapped on a s
enario of a thermal Brownian motor [19℄ in 
hapter 7.

2



2. Theoreti
al Basi
s2.1. Classi
al Thermodynami
s2.1.1. Gibbsian Fundamental FormThe intrinsi
 energy U of a thermodynami
 system is generally des
ribed by the Gibbsianfundamental form
dU = d̄Q+ d̄A = TdS +

∑

i

ξidXi (2.1)where the entropy S and the generalized volumes Xi are energeti
 extensive variablesde�ned in phase spa
e. The 
onjugated energeti
 intensive variables are temperature Tand the generalized pressures ξi:
T =

∂U

∂S
ξi =

∂U

∂Xi

. (2.2)For any 
losed path in phase spa
e energy is 
onserved: ∮ dU = 0. A periodi
 pro
esstherefore returns to the initial state after one performed 
y
le [20℄.2.1.2. The Se
ond Law of Thermodynami
sThe se
ond law 
an be expressed in multiple ways. For example, it is impossible to 
on-stru
t a periodi
ally working ma
hine whi
h simply 
onverts heat from a single reservoirinto me
hani
al work. Another way of explanation is to say that heat never sponta-neously �ows from a 
older to a hotter reservoir. In terms of entropy this is expressedas
dS ≥ 0 . (2.3)The equal sign holds for reversible pro
esses where no entropy is produ
ed and thedes
ribed thermodynami
 system remains in a global stationary equilibrium state. Oth-erwise an irreversible pro
ess is on hand whi
h does not autonomously run ba
kwards,rather entropy has to be produ
ed somewhere else in the world in order to reverse it.From a ma
ros
opi
 point of view this behavior is intuitively 
lear as it 
orrespondsto everyday experien
e. From a mi
ros
opi
 point of view, however, one would notinitially expe
t that a system should evolve irreversibly into a stationary state sin
e the
lassi
al mi
ros
opi
 Hamilton equations as well as Hamiltonians are invariant undertime inversion and therefore should yield reversible dynami
s.Thus, further assumptions are needed in order to derive the se
ond law from themi
ros
opi
al equations of motion, the more so as those 
annot be 
al
ulated for ea
h3



2. Theoreti
al Basi
ssingle parti
le. One approa
h is given by Boltzmann's postulate, linking entropy tothe number of a

essible mi
rostates under given ma
ros
opi
 
onstraints. Further, theGibbsian ensemble approa
h introdu
es a statisti
al ensemble in whi
h ea
h a

essiblemi
rostate is virtually represented by a point in phase spa
e Γ. For big systems thedis
rete ensemble of points passes into the density of states, giving the probability to �ndthe system in a 
ertain spa
e element of Γ. Sin
e the 
on
ept of quasi-ergodi
ity 
laimsthe system traje
tory to 
ome arbitrarily 
lose to every possible point of Γ within itsevolution in time, the temporal system average is repla
ed by an ensemble average overall mi
rostates for in�nite times
ales. However, these assumptions 
annot be generallyproved. In addition, irreversibility has to be introdu
ed rather arti�
ially by the 
on
eptof �
oarse graining�.These de�
ien
ies are over
ome by the theory of quantum thermodynami
s, being are
ent approa
h based on quantum me
hani
s where the evolution of a small quantumsystem weakly 
oupled to a bigger environmental system is investigated. It turns outthat the derivation of the se
ond law out of S
hrödinger dynami
s is possible withoutfurther assumptions su
h as ergodi
ity or 
oarse-graining. More detailed des
riptionsmay be found in [21, 2, 1℄.2.1.3. Carnot Cy
leIn the frame of this thesis about quantum thermodynami
 ma
hines their 
lassi
al equiv-alents shall be brie�y des
ribed �rst. See also [20℄.A Carnot 
y
le is a periodi
 thermodynami
 pro
ess where energy in the form of heatand work is transferred between two heat reservoirs of di�erent temperatures Th and T
,referred to as the hot and the 
old bath, respe
tively, and a reversible work reservoirsu
h as a piston. The latter always features 
onstant entropy sin
e it ex
hanges no heatwith the working gas, and neither do the heat reservoirs exert any work. In order toful�ll these 
onditions the 
y
le has to run in the quasistati
 limit, that is, in�nitesimallyslow.Furthermore, an auxiliary system is needed whi
h must not 
ount for the overallenergeti
 balan
e. Thus, it ne
essarily has to be restored to its initial state after ea
h
y
le. It represents the virtual physi
al ma
hine and is realized by an ideal working gasin most instan
es.If heat is about to be transferred into me
hani
al work, the system works as heatengine. If otherwise me
hani
al work is applied in order to transport heat from the 
oldto the hot reservoir, the system works as heat pump or refrigerator.The Carnot 
y
le runs in four steps:1. Isothermal expansion: The working gas, initially at temperature Th, is 
oupled tothe hot bath and to the piston at the same time. Then a heat �ux ∆Qh emergesfrom the hot bath to the working gas. The latter therefore expands and transfersan amount of work ∆W1 to the piston.2. Adiabati
 expansion: The working gas is de
oupled from the hot bath and under-goes an isentropi
 expansion until its temperature equals that of the 
old bath, T
.4



2.1. Classi
al Thermodynami
sA further amount of work ∆W2 is transferred to the piston.3. Isothermal 
ompression: The working gas gets 
oupled to the 
old bath into whi
hit eje
ts a heat quantity ∆Q
 while re
eiving the work ∆W3 from the piston.4. Adiabati
 
ompression: After having been de
oupled from the 
old bath, the work-ing gas undergoes an isentropi
 
ompression during whi
h it re
eives the work ∆W4from the piston, until it rea
hes again the temperature Th in order to return to itsinitial state.The Gibbs relation for one 
ompleted 
y
le reads
∆U = ∆W + ∆Q

!
= 0 , (2.4)
orresponding to a 
losed path in phase spa
e. The entire amount of work ex
hangebetween the working gas and the piston then is

∆W = ∆Qh + ∆Q
 = ∆S(Th − T
) (2.5)whi
h 
an be 
al
ulated with the help of the ST -diagram. Hereof the e�
ien
y of theCarnot engine follows, indi
ating the minimum heat quantity to be taken from the hotbath in order to exert a given amount of work:
ηCarnoten =

∆W

∆Q
= 1 − T


Th . (2.6)In analogy to this, the Carnot heat pump e�
ien
y is de�ned as
ηCarnotp =

∆Q

∆W
=

1

1 − T

Th = 1/ηCarnoten , (2.7)indi
ating the minimum amount of work to be 
arried out in order to pump a 
ertainheat quantity from the 
old to the hot bath. A

ording to the se
ond law the entropybalan
e reads

−Qh
Th +

Q

T
 = Sprod ≥ 0 (2.8)where Sprod denotes the entropy produ
tion per 
y
le [22℄. For the ideal (reversible)Carnot 
y
le equality holds. For this reason ηCarnoten is the fundamental limit of a ther-modynami
 engine e�
ien
y whi
h 
annot be ex
eeded.In pra
ti
e, thermodynami
 
y
les neither run quasistati
ally nor ideally why, after(2.8) entropy is produ
ed due to dissipation. This results in the engine e�
ien
y

η = ηCarnoten − T
Sprod
Qh . (2.9)

5



2. Theoreti
al Basi
sCarnot Engine E�
ien
y at Maximum Power OutputThe ideal Carnot ma
hine runs in�nitesimally slow and therefore has zero power output.In [23℄ the e�
ien
y for a heat engine with maximum power output running on �nitetimes
ales was derived,
ηPmax = 1 −

√

T

Th . (2.10)Sin
e the bath 
onta
t times during the isothermal steps are limited, a �nite heat 
on-du
tan
e within the supplies between the working gas and the baths is assumed. Thisleads to entropy produ
tion, 
ausing the 
y
le to be irreversible. The working gas itselfstill performs an ideal Carnot 
y
le but only �sees� e�e
tive bath temperatures.2.1.4. Otto Cy
leThe Otto 
y
le 
onsists of two adiabati
 and two iso
hori
 steps. On the iso
hores theposition of the piston, i. e. the volume of the ideal working gas remains 
onstant whereasits temperature 
hanges. Thus, work is 
arried out only on the adiabats. The e�
ien
yof the Otto 
y
le is given as

ηOttoen = 1 −
(
V2
V1)( cp

cv−1) (2.11)where V2 < V1 denote the volumes the working gas takes up on the iso
hores, and cpand cv are the spe
i�
 heats at 
onstant pressure and volume, respe
tively.At the beginning of an iso
hori
 step there is a �nite temperature gradient between theworking gas and the respe
tive bath it is ex
hanging heat with. Sin
e reversible operationrequires a quasi-stati
al heat �ux between the gas and the reservoir, an ideal iso
hore
annot simply be equivalent to one single bath 
onta
t but rather to a series of 
onta
tswith multiple baths at di�erent temperatures. For this reason the maximally a
hievable
lassi
al Otto 
y
le e�
ien
y is always smaller than the Carnot e�
ien
y, ηOtto < ηCarnotsin
e, in order to a
hieve maximum e�
ien
y, a reversible ma
hine pro
ess must not runbetween more than two reservoirs at given temperatures. This, in turn, is exa
tly the
ase for the Carnot 
y
le. See also [24, 20℄.2.1.5. Serial Cir
uits of Thermodynami
 Ma
hinesIn order to obtain an expression for the e�
ien
y of a serial 
ir
uit of thermodynami
ma
hines, we 
onsider a 
hain of N 
oupled ma
hines of same type, say Carnot or Ottoma
hines, between two heat baths without any additional in�nite heat sinks or sour
esin between. Ea
h subunit may either run as heat engine or heat pump. If the entire
ir
uit works as heat engine, its total e�
ien
y ηtoten 
an then be 
al
ulated out of thelo
al subunit e�
ien
ies ηien = Wi/Qi with the following expression [25℄:
ηtoten =

1

Qh N∑

i=1

Wi =
1

Qh N−1∑

i=1

Qi −Qi+1 = 1 − QN

Qh = 1 −
N∏

i=1

(
1 − ηien) (2.12)6



2.2. Basi
 prin
iples of quantum me
hani
sPSfrag repla
ements
QH −W1 +Wi −WN

+Qi −Qi+1 −QNSubunit iHot bath Cold bathFigure 2.1.: Illustration of a serial thermodynami
 
ir
uitwhere Qh, Qi and QN stand for the amounts of heat taken from the hot bath, �owing intosubsystem i and eje
ted into the 
old bath, respe
tively. This is illustrated in Fig. 2.1.Ea
h subunit 
arries out or 
onsumes an amount of work Wi with W =
∑N

i Wi < 0.The lo
al e�
ien
ies ηi of the subunits 
an be positive or negative, depending on thelo
al mode of operation. If W > 0, the entire system works as heat pump with a totale�
ien
y ηtotp = 1/ηtoten .In general, for one subunit the lo
al mode of operation as heat pump or engine isdetermined by those of the adja
ent ones. If Carnot ma
hine units are 
onne
ted inseries, the lo
al modes of operation must be 
hosen su
h that the working gases ofadja
ent subunits exhibit identi
al temperatures if being in 
onta
t. Contrarily, in the
ase of a 
hain of mutually 
oupled Otto ma
hines the strokes of subsequent ma
hineunits have to mat
h.2.2. Basi
 prin
iples of quantum me
hani
s2.2.1. S
hrödinger EquationThe dynami
 evolution of a quantum me
hani
al system in a time-dependent state |ψ(t)〉is governed by the S
hrödinger equation
Ĥ(t) |ψ(t)〉 = iℏ

∂

∂t
|ψ(t)〉 (2.13)where Ĥ(t) denotes the system Hamiltonian and |ψ(t)〉 the system state at time t. Thelatter is a ve
tor in a N-dimensional Hilbert spa
e H and 
an be developed into a
omplete orthonormal basis |n〉 spanning H:

|ψ(t)〉 =
N∑

n=1

cn(t) |n〉 with ∑

n

|n〉〈n| = 1̂ (2.14)where cn(t) = 〈n|ψ(t)〉 are time-dependent 
oe�
ients. Following the statisti
al inter-pretation of quantum me
hani
s, a state has the meaning of a probability amplitude,7



2. Theoreti
al Basi
sthus its absolute square represents a probability density. For normalized states |ψ〉 with
〈ψ|ψ〉 =

∑

m,n

c∗mcn 〈m|n〉 =
∑

m,n

c∗mcnδmn =
∑

n

|cn|2 !
= 1 (2.15)the 
oe�
ient squares |cn|2 denote the probabilities to �nd the system in the respe
tivestates |n〉. In this basis the Hamiltonian 
an be written as a matrix with the elements

Hmn = 〈m| Ĥ |n〉 . (2.16)For a time-independent Hamiltonian Ĥ(t) ≡ Ĥ the formal solution of (2.13) is
|ψ(t)〉 = e−i(t−t0)Ĥ/ℏ |ψ(t0)〉 ≡ Û(t, t0) |ψ(t0)〉 . (2.17)Here Û(t, t0) is the unitary time-evolution operator with

Û †Û = Û Û † = 1̂ . (2.18)A

ording to the Ehrenfest theorem, the proje
tor P̂ = |n〉〈n| to an energy eigenstate
|n〉 of Ĥ obeys the relation

[

P̂ , Ĥ
]

= 0 =⇒ 〈P̂ 〉 = 〈|n〉〈n|〉 = 〈ψ|n〉 〈n|ψ〉 = |cn|2 = 
onst , (2.19)why the energy distribution is 
onserved.2.2.2. Density OperatorA quantum me
hani
al state 
an most generally expressed by the density operator ˆ̺.Some elementary properties of ˆ̺ are:
• Normalization:

Tr{ ˆ̺} = 1 (2.20)where Tr{. . .} is the tra
e operator.
• Hermiti
ity: ˆ̺ = ˆ̺† .
• The expe
tation value of an arbitrary operator B̂ is

〈B̂〉 = Tr
{

ˆ̺B̂
}

. (2.21)
• Purity: P = Tr{ ˆ̺2} ≤ 1Here the equal sign only holds for a pure state ˆ̺ = |ψ〉〈ψ| whi
h is exa
tly known.Otherwise the state is 
alled non-pure or mixed, that is, maximal information about itis not available. In the 
ase of a dis
rete spe
trum the spe
tral representation of a mixedstate reads

ˆ̺ =
∑

i

pi |ψi〉〈ψi| . (2.22)8



2.2. Basi
 prin
iples of quantum me
hani
sDue to the 
onditions given above, ˆ̺ is positively de�nite. The eigenvalues pi are realpositive numbers and their sum equals unity:
∑

i

pi = 1 pi = p∗i 0 ≤ pi ≤ 1 . (2.23)They 
an thus be interpreted as probabilities of the system to be in one 
ertain stateout of the mixture of pure states |ψi〉.2.2.3. von-Neumann equationFor the density operator, the equivalent to the S
hrödinger equation (2.13) is the von-Neumann equation
d

dt
ˆ̺(t) = − i

ℏ

[

Ĥ(t), ˆ̺(t)
]

≡ L̂(ˆ̺(t)) (2.24)whi
h des
ribes the system evolution under S
hrödinger dynami
s. The super-operator
L̂ is de�ned in Liouville spa
e and a
ts on the density operator ˆ̺ de�ned in Hilbertspa
e. In general, a Liouville super-operator transforms one Hilbert spa
e operator intoanother.Intera
tion Pi
tureIf the system Hamiltonian is given as the sum of a 
onstant and a time-dependent part,

Ĥ(t) = Ĥ0 + V̂ (t) , (2.25)the von-Neumann equation 
an be written as
d

dt
ˆ̺I(t) = − i

ℏ

[

V̂I(t), ˆ̺I(t)
] (2.26)with

ˆ̺I(t) = eiĤ0(t−t0)/ℏ ˆ̺(t) e−iĤ0(t−t0)/ℏ ≡ Û †
0(t, t0)ˆ̺(t)Û0(t, t0) (2.27)and

V̂I(t) = Û †
0(t, t0)V̂ (t)Û0(t, t0) (2.28)with the unitary time evolution operator Û †(t, t0) (see e. g. [26℄). Passing to the inter-a
tion pi
ture, the time dependen
e of the density matrix is partially transferred to theHilbert spa
e H. The 
ase of V̂ (t) = 0 marks the Heisenberg pi
ture, if Ĥ0 = 0 we areagain in the S
hrödinger pi
ture.2.2.4. Von-Neumann EntropyFor a state ˆ̺ the von-Neumann entropy S(ˆ̺) is de�ned as

S(ˆ̺) = −kB Tr{ ˆ̺ ln ˆ̺} (2.29)9



2. Theoreti
al Basi
swhere kB is the Boltzmann fa
tor. The von-Neumann entropy is invariant under unitaryevolution,
S
(

Û †(t, t0)ˆ̺(t0)Û(t, t0)
)

= S(ˆ̺(t0)) . (2.30)Likewise the purity de�ned above, the entropy is a measure for the pureness of states.A pure state has zero entropy, a maximally mixed state with ̺ij = 1
n
δij has maximalentropy Smax = kB lnn and minimal purity Pmin = 1/n, where n is the dimension of theHilbert spa
e H. See also [27, 2℄.2.2.5. Composite Quantum SystemsA Hilbert spa
e H 
onsisting of two or more subspa
es H1,H2, . . . ,HN 
an be writtenas the tensor produ
t of these subspa
es. For a bipartite system, e. g.,

H = H1 ⊗H2 . (2.31)The dimension n of H is a produ
t of the subspa
e dimensions ni, here
n = n1n2 . (2.32)In general, the Theorem of Araki and Lieb applies for the lo
al and global entropy:

|S(ˆ̺1) − S(ˆ̺2)| ≤ S(ˆ̺) ≤ |S(ˆ̺1) + S(ˆ̺2)| . (2.33)The right equality sign only holds if the subsystems are un
orrelated. In this 
ase thelo
al entropies S(ˆ̺1) and S(ˆ̺2) add up to the global entropy S(ˆ̺), and the entire state
ˆ̺(t) 
an be written as a produ
t state out of its substates [2℄. Otherwise, if the produ
tform is non-appli
able, this is due to 
orrelations between both partial states (see below).If one is interested in only one partial subspa
e, e. g. H1, the respe
tive state ˆ̺1(t)
an be obtained by tra
ing out the degrees of freedom of the other subspa
e,

ˆ̺1(t) = Tr2{ ˆ̺(t)} (2.34)where Tri{. . .} denotes the partial tra
e over subspa
e Hi [27℄.2.2.6. Entropy, Correlations and EntanglementIf a 
omposite system state is non-separable, i. e. 
annot be written as a tensor produ
tout of its partial states, this is 
aused by 
orrelations su
h as entanglement originatingfrom the intera
tion between di�erent subsystems. Non-separability of partial states alsore�e
ts in that the respe
tive lo
al entropies are non-additive (see Eq. (2.33)). Thus,entropy gives an appropriate measure of 
orrelations.Tra
ing out a substate after Eq. (2.34) leads to a loss of information about 
orrelationsbetween partial states, and due to (2.33) lo
al entropies generally in
rease in time duringthe system evolution. This also applies for the 
ase a small quantum system intera
tswith an environment [28℄. In 
ontrast, global entropy is 
onstant in time due to (2.30).10



2.3. Open Quantum Systems and Master EquationAn adequate distan
e measure for two states ˆ̺ and ˆ̺′ is given by the Bures metri
 [2℄,
D2

ˆ̺ˆ̺′ = Tr
{
(ˆ̺− ˆ̺′)2

}
. (2.35)If ˆ̺ is the a
tual 
omposite state and ˆ̺′ some produ
t form, D2

ˆ̺ˆ̺′ 
an be used as ameasure for 
orrelations.Entanglement is a purely quantum me
hani
al phenomena. A standard example fora maximally entangled quantum state is the Einstein-Podolsky-Rosen (EPR) state [29℄
|ψ〉 =

1√
2

(|1〉 |0〉 − |0〉 |1〉) (2.36)des
ribing two intera
ting spins, where |0〉 and |1〉 stand for �spin up� and �spin down�,respe
tively. If, in a measurement, the �rst spin is found to be in �up� state, the se
ondspin will automati
ally be in �down� state. This holds without the need for a furthermeasurement, even if both spins are outside the range of intera
tion. Hen
e the en-tangled state only 
ontains 
olle
tive information on both subsystems. This prin
ipalnon-lo
ality is an essential ingredient of entanglement. See also [30℄.2.3. Open Quantum Systems and Master Equation2.3.1. Derivation of the Quantum Master EquationA 
onvenient method to des
ribe the intera
tion of a small quantum system with a largeenvironment (heat bath) is by means of a quantummaster equation (QME). Sin
e usuallythe degrees of freedom of the environment are too numerous for further investigation,they are tra
ed out and disregarded ab initio. This leads to an e�e
tive equation ofmotion for the dissipative dynami
s the redu
ed density matrix ˆ̺S of the 
onsideredopen quantum system is subje
t to.Several di�erent approa
hes to open quantum systems exist, see e. g. [26, 31, 32℄.The master equation used in this work is des
ribed in [17℄. A re
ent des
ription and
omparison to other models 
an be found in [18℄ and also in [16℄ in the 
ontext ofquantum thermodynami
 ma
hines.The 
ompound of the system of interest S and its environmental bath B is des
ribedby the Hamiltonian
Ĥ = ĤS + ĤB + Ĥint (2.37)where the bath is modeled by an in�nite number of un
oupled harmoni
 os
illators
ĤB =

∞∑

k=1

ωk b̂
†
k b̂k (2.38)with the bosoni
 
reation and annihilation operators b̂†k and b̂k. The intera
tion Hamil-tonian Ĥint is spe
i�ed as

Ĥint =
∑

α

Âα ⊗ B̂α (2.39)11



2. Theoreti
al Basi
swhere Âk and B̂k, respe
tively, are hermitian system and bath operators to be as
ertainedbelow. The time evolution of the whole system's density operator ˆ̺ is governed by thevon-Neumann Eq. (2.24), written in the intera
tion pi
ture (ℏ ≡ 1):
dˆ̺(t)

dt
= −i

[

Ĥint(t), ˆ̺(t)] . (2.40)The formal solution hereof is
ˆ̺(t) = ˆ̺(0) − i

t∫

0

[

Ĥint(s), ˆ̺(s)]ds (2.41)The density operator of the subsystem of interest is then obtained by
ˆ̺S = TrB{ ˆ̺(t)} . (2.42)Inserting (2.41) into (2.40) and applying (2.42) yields

dˆ̺S(t)

dt
= −

t∫

0

TrB

{[

Ĥint(t), [Ĥint(s), ˆ̺(s)]]} (2.43)where it is assumed that
TrB

{[

Ĥint, ˆ̺(0)
]}

= 0 (2.44)Now one performs the Born approximation, 
laiming the 
oupling between system andbath to be weak enough so that the ba
k-a
tion of the system on the bath is negligible.Hen
e the state of the entire system may be approximated by a tensor produ
t:
ˆ̺(t) ≈ ˆ̺S(t) ⊗ ˆ̺B . (2.45)The bath state is assumed to be 
anoni
al,
ˆ̺B =

e−βĤB

TrB{e−βĤB}
(2.46)with β = 1/T being the inverse temperature and kB ≡ 1.A further simpli�
ation is introdu
ed by the Markov approximation, assuming 
oarsegrained time s
ales. This means the ex
itations in the baths are not resolved as theyhappen on mu
h smaller time s
ales τB than those on whi
h the system evolves (τS).Furthermore, the same is assumed to apply for the de
ay of the bath 
orrelation fun
tionsor memory e�e
ts. Thus, in Eq. (2.45) we repla
e ˆ̺(s) by ˆ̺(t), and s is substituted by

t− s while the upper bound of the integral is set to t → ∞. This makes the integrandvanish rapidly enough for s≫ τB. Then,
dˆ̺S(t)

dt
= −

∞∫

0

dsTrB

{[

Ĥint(t), [Ĥint(t− s), ˆ̺(t) ⊗ ˆ̺B

]]}

. (2.47)
12



2.3. Open Quantum Systems and Master EquationSkipping some lengthy 
al
ulations, the QME be
omes, again in the S
hrödinger pi
ture,
dˆ̺S(t)

dt
= − i

[

ĤS, ˆ̺S(t)
]

−
∞∫

0

ds

∞∫

−∞

dωeiωs ×

∑

α,γ

(

Γαγ(ω)
[

Âγ(−s)ˆ̺S(t), Âα

]

+ Γγα(−ω)
[

Âα, Âγ(−s)ˆ̺S(t)
])

(2.48)with
Âγ(−s) = e−iĤSsÂγe

iĤSs . (2.49)Here the bath 
orrelation fun
tions
Γαγ(s, β) =

〈

B̂α(s)B̂γ(0)
〉

B
≡ TrB

{

B̂α(s)B̂γ(0)ˆ̺B

} (2.50)with ˆ̺B given by (2.46) have been introdu
ed. Their Fourier transformations, represent-ing transition rates, lead to the bath 
orrelation tensor
Γαγ(ω, β) =

∞∫

−∞

dseiωs Γαγ(s, β) . (2.51)For terms of Γ(−ω) the Kubo-Martin-S
hwinger (KMS) 
ondition gives
Γαγ(ω) = e−βωΓγα(−ω) . (2.52)The �rst term of Eq. (2.48) des
ribes the 
oherent unitary dynami
s of the systemwhile the se
ond term, the dissipator D̂(ˆ̺S(t)), de�ned in Liouville spa
e, represents thede
ohering and damping environmental in�uen
e. The Liouville-von Neumann equationdes
ribing the redu
ed dynami
s of the system is thus rewritten as

dˆ̺S(t)

dt
= −i

[

ĤS, ˆ̺S(t)
]

+ D̂(ˆ̺S(t)) ≡ L̂(ˆ̺S(t)) . (2.53)where L̂ is the 
orresponding Liouville super-operator a
ting on ˆ̺S(t).Now, in the frame of this thesis only lo
al 
oupling of a spin 
hain to a heat bathvia the outermost spin will be 
onsidered. Hen
e the system part of the intera
tionHamiltonian (2.39) is 
hosen as:
Â1 = σ̂(1)

x ⊗ 1̂(2) ⊗ . . .⊗ 1̂(n) , (2.54)and there remains but one pair of intera
tion operators (α = γ = 1), therefore theseindi
es are omitted in the following.The bath operator B̂ is set to be linear in the os
illator amplitudes (
f. (2.38)),
B̂ =

∞∑

l=1

clb̂
†
l + c∗l b̂l (2.55)13



2. Theoreti
al Basi
swhere the ck are 
oupling 
onstants. Inserting (2.55) into (2.50) and applying the Fouriertransformation (2.51), the bath 
orrelation tensor 
an be written in terms of the spe
traldensity J(ω),
Γ(ω, β) = κ

J(ω) − J(−ω)

eβω − 1
, (2.56)introdu
ing the system-bath 
oupling parameter κ. A usual form of J(ω) is that of anOhmi
 bath,

J(ω) = ωΘ(ω) , (2.57)where Θ(ω) is the Heaviside step fun
tion,
Θ(ω) =

{

1 ω > 0

0 ω ≤ 0 .
(2.58)The expression for the dissipator D̂(ˆ̺S(t)) derived so far is not yet 
onvenient for nu-meri
al purpose. Therefore D̂(ˆ̺S(t)) is now expressed in terms of the energy eigenstatesof the system via the proje
tors |i〉. As an example this is done here for the �rst termof (2.48):

〈k| D̂(ˆ̺S(t)) |n〉 =
∑

l,m

∞∫

0

ds

∞∫

−∞

dωeiωs
(

Γ(ω) 〈k| Â(−s) |l〉
︸ ︷︷ ︸

(∗)

〈l| ˆ̺S(t) |m〉〈m| Â |n〉 + . . . .(2.59)The term labeled (∗) be
omes
〈k| Â(−s) |l〉 = 〈k| e−isĤSÂeisĤS |l〉 = 〈k| e−iEksÂeiEls |l〉

= e−i(Ek−El)s 〈k| Â |l〉 = e−iωkls 〈k| Â |l〉 .
(2.60)where Ei are system eigenvalues belonging to the eigenstates |i〉 of ĤS, and ωkl = Ek−El.The integrals 
an then be dissolved with the help of the formula

∞∫

0

ds ei(ω−ωkl)s = δ(ω − ωkl) + P i

ω − ωkl
, (2.61)negle
ting the Cau
hy prin
ipal value P. Now the tra
eless transition operator R̂ isintrodu
ed whose matrix elements are

〈l| R̂ |m〉 = 〈l| Â |m〉Γ(ωlm) (2.62)where, by insertion of (2.56)-(2.58), and with regard to (2.52) the bath 
orrelation tensorwrites
Γ(ωlm) = Γ(El −Em) = κ

(
θ(ωlm)

eωlmβ − 1
+
θ(ωml)e

ωmlβ

eωmlβ − 1

)

, (2.63)with Γ(ωll ≡ 0) = 0.14



2.3. Open Quantum Systems and Master EquationThe transition rates introdu
ed in (2.51) obviously depend on both the temperature
T = 1/β and the system-environment 
oupling strength κ, whi
h must be small to justifythe Born approximation (2.45). Finally the dissipator is 
ompa
tly written as

D̂(ˆ̺S(t)) =
[

Â, R̂ ˆ̺S(t)
]

+
[

Â, R̂ ˆ̺S(t)
]† (2.64)It is easily shown that the stationary solution of (2.53), ˙̺̂

S(t) = 0, is the 
anoni
alequilibrium state with the Boltzmann distribution
ˆ̺statS =

e−βĤS

TrS{e−βĤS}
, (2.65)being the eigenstate of the Liouvillian L̂ to the eigenvalue zero. Independently on initial
onditions, a system lo
ally 
oupled to only one heat reservoir is expe
ted to end up ina state of 
anoni
al equilibrium due to the de
ohering bath in�uen
e represented by thetransition operator R̂.2.3.2. Open Quantum Systems in Thermal Non-EquilibriumAs in the further pro
eeding a non-equilibrium s
enario of a spin 
hain between twoheat baths will be investigated, a se
ond dissipator representing the additional reservoiris added to (2.53),

dˆ̺S(t)

dt
= −i

[

ĤS, ˆ̺S(t)
]

+ D̂h(ˆ̺S(t)) + D̂c(ˆ̺S(t)) ≡ L̂(ˆ̺S(t)) (2.66)where h and c denote the hot and 
old heat reservoir, respe
tively. The stationarysolution of Eq. (2.66) is a non-equilibrium state sin
e, in the eigenrepresentation ofthe system Hamiltonian ĤS, it exhibits non-vanishing o�-diagonal elements des
ribing
orrelations between the di�erent system eigenstates.At the same time a �nite stationary heat 
urrent through the system emerges, runningfrom the hot to the 
old reservoir (see Se
. 2.5.2) and obviously linked to the remaining
orrelations in the system [33℄.Although there is no global equilibrium established, single subunits of the system maynevertheless be found in a lo
al equilibrium state (
f. Se
. 2.4.1) sin
e it turns out that,lo
ally, 
orrelations are damped out by the baths.

15



2. Theoreti
al Basi
s2.4. Thermal Properties of Spin Systems2.4.1. Two-Level Systems in Thermal EquilibriumIn Pauli σ̂z-representation, the Hamiltonian of a two-level system (TLS) su
h as a spin-
1/2 parti
le ("spin") reads

ĤTLS =
1

2
∆Eσ̂z (2.67)where ∆E is the lo
al energy splitting. The ground and ex
ited states are −1

2
∆E and

+1
2
∆E, lo
ated symmetri
ally around the zero energy level. If the TLS density matrixis diagonal in this basis, i. e.

ˆ̺ =

(
̺00 0
0 ̺11

) (2.68)with ̺00 and ̺11 being the o

upation probabilities of the lower and upper energy state,respe
tively, the TLS is always in a 
anoni
al equilibrium state [34℄,
ˆ̺eq =

e−βĤTLS
Tr{e−βĤTLS} . (2.69)The von-Neumann entropy of the same system,

S = −Tr{ ˆ̺ ln ˆ̺} = −(̺00 ln ̺00 + ̺11 ln ̺11) (2.70)
an then be interpreted as the thermal entropy [2℄.For a TLS or spin in a 
anoni
al state it is also possible to de�ne a lo
al temperature
T = 1/β (kB ≡ 1),

̺11

̺00

= e−β∆E (2.71)The spin energy expe
tation value 〈E〉, 
onsidered as intrinsi
 energy U of the TLS,writes [2℄
U ≡ 〈E〉 = Tr{ ˆ̺ĤTLS} = −∆E

2
(̺00 − ̺11) = −∆E

2
tanh

(
∆E

2T

) (2.72)Re
alling the standard thermodynami
 temperature de�nition T = ∂U
∂S

one �nds, inagreement with (2.71),
T = − ∆E

ln(̺11/̺00)
(2.73)Generalizations to multi-level systems are possible, see [5, 35, 36℄.2.4.2. Global versus Lo
al TemperatureIn general, it is a possible 
ondition for the existen
e of temperature on nanos
ales thatthe 
orresponding system has to be in a 
anoni
al state. In [36, 5, 37℄ it was shown16



2.5. Heat Transport in Spin Chainsthat this holds for a subgroup of spins or a single spin within a 
oupled spin system if
orrelations between the respe
tive subgroups are small.This was validated in [38, 35℄ by means of a Heisenberg spin 
hain of a few subunitswhi
h, in terms of (2.54), is lo
ally 
oupled to a bath modeled after (2.64). The 
hainas a whole is found to relax into a stationary 
anoni
al state, exhibiting the same globaltemperature as the bath, independently of the internal spin-spin 
oupling strength λ.However the lo
al spin temperatures do depend on λ and are only des
riptive if theinternal 
oupling strength is weak enough 
ompared to the lo
al spin energy splittings
∆Ei. In this 
ase, as a good approximation, the system energy is extensive in the numberof spins and temperature is intensive sin
e global and lo
al temperatures 
oin
ide.Otherwise 
orrelations between single spins and spin groups and thus the lo
al entropyin
rease, making lo
al temperatures deviate more and more from the global one within
reasing λ. In this 
ase the system energy is not extensive in the number of spins anylonger sin
e energy is in
reasingly stored in the intera
tion between single units.2.5. Heat Transport in Spin ChainsThis se
tion shall give a brief overview of the theoreti
al framework of heat 
ondu
tionin spin 
hains, a

ording to [34, 38℄ and also to [39, 40℄.2.5.1. Heisenberg Spin ChainThe Hamiltonian of a 
hain 
onsisting of N spins with a nearest neighbor intera
tionreads

Ĥ =

N∑

µ=1

Ĥlo
(µ) + λ

N−1∑

µ=1

Ĥint(µ, µ+ 1) (2.74)The lo
al Hamiltonian Ĥlo
(µ) of spin µ is given by (2.67), λ denotes the site-independentpair 
oupling strength and Ĥint is the intera
tion Hamiltonian. In this work only theanti-ferromagneti
 Heisenberg spin 
hain is used where λ > 0 and
Ĥint(µ, µ+ 1) =

∑

i=x,y,z

σ̂i(µ) ⊗ σ̂i(µ+ 1) (2.75)with a non-resonant 
oupling part σ̂z ⊗ σ̂z. The operators σ̂i are the Pauli matri
es.2.5.2. Heat CurrentAn analyti
al expression for the heat 
urrent through a system of several subunits, e. g.a spin 
hain, 
an be obtained after [34, 26℄. Starting from the Liouville-von NeumannEq. (2.53) for the redu
ed system dynami
s
˙̺̂
S(t) = −i

[

ĤS, ˆ̺S(t)
]

+ D̂(ˆ̺S(t)) (2.76)17



2. Theoreti
al Basi
smultiplying this with the system Hamiltonian ĤS and applying the tra
e yields
Tr
{

ĤS
˙̺̂
S

}

= −i
∂

∂t
Tr
{

ĤS ˆ̺S

}

= Tr
{

ĤSD̂(ˆ̺S)
} (2.77)where the tra
e over the system 
ontribution [ĤS, [ĤS, ˆ̺S]] vanishes. The left-hand sideof this expression denotes for the total 
hange of energy in the system,

d

dt
〈E〉 =

d

dt
Tr{ĤS ˆ̺S} ,and therefore may be identi�ed with a heat 
urrent J between the system and the heatbath modeled by the dissipator D̂,

J = Tr{ĤSD̂(ˆ̺S)} . (2.78)With regard to the the stationary solution ˙̺̂
S = 0 of Eq. (2.66) in the non-equilibriums
enario des
ribed in Se
. 2.3.2, the overall energy 
hange in the system must be equalto zero due to energy 
onservation. Thus, with (2.78),

d

dt
〈E〉 = Tr

{

ĤSD̂h(ˆ̺S)
}

+ Tr
{

ĤSD̂c(ˆ̺S)
}

≡ Jh + Jc
!
= 0 . (2.79)Hen
e a stationary leakage 
urrent Jh = −Jc through the system emerges, running fromthe hot (h) to the 
old (c) reservoir. By 
onvention a heat 
urrent �oating into thesystem is signed positive.2.5.3. Fourier's Law in Open Quantum SystemsA 
ommon way to des
ribe heat transport through a material is a 
hara
teristi
 di�eren-tial equation widely known as Fourier's law, linking the heat 
urrent J and an externaltemperature gradient ∇T (r, t) via the 
ondu
tivity K,

J = −K∇T (r, t) (2.80)Fourier's law in an open quantum system 
an be investigated by realizing a stationarysetup of a homogeneously split spin 
hain with a weak nearest neighbor Heisenbergintera
tion (see (2.75)) lo
ally 
oupled to two heat baths via the outermost spins of the
hain, a

ordingly to (2.66). This is possible sin
e, after [34, 39℄, the heat 
urrent in aHeisenberg spin 
hain is not a 
onserved quantity, leading to a �nite 
ondu
tivity andtherefore allowing for regular heat transport.As mentioned in Se
. 2.3.2, the system as a whole is in a stationary thermal non-equilibrium state. However, the single spins may still be found in lo
al equilibriumstates due to the bath-indu
ed damping and therefore exhibit lo
al temperatures (see(2.73)) under the 
onstraints noted in Se
. 2.4.2.It turns out that the spin 
hain exhibits a linear temperature gradient ∆T with respe
tto the single units in the 
hain. This 
omes along with a stationary heat 
urrent running18



2.5. Heat Transport in Spin Chainsthrough the system (
f. Se
. 2.5.2) and linearly depending on the temperature gradient
∆T imposed by the baths. Thus, Fourier's law is ful�lled for this kind of quantumsystems, 
f. [34, 38, 40℄.Ref. [16℄ mentions the strong dependen
e of the heat 
urrents Jh,c on the lo
al energysplittings. The 
urrents are maximal at overall resonan
e, i. e. for a homogeneouslysplit 
hain, and de
rease to zero the more the energy splittings are detuned. This isequivalent to a de
rease in heat 
ondu
tivity and thus to an in
rease of the spin 
hainresistan
e [41℄.It is therefore possible to de
ouple a part of the spin 
hain from one or both bathsfa
tually by simply detuning the lo
al energy gaps of adja
ent spins. As it will bedis
ussed below, this aspe
t is fundamental for the 
on
ept of a quantum thermodynami
ma
hine realized by an inhomogeneously split spin 
hain between two heat baths.
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3. Quantum Thermodynami
Ma
hines3.1. Quantum Thermodynami
 VariablesA des
ription of thermodynami
 pro
esses requires adequate de�nitions of the variablesheat and work. For a quantum system Ĥ with a dis
rete spe
trum, being in a statedes
ribed by the density operator ˆ̺, we start from the energy expe
tation value
U = 〈E〉 = Tr

{

Ĥ ˆ̺
}

=
∑

i

piEi (3.1)where pi are the o

upation probabilities of the energeti
 levels belonging to the eigen-values Ei. The total di�erential of Eq. (3.1) be
omes
dU =

1

2

∑

i

Eidpi
︸ ︷︷ ︸

d̄Q

+ pidEi
︸ ︷︷ ︸

d̄W

(3.2)Identifying this with the Gibbs relation (2.1), the heat Q and the work W are asso
iatedwith the 
hange of o

upation probabilities and the spe
tral deformation, respe
tively.In analogy to 
lassi
al thermodynami
s, the spe
trum is thus interpreted as a "volume"sin
e an amount of me
hani
al work ∆W is always related to a 
hange of volume ∆V .A 
y
li
 pro
ess requires, following (2.30),
∆U = ∆Q+ ∆W

!
= 0 or ∆W = −∆Q . (3.3)The work is 
al
ulated by integrating over the ST -diagram whi
h is 
losed for a 
y
li
pro
ess:

∆W = −
∮

TdS . (3.4)The heat ∆Q results from integrating the respe
tive heat 
urrents Jα obtained with(2.78) over one period τ = 2π/ω if the system is 
onne
ted with the bath α,
∆Qα =

τ∫

0

Jαdt , (3.5)For a 
y
li
 ma
hine pro
ess where two heat baths are present, we arrive at
∆Q = ∆Qh + ∆Qc . (3.6)21



3. Quantum Thermodynami
 Ma
hineswhere ∆Qh and ∆Qh denote the heat transferred between the system and the hot (α = h)and 
old bath (α = c). From Eqns. (3.4) and (3.5) the e�
ien
ies for the heat engine(en) and heat pump (p) result as
ηen = ∆W/∆Qh ηp = ∆Qh/∆W . (3.7)For a TLS in a 
anoni
al state the further needed thermodynami
 variables entropy andtemperature are given by Eqns. (2.70) and (2.73).3.2. Quantum Otto Cy
le3.2.1. The Three-Spin Quantum Ma
hineThe elementary quantum thermodynami
 ma
hine model underlying all further modelsto be investigated in this thesis is depi
ted in �gure 3.1 and has been widely dis
ussedand treated numeri
ally in [15, 16℄. It 
onsists of an inhomogeneously split 
hain ofthree spins lo
ally 
oupled to a hot (h) and 
old (c) heat bath via the outermost spins.The intera
tion between nearest neighbors is of Heisenberg type, 
f. (2.75). The systemHamiltonian reads, in analogy to (2.74),

Ĥ =
3∑

µ=1

(

1

2
∆Eµσ̂

µ
z + λ

∑

i=x,y,z

σ̂µ
i ⊗ σ̂µ+1

i

) (3.8)where ∆Eµ is the lo
al energy splitting of spin µ and σ̂µ
i are the Pauli matri
es. Thebath 
onta
t spins 1 and 3 exhibit di�erent 
onstant lo
al energy splittings, imposingan energy gradient on the system and thus spatial asymmetry. Following the Curieprin
iple [6℄ this is one elementary requirement for any ma
hine fun
tion. Furthermore,the presen
e of two heat baths satis�es the 
laim for thermal non-equilibrium, being the
ondition for any 
onversion of heat out of a thermal bath into work after the se
ondlaw. In the approa
h of this work external 
ontrol on the system is implemented viaa semi
lassi
al σ̂z-driver whi
h only a
ts on spin 2 by periodi
ally modulating its lo
alenergy gap ∆E2. From a 
lassi
al point of view the driven spin takes the role of a�working gas� running a 
y
li
 pro
ess while the external driver may be interpreted as a"piston", 
ontrolling the work in the system.In a possible experimental s
enario the σ̂z-driver might be realized via an externalmagneti
 �eld. However, this is not suitable as work reservoir sin
e, la
k of any retro-a
tion on the driver, the work released by the driven spin 
annot be pi
ked o�. For thisreason the 
hosen driver is rather 
lassi
al than quantum me
hani
al. Nevertheless thisproblem may be 
ir
umvented by 
oupling the gas spin to an autonomous driver su
has a harmoni
 os
illator. This was investigated e. g. in [14℄.At the same time the driver is also enabled to 
ontrol heat transfer between the systemand the reservoirs. This is a

omplished by the resonan
e e�e
t 
ited in Se
. 2.5.3,provided spin 2 is alternately driven into resonan
e with both bath 
onta
t spins. For22



3.2. Quantum Otto Cy
lePSfrag repla
ements

Th Tc

Hotbath ColdbathSpin 1 Spin 2 Spin 3
κκ λλ

∆E1 ∆E2(t) ∆E3Figure 3.1.: Elementary quantum ma
hine model of a three-spin 
hain between two heatbaths. Th and Tc are the bath temperatures, λ and κ are 
oupling 
onstantsand ∆Eµ are the lo
al energy gaps of spins µ = 1, 2, 3. ∆E2 depends ontime sin
e the middle spin is driven.this the resonan
e 
onditions
∆E1 ≥ ∆E2(t) ≥ ∆E3 (3.9)must be ful�lled. Heat 
urrents between the system and the baths only o

ur if theenergy splitting of spin 2 equals one of the 
onstant bounds, i. e. ∆E1 = ∆E2 or

∆E3 = ∆E2. In between, heat 
urrents are negligible so that the o

upation probabilitiesof spin 2 remain 
onstant while its energy splitting is modulated.Following Eq. (3.2), the �rst 
ase is related to heat transport at 
onstant spe
trumwhereas the se
ond 
ase is related to work at 
onstant entropy. Sin
e in Se
. 3.1 it wasargued that a spe
tral deformation 
orresponds to a volume deformation in 
lassi
alterms, this quantum thermodynami
 
y
le 
an be identi�ed as the quantum analog tothe 
lassi
al Otto 
y
le, featuring iso
hori
 steps with 
onstant spe
trum and adiabati
steps with 
onstant entropy. Therefore it is referred to as the Quantum Otto 
y
le. Withregard to the 
y
le steps, this analogy will be demonstrated in detail in the followingse
tion.3.2.2. Cy
le StepsSimilarly to a 
lassi
al thermodynami
 Otto 
y
le, the quantum Otto 
y
le runs in foursteps.1. Iso
hori
 step: Spin 2 is in resonan
e with spin 3 and therefore 
oupled to the
old reservoir at temperature Tc. The heat 
urrent Jc between this bath and thesystem gets large, while Jh remains negligibly small. The o

upation probabilitiesand thus the lo
al temperatures of spins 2 and 3 approa
h as both evolve towards
onta
t equilibrium.2. Adiabati
 step: Spin 2 is driven out of resonan
e with spin 3, leading to a de
reaseof Jc. The o

upation probabilities, i. e. entropy remains almost un
hanged,whereas work is applied or released due to the spe
tral deformation. 23



3. Quantum Thermodynami
 Ma
hines3. Iso
hori
 step: Spin 2 is in resonan
e with spin 1. The heat 
urrent Jh gets largewhile Jc is negligible. As both spins equilibrate, lo
al temperatures approa
h ea
hother.4. Adiabati
 step: 
ontrarily analog to step 2.There are two possible working modes: either the system runs as heat engine, trans-porting heat from the hot to the 
old bath and releasing work, or it runs as heat pump,a
ting the other way round and 
onsuming work.3.2.3. Numeri
al ImplementationIn order to 
al
ulate the time-dependent system state ˆ̺S, the master equation (2.66)is solved numeri
ally sin
e the super-operator L̂ is too high-dimensional for a 
losedanalyti
al solution to be available. Independently of its initial state ˆ̺S(0) the system isfound to rea
h a stable time-dependent attra
tor state. This also applies for all numeri
alsimulations presented further on and therefore will not be mentioned expli
itly any more.For more details on numeri
al methods used in this work it is referred to Se
. A in theappendix.Sin
e numeri
al reasons require a smooth modulation fun
tion for ∆E2(t), sinusoidaldriving is 
onsidered in the frame of this work,
∆E2(t) = ∆E0

2 + a sinωt (3.10)where the o�set ∆E0
2 = 1

2
(∆E1 +∆E3) and the detuning parameter a = 1

2
(∆E1−∆E3)are 
hosen to agree with 
ondition (3.9).The driving frequen
y ω and the bath temperatures Th > Tc are given in units of thelo
al spin energy splittings ∆Ei. The same holds for the 
oupling parameters λ and κwhi
h, due to the Born approximation and Se
. 2.4.2, must stay in the weak 
ouplinglimit,

κ, λ≪ ∆Ei (3.11)The Markov assumption enters by 
laiming the driving frequen
y ω to be small enoughin order to su�
iently damp the system:
ω ≪ ∆E2 (3.12)Otherwise, energy transfer between the system and the heat reservoirs via spin resonan
ewould not be possible any more, 
ausing the ma
hine fun
tion to break down. On theother hand, 
hoosing a too small driving frequen
y, i. e. ω ≪ κ would make the systemrun in the quasi-stationary limit where only leakage 
urrents remain and the usefulsystem work turns to zero [16℄.This marks an essential di�eren
e to 
onventional 
lassi
al thermodynami
 ma
hine
y
les whi
h are normally 
onsidered in the quasistati
 limit, running in�nitesimallyslowly but produ
ing a �nite amount of work per 
y
le. In 
ontrast, the Quantum Otto
y
le des
ribed above must be run in �nite time in order to yield a �nite work outputfor the 
hosen manner of driving.24



3.3. The Ideal Quantum Otto Cy
le3.3. The Ideal Quantum Otto Cy
leFor any kind of ma
hine fun
tionality 
ru
ially depends on the a
hievable degree ofexternal 
ontrol on the 
y
le steps. Obviously this 
ontrol is limited in the 
ase of time-dependent driving as dis
ussed in the previous se
tion, whi
h will also be shown lateron by means of numeri
al investigations.In general, one is interested in idealized, fully manageable 
y
le steps in order toobtain an upper bound for the 
hara
teristi
s of arbitrary ma
hine pro
esses. Regardingthe Quantum Otto 
y
le, a 
orresponding model shall be brie�y reviewed, following[42, 11, 16℄. Here, the spe
trum and the o

upation probabilities within the drivenquantum system underlie total 
ontrol, and so do the 
y
le steps des
ribed in Se
. 3.2.2.Consequently, in this ideal ma
hine pro
ess heat is only ex
hanged during bath 
onta
tsand work is only performed on the adiabats. Furthermore, any kinds of losses are ruledout and perfe
t 
onta
t equilibrium is assumed between two spins 
oming into resonan
e.It is now possible to obtain analyti
al expressions for the work, heat and e�
ien
iesby simply taking into a

ount the energy expe
tation values of the driven spin beforeand after ea
h step.After the driven spin has been in 
onta
t with 
onta
t spin at the 
old bath, it is inthe same 
anoni
al state:
ˆ̺2 =

1

Z

(
e∆E3/2Tc 0

0 e−∆E3/2Tc

) (3.13)where the partition fun
tion reads
Z = e∆E3/2Tc + e−∆E3/2Tc = cosh

(
∆E3

2Tc

)

. (3.14)After the following adiabati
 step it is ∆E2 = ∆E1 while ˆ̺2 remains un
hanged. Thework is given by the energeti
 di�eren
e before and after the step (see (2.72)):
W3→1 =

1

2
(∆E3 − ∆E1) tanh

∆E3

2Tc

. (3.15)Together with the 
ontra
ting adiabati
 step the total work be
omes
∆Wtot =

1

2
(∆E1 − ∆E3)

(

tanh
∆E1

2Th
− tanh

∆E3

2Tc

)

. (3.16)In analogy to this the heat transferred between spins 1 and 2 is
∆Qh =

1

2
∆E1

(

tanh
∆E1

2Th
− tanh

∆E3

2Tc

)

. (3.17)whi
h 
orresponds to an entire swap of the states of both spins. Cal
ulating Qc analo-gously, the Gibbs relation (2.4) is easily veri�ed. With (3.16) and (3.17) the heat engineand heat pump e�
ien
ies for the ideal Quantum Otto 
y
le result as
ηOttop =

∆Qh

∆Wtot =
∆E1

∆E1 − ∆E3
, ηOttoen =

∆Wtot
∆Qh

= 1 − ∆E3

∆E1
. (3.18)These expressions remind of the 
lassi
al Otto e�
ien
y (2.11) as they only depend onthe spe
trum (the �volume�) but not on the bath temperatures. 25
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ien
ies ηp of the heat pump and

ηen heat engine and 
orresponding Carnot e�
ien
ies ηCaren/p as fun
tions of
∆T . Note the di�erent s
aling with regard to pump and engine e�
ien
ies.3.3.1. Three-Spin Ma
hine with Arti�
ial De
ouplingFor numeri
al veri�
ation of the ideal Quantum Otto 
y
le introdu
ed in Se
. 3.3 andparti
ularly of Eq. (3.18), the present author performed numeri
al simulations of a dy-nami
ally driven three-spin ma
hine in
luding an arti�
ial de
oupling between adja
entspins in order to impose a high degree of 
ontrol on the 
y
le steps and, in parti
ular, toeliminate leakage 
urrents being omnipresent for a permanent 
oupling (
f. Se
. 4.2). Inpra
ti
e, the Heisenberg 
ouplings are �swit
hed on� only within a given interval duringwhi
h the driven spin and the respe
tive bath spin are in resonan
e and set to zero else.Although one may question whether this pro
edure is pra
ti
able in physi
al regard,it turns out to be an e�e
tive numeri
al tool to 
he
k the plausibility of (3.18) bysimulating its premises.The 
oupling parameter between the spin pair 1 and 2 is 
hosen as periodi
ally 
on-tinued smooth pie
ewise fun
tion λ(t) whi
h, over one period τ = 2π/ω, is de�ned as

λ12(t) =

{

λ sin2
[

aω
(
t− bπ

ω

) ]

bπ
ω
≤ t ≤ (b+ 1

a
)π

ω

0 else . (3.19a)Similarly, the 
oupling parameter for the se
ond spin pair 2 and 3 gets
λ23(t) =

{

λ sin2
[

aω
(
t− cπ

ω

) ]

cπ
ω
≤ t ≤ (c+ 1

a
)π

ω

0 else . (3.19b)Here λ = 0.01 denotes the spin-spin 
oupling 
onstant and ω = 2π/128 = 804.25 isthe driving frequen
y. The parameters a, b, c have to be sele
ted appropriately su
h26
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Figure 3.3.: Three-spin ma
hine with de
oupling: Work ∆W and heat ∆Qh, ∆Qc asfun
tions of ∆T . The 
riti
al temperature gradient is ∆T id
rit = 0.714.that intera
tion times between resonant spins are su�
iently long and, on the otherhand, leakage 
urrents are suppressed. An adequate set of parameters is a = 2.5, b =
π
2
(1− 1

a
) = 0.3π and c = 1+b = 1.3π. The lo
al energy splittings are ∆E1 = 2.25, ∆E2 =

2.0 + 0.25 sinωt and ∆E3 = 1.75. The 
old bath temperature Tc = 1/βc = 2.5 is kept
onstant while that of the hot bath, Th, is varied. Sin
e the additional deformation ofthe spe
trum due to the time-dependent 
oupling λ(t) is only of magnitude 10−2 [∆E]it may be negle
ted.Further information on numeri
al treatment are found in Se
. 3.2.3 and Se
. A in theappendix.E�
ien
ies, Heat and WorkFor the three-spin quantum ma
hine with arti�
ial de
oupling, the heat pump and heatengine e�
ien
ies ηp and ηen are obtained via (3.7) and plotted in Fig. 3.2 as fun
tions ofthe temperature gradient ∆T = Th −Tc, together with the respe
tive Carnot e�
ien
ies
ηCarp and ηCaren (
f. (2.6) and (2.7)). Indeed the results agree with the predi
tions fromSe
. 3.3. In parti
ular, the e�
ien
ies ηen/p 
oin
ide perfe
tly with the Quantum Ottoe�
ien
ies for the given lo
al energy splittings. A

ording to Eq. (3.18), these take thevalues ηOttop = 4.5 for the heat pump and ηOttoen = 0.22 for the heat engine. They areindependent of ∆T ex
ept at a 
riti
al external temperature gradient ∆T id
rit where theyrea
h their respe
tive Carnot equivalents. This is however not a violation of the se
ondlaw of thermodynami
s. Fig. 3.3 shows the transferred heat ∆Qh and ∆Qc betweenthe system and the hot and 
old reservoir obtained with (3.5) as well as the work ∆W ,27
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ements 1
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Figure 3.4.: Heat 
urrents Jc and Jh over one period τ for the Quantum Otto ma
hinewith arti�
ial de
oupling, working as heat pump (∆T = 0.13).
al
ulated via (3.4), both as fun
tions of ∆T . It follows that at ∆T id
rit no work is 
arriedout or exhausted, i. e. ∆W = 0. On both sides the work as well as the heat fun
tions
hange sign.As a 
onsequen
e, the mode of operation of the Quantum Otto ma
hine swit
hes be-tween a heat pump and a heat engine at this point. This 
an be easily understood by
omparing the 
anoni
al distributions of the bath spins whi
h the driven spin exhibitsalternately. In an ideal Quantum Otto 
y
le no heat should be transported if the 
anon-i
al distributions of both bath spins are identi
al, so the work is also expe
ted to vanish.By 
ondition,
̺11

1

̺00
1

=
̺11

3

̺00
3

=⇒ e−∆E1/Th = e−∆E3/Tc (3.20)or ∆E1/∆E3 = Th/Tc. Inserting this into (3.18) immediately leads to equality of theQuantum Otto and Carnot e�
ien
ies at ∆T id
rit, in a

ordan
e with the numeri
s. Oth-erwise, ηOtto < ηCar in agreement with the se
ond law. If the �<� sign holds in (3.20)the system transports heat from the 
old to the hot reservoir against the internal energygradient. During the in
rease of its lo
al energy gap ∆E2 the driven spin 
arries thedistribution e−∆E3/Tc and work is released sin
e the energy of the higher o

upied lowerlevel is de
reased. On the other hand, work has to be inserted to redu
e ∆E2 whenspin 2 
arries the distribution e−∆E1/Th after heat transfer between the system and thehot bath, sin
e now the energy of the lower level is in
reased again. Altogether a netamount of work ∆W > 0 has to be inserted if the system runs as heat pump.In the 
ase the �>� sign holds in (3.20) the system works as heat engine why a netamount of work ∆W < 0 is released.28
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Figure 3.5.: Quantum Otto ma
hine with arti�
ial de
oupling: ST -diagram run by thedriven spin in heat pump mode, (left), 
f. a 
lassi
al Otto 
y
le, and ifapproa
hing ∆T id
rit (right), 
f. Carnot 
y
le.The 
riti
al temperature gradient is obtained from (3.20), too:
∆T id
rit = Tc

(
∆E1

∆E3
− 1

) (3.21)For the given parameters it follows that ∆T id
rit = 0.714 as approved in Figs. 3.2 and 3.3.For di�erently 
hosen energy gaps of the bath 
onta
t spins the Quantum Otto heatpump e�
ien
y would be found at η̃idp and thus the 
riti
al temperature gradient wouldde
rease to ∆T̃ id
rit (see also [16℄).Heat Currents and ST -Cy
lesFor the Quantum Otto heat pump with arti�
ial de
oupling the heat 
urrents Jh < 0from the system into the hot bath and Jc > 0 from the 
old bath into the systemare 
al
ulated with the help of (2.78) and displayed in Fig. 3.4, both over one period
τ = 2π/ω. Sin
e we deal with a non-equilibrium s
enario here, Jh 6= −Jc, 
ontrary tothe stationary 
ase. For a heat engine the signs of both 
urves would simply 
hange.The numbers 1 to 4 refer to the 
y
le steps des
ribed in Se
. 3.2.2. If the drivenspin be
omes resonant to one of the the bath 
onta
t spins, the 
orresponding spin-spin
oupling is �swit
hed on�. In su

ession both spins immediately swap due to the bigmutual temperature di�eren
e and sin
e the spin-spin intera
tion is mu
h stronger herethan the one between the system and the baths, i. e. λ ≫ κ. As a 
onsequen
e, theheat 
urrents between the system and the baths in
rease 
onsiderably.After the 
oupling has been �swit
hed o�� again, any ba
k-�oat of heat is suppressed.Thus, the respe
tive bath spin exponentially relaxes ba
k into its 
anoni
al equilibriumstate due to the de
ohering bath in�uen
e, 
f. [26℄.In the left part of Fig. 3.5 the ST -diagram of the ideal Quantum Otto 
y
le runningas heat pump is illustrated. Again the numbers 1 to 4 refer to the 
y
le steps fromSe
. 3.2.2. Spin 2 runs two adiabats (2,4) where its entropy S2 remains 
onstant, and29



3. Quantum Thermodynami
 Ma
hinestwo iso
hores (1,3) where both entropy and temperature T2 
hange with zero workperforman
e. Hereby the entropy and temperature of the gas spin 2 result from (2.70)and (2.73), respe
tively.The engine s
enario qualitatively would yield the same 
ourse in opposite dire
tion.Towards the 
riti
al temperature gradient ∆T id
rit, the ST -diagram takes more and morea re
tangle shape like in a Carnot 
y
le as illustrated in the right part of Fig. 3.5, sin
ealso the Quantum Otto e�
ien
y approa
hes the Carnot e�
ien
y. At the same timethe shape of the ST -diagram and thus the work de
rease to zero (note the di�eren
e inthe s
aling of the S2 axes).Summarizing, this numeri
al model is able to simulate adequately a three-spin systemrunning an ideal Quantum Otto 
y
le under nearly perfe
tly 
ontrolled 
y
le steps.Dis
ussion and analysis of the dynami
ally driven three-spin ma
hine at permanent
oupling 
an be found in [15, 16℄.

30
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Figure 4.1.: Model of the parallel quantum ma
hine 
ir
uit. ∆Eν are lo
al spin energygaps. Big 
ir
les stand for Heisenberg spin 
oupling (λ) and small ones forsystem-bath intera
tion (κ). The 
oupling λ1 is optional.After it has been shown in the previous 
hapter and in [16, 15℄ that a Heisenberg 
hainof three spins between to heat reservoirs may be enabled to run a Quantum Otto 
y
le,it is now of interest in how far this 
on
ept is extendable to more 
omplex quantumma
hine networks su
h as parallel and serial 
ir
uits of quantum ma
hines. In this
ase also the question for 
ommon 
hara
teristi
s and di�eren
es between the di�erentmodels arises. To give an answer, this 
hapter deals at �rst with a model of a quantumma
hine 
ir
uit where two gas spins are 
oupled in parallel. Serial ma
hine 
ir
uits willbe investigated in Ch. 5.The parallel quantum ma
hine 
ir
uit is depi
ted in Fig. 4.1. Here spins 2a and 2b aredriven and therefore take the role of the working gas. Both are 
oupled in parallel to thebath spins 1 and 3 where again the intera
tion is of Heisenberg type. The Hamiltonianfor this model is obtained via Eq. (3.8),
Ĥ =

∑

µ=1,2a,2b,3

∆Eµ

2
σ̂µ

z + λ1

∑

i=x,y,z

λ1σ̂
2a
i ⊗ σ̂2b

i

+ λ
∑

i=x,y,z

σ̂1
i ⊗ σ̂2a

i + σ̂1
i ⊗ σ̂2b

i + σ̂2a
i ⊗ σ̂3

i + σ̂2b
i ⊗ σ̂3

i (4.1)
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4. Parallel Quantum Ma
hine Cir
uitsIn the 
ourse of this 
hapter several dynami
al driving s
enarios are 
onsidered. Thegas spins may either be driven in-phase (see Se
. 4.2) or with a relative phase shift(Se
. 4.3). In both 
ases they are mutually un
oupled by default (λ1 = 0).The e�e
ts of a strong 
oupling between the gas spins (λ1 6= 0) are investigated inSe
. 4.2.2. Finally, the dependen
e of the pro
ess 
hara
teristi
s on the driving frequen
y
ω is dis
ussed in Se
. 4.2.1.4.1. Stati
 Heat Current S
enarioBefore investigating the mentioned dynami
 quantum ma
hine s
enarios, the stati
 heat
urrent behavior in the parallel four-spin 
ir
uit has to be analyzed in order to verifywhether the statements 
ited in Se
. 2.5.3 also hold in this 
ase, even if a a di�erentbehavior 
ompared to a linear spin 
hain setup is not expe
ted. In parti
ular, thedependen
e of the heat 
urrents on the lo
al energy gaps in terms of spin 
hain resonan
eis of interest. In the following, 
orresponding numeri
al examinations are performedqualitatively by means of 
on
rete examples.First, the lo
al energy gaps of the bath 
onta
t spins are 
hosen ∆E1 = ∆E3 = 1.0,and the bath temperatures are Th = 2.63 and Tc = 2.5, whereas the splittings of themiddle spins, ∆E2a and ∆E2b are simultaneously varied.The resulting stationary heat 
urrents J4

h from the hot bath into the system and J4
cfrom the system into the 
old bath are 
al
ulated with the help of (2.78) and depi
tedin Fig. 4.2. Both approa
h zero for a strong detuning and rea
h their respe
tive maximaat overall resonan
e where ∆E2a = ∆E2b = 1.0, in analogy to the explanations given inSe
. 2.5.3. As expe
ted, the relation Jc = −Jh is ful�lled anytime.For reasons of 
omparison, Fig. 4.2 also shows the developing of the 
orrespondingheat 
urrents J3

h and J3
c in a three-spin 
hain in dependen
e of the detuning of the middlespin, 
f. [16℄.In a �rst order approximation both systems obviously exhibit the same stationaryheat 
urrent 
hara
teristi
s. Hen
e one may 
on
lude that the bath 
onta
t spins 1 and3 a
t as �lters only allowing for a limited heat throughput whi
h does not predominantlydepend on the internal 
on�guration of the spin system, the more so as the system-bath
oupling strength remains un
hanged. Sin
e there are no heat sinks or sour
es within thesystem, the heat 
urrent is 
onserved. Thus, depending on the spin 
hain resistan
e interms of the detuning of ∆E2a,2b, the heat 
urrent Jh splits up into two partial 
urrentsrunning through the "bran
h" spins 2a and 2b [41℄.At this point analogies to ele
tri
 
urrent and the Kir
hho� node rule for ele
tri

ir
uits 
an be dedu
ed, 
omparing the former to heat 
urrent and the spins in a spin
hain to resistan
es in a parallel ele
tri
 
ir
uit, the more so as ele
tri
al 
urrent is
onserved as well and would thus split up into partial 
urrents at a bran
hing point,depending on the strength of the resistan
es in the bran
hes.The small but not negligible dis
repan
ies between both 
urves in Fig. 4.2 result fromthe di�erent forming of 
orrelations, 
omparing the simpler geometry of a three-spin
hain to the more 
omplex one in a paralleled spin 
hain. Correlations su
h as entangle-32
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enarioPSfrag repla
ements
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Figure 4.2.: Stati
 heat 
urrents J4
h,c through the parallel four-spin 
ir
uit as fun
tionsof the variation of ∆E2a and ∆E2b, 
ompared to the 
urrents J3

h,c througha 3-spin 
hain as fun
tion of the energy splitting ∆E2 of the middle spin.ment typi
ally arise in anti-ferromagneti
 Heisenberg 
hains at low temperatures. Theirmagnitude 
ru
ially depends on temperature as well as on the lo
al magneti
 �elds. Thisis shown e. g. in [35℄ with the help of the Bures distan
e measure given in (2.35).A 
on
rete example for the relationship between the heat 
urrent and 
orrelationsin the parallel four-spin 
ir
uit is shown in Fig. 4.3. Here only ∆E2a is varied while
∆E2b = 1.0 remains 
onstant and ∆E1 = ∆E3 = 1.0 as above. Over a wide range ofdetuning the stationary heat 
urrent J2a

h takes the maximal resonan
e value of J3
h foundfor the three-spin 
hain, whereas for ∆E2a = 1.0 = ∆E2b the maximum 
urrent of J4

hfound in the four-spin 
ir
uit for overall resonan
e is a
hieved, 
f. Fig. 4.2. The analogholds for J2a
c = −J2a

h , omitted here.Obviously, in the 
ase only one of the middle spins is strongly detuned, all heattransport would obviously happen via the other one being in resonan
e with the bathspins, sin
e the total 
urrent approximately equals that through a three-spin 
hain, 
f.Fig. 4.2. On
e again this resembles very mu
h the behavior of ele
tri
al 
urrent in aparallel 
ir
uit with two bran
hes, say. If one bran
h featured a high resistan
e whilethe resistan
e of the other bran
h was low, the major amount of ele
tri
al 
urrent wouldrun through the latter.Comparing J2a
h to the Bures distan
e measure for the parallel four-spin 
ir
uit (
f. (2.35)),

D2 = Tr
{
(ˆ̺S − (ˆ̺1 ⊗ ˆ̺2 ⊗ ˆ̺3 ⊗ ˆ̺4))

2} 33
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4.2. Dynami
ally Driven Parallel Four-Spin Cir
uityields that both qualitatively exhibit the same 
hara
teristi
s. Thus, Fig. 4.3 revealsagain that the di�eren
e in heat 
ondu
tivity between the three-spin 
hain and thefour-spin 
ir
uit is asso
iated with the di�ering forming of 
orrelations in both systems.It must be noted that at present neither the e�e
ts of 
lassi
al nor quantum 
orre-lations on the treated non-equilibrium s
enarios are in
luded in the model des
riptionon a quantitative level yet. A promising ansatz for this purpose is given in [43℄, linkingheat 
urrents in a spin 
hain to entanglement, whi
h in turn is a fun
tion of the globaltemperature gradient and the lo
al spin energy splittings.In analogy to Se
. 2.5.3 all spins in the parallel 
ir
uit are always found in lo
alequilibrium states and thus exhibit lo
al temperatures. The validity of Fourier's lawfor the present s
enario is again veri�ed qualitatively by exemplarily 
hoosing the bathtemperatures as Th = 3.3 and Tc = 2.5, the lo
al energy gaps of the bath spins as
∆E1 = ∆E3 = 1.0 and the 
oupling parameters as λ = 0.01 and κ = 0.001. Fig. 4.4shows that an internal linear temperature gradient is found in the system, depending onthe detuning of ∆E2a,2b. In all 
ases The temperatures of spins 2a and 2b are both foundat about the same value and 
lose to the average temperature T2a,2b ≃ 2.9 = 1

2
(Th +Tc).A stronger detuning of both spins, e. g. ∆E2a = ∆E2b = 1.3 
ompensates the internal
oupling strength in the spin 
hain. The bath 
onta
t spins 1 and 3 thus approa
h therespe
tive bath temperatures Th,c but are shifted to slightly higher values (dashed line).The external and internal temperature gradients approximately 
oin
ide as it would bethe 
ase for a weaker internal 
oupling strength, e. g. λ = 0.001. Following Fig. 4.2 the
orresponding stationary heat 
urrent is very small. Referen
e is made here to [35℄.On the other hand, if all spins are resonantly split, ∆E2b = ∆E2a = 1.0 the internaltemperature gradient is �atter (solid line) due to the stronger internal 
oupling, 
omingalong with strong heat 
urrents.All in all, it has be
ome evident that, as general property of spin 
hain systems betweentwo heat baths, the bath 
onta
t spins a
t as �lters limiting the heat 
urrent throughthe 
hain. In a �rst order approximation the heat 
urrents do not depend on the internal
on�guration of the spin system. This limitation will 
ome up again in the followingse
tions, presenting numeri
al results of the dynami
ally driven parallel four-spin 
ir
uit.4.2. Dynami
ally Driven Parallel Four-Spin Cir
uitThis se
tion deals with the s
enario of driving the four-spin 
ir
uit depi
ted in Fig. 4.1dynami
ally by modulating the middle spins 2a and 2b periodi
ally in time. The moti-vation hereof is to demonstrate that both driven spins run a Quantum Otto 
y
le ea
h,
orresponding to the 
y
le steps listed in Se
. 3.2.2, and to draw 
omparisons to thethree-spin ma
hine 
y
le.In the following, spins 2a and 2b are sinusoidally modulated with a frequen
y ω =

1/128 and zero relative phase (ϕ = 0). Initially they are un
oupled (λ1 = 0). Again the
old reservoir temperature is set 
onstant, Tc = 1/βc = 2.5 while Th is varied. The lo
alspin energy gaps are 
hosen as ∆E1 = 2.25, ∆E2a(t) = ∆E2b(t) = 2.0 + 0.25 sinωt and35



4. Parallel Quantum Ma
hine Cir
uits
∆E1 (hot bath) ∆E3 (
old bath) ω Th Tc λ κ2.25 1.75 1/128 2.5 - 5.0 2.5 0.01 0.001Table 4.1.: Standard parameters for the quantum ma
hine setups in the present work,given in units of lo
al energy splittings ∆E

∆E3 = 1.75, ful�lling the resonan
e 
ondition
∆E1 ≥ ∆E2a,2b(t) ≥ ∆E3 .It be
omes 
lear that both spins indeed perform Quantum Otto 
y
les with 
onse
utiveiso
hori
 and adiabati
 steps, see Se
. 3.2.1 and Se
. 3.2.2. During the iso
hores thedriven spins simultaneously 
ome into resonan
e with the same bath spin, resulting in aheat �ux between the system and the respe
tive bath. In between, during the adiabats,the lo
al energy gaps of the gas spins are modulated and thus brought out of resonan
ewith the bath spins why heat 
urrents are negligibly small. In the following this behaviorwill be substantiated by numeri
al simulations.Table 4.1 lists some standard parameters whi
h from now on will be used for thevarious models treated this work if not mentioned otherwise.Fig. 4.5 shows the heat 
urrents Jh < 0 and Jc > 0, obtained via (2.78) for the 
asethe dynami
ally driven parallel 
ir
uit works as heat pump. The numbers 1 to 4 denotethe four 
y
le steps, 
f. Se
. 3.2.2. Heat transfer between the system and the hot and
old bath o

urs during the iso
hori
 steps 1 and 3, respe
tively, while steps 2 and 4 areadiabats.A major di�eren
e to the idealized s
enario with arti�
ial de
oupling des
ribed inSe
. 3.3.1 arises in the symmetri
 shape of the 
urrents. The reason hereof is a leakage
urrent JL �oating from the hot to the 
old bath. Due to the permanent 
oupling betweenthe driven and bath spins a un
ontrollable ba
k-�ow of heat 
urrent within the spin 
haino

urs during the iso
hori
 steps, 
ausing a leakage heat transfer of QL =

∮ τ

0
JLdt per
y
le. In all models treated in this work we 
onsider a net 
urrent balan
e, i. e. JL isalways in
luded in the total heat 
urrents.As a 
onsequen
e, the net heat 
urrents are smaller in magnitude and de
ay to zeromu
h faster than seen in Fig. 3.4 for the arti�
ial de
oupling s
enario sin
e a 
onsiderableamount of heat �oats ba
k into the dire
tion of the internal temperature gradient in anun
ontrolled manner whereas, in the 
ase of a heat pump, heat is to be transported intothe opposite dire
tion.On the one hand, leakage is responsible for redu
ed heat transport whi
h also meansless work to be applied or released. For this reason, the absolute values and therewiththe in
linations of the heat and work fun
tions depending on the global temperaturegradient are de
reased as seen later on. On the other hand, additional work has to beapplied to the driven spins in order to 
ompensate losses. Sin
e this work is e�e
tivelydissipated, the dynami
ally driven Quantum Otto 
y
le is an irreversible pro
ess la
k offull 
he
k on the 
y
le steps.36



4.2. Dynami
ally Driven Parallel Four-Spin Cir
uitIn parti
ular, the presen
e of losses is indi
ated by the dips observed in the ST -diagrams of the driven spins 2a and 2b. These are depi
ted in Fig. 4.6 for the 
ases the
ir
uit runs as heat pump and heat engine, respe
tively, where the temperatures T2a and
T2b are obtained with (2.73) and the entropies S2a and S2b with (2.70). At the end ofthe iso
hori
 steps, heat evidently �ows into the dire
tion of the temperature gradientin the system. Thus, losses are espe
ially profound in the 
ase of a heat pump sin
e,based on the dip size, more work performan
e is lost.In Fig. 4.6 only one 
orresponding ST -diagram is shown for both gas spins. Sin
e themodulation is symmetri
al, it is found that both run the same thermodynami
 
y
le,that is, they both re
eive and deliver one half of the total of heat 
urrent and thus exertor 
onsume the same amount of work ∆W2a = ∆W2b, adding up to the total systemwork ∆Wtot. This is indi
ated in Figs. 4.9 and 4.10.As a 
onsequen
e, the e�
ien
ies of the entire 
ir
uit and those of the single drivenunits are all identi
al, ηtoten/p = η2aen/p = η2ben/p.Another interesting aspe
t arises from the �ltering nature of the bath spins, mentionedin Se
. 4.1, and from the des
ription of the ideal Quantum Otto 
y
le in Se
. 3.3. Hen
ethe 
hara
teristi
 system properties su
h as 
riti
al temperature gradient, heat, workand e�
ien
ies should basi
ally be governed by the bath temperatures and the lo
alenergy gaps of the bath spin splittings and not predominantly depend on the internalspin 
hain 
on�guration. In parti
ular, the ideal Quantum Otto e�
ien
ies given byEq. (3.18) take the same values for the parallel four-spin 
ir
uit as for a linear 
hain.The heat pump and heat engine e�
ien
ies of the dynami
ally driven parallel four-spin 
ir
uit are obtained via Eq. (3.7) and depi
ted in Fig. 4.7 as fun
tions of thetemperature gradient ∆T = Th − Tc, together with the Carnot e�
ien
ies. Fig. 4.9shows the related heat ∆Qh and ∆Qc, obtained by (3.5), the lo
al work ∆W2a and
∆W2b of the single driven units 2a and 2b, obtained via (3.4) and, �nally, the total
ir
uit work ∆Wtot = ∆W2a + ∆W2b. Fig. 4.10 is a zoom into the same.The 
riti
al temperature gradient lies at ∆T
rit = 0.63, being smaller than the idealvalue of ∆T id
rit = 0.714 obtained with (3.21). Here the ma
hine is idle, ∆Wtot = ∆W2a =
∆W2b = 0 and likewise the stationary 
ase only a leakage 
urrent JL and thus a sta-tionary heat transport ∆QL = ∆Qh = −∆Qc remain. Moreover, the engine and pumpe�
ien
ies are always inferior to the respe
tive Carnot bounds and de
ay to zero onapproa
h to ∆T
rit. For ∆T → 0 the heat pump e�
ien
y ηp does not diverge sin
easymmetry within the system persists, introdu
ed by the inhomogeneous spin 
hainsplitting.Following Fig. 4.10, ∆Qc 
hanges sign before ∆Qh does, whi
h is due to leakage.In the region where ∆Qh and ∆Wtot are both positive, all work input is dissipated to
ompensate losses.In Fig. 4.8 the e�
ien
ies of the dynami
ally driven 
ir
uit are 
ompared to those of anideal Quantum Otto 
y
le whi
h after (3.18) take the values ηOttop = 4.5 and ηOttoen = 0.222for the bath spin energy splittings being ∆E1 = 2.25 and ∆E3 = 1.75. Although thelatter are supposed to be upper bounds, the dynami
al heat pump e�
ien
y ηp mayobviously ex
eed ηOttop for small ∆T . Apparently the attribute `ideal' must be handled
arefully with regard to the Quantum Otto 
y
le. 37
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4.2. Dynami
ally Driven Parallel Four-Spin Cir
uitThe losses underlying the des
ribed deviations from the behavior originally expe
tedfor a Quantum Otto 
y
le may be introdu
ed from a phenomenologi
al point of view [16℄.Here the gas spins are assumed to approa
h a thermal state whi
h is not in a

ordan
ewith the respe
tive bath temperatures. By 
onsequen
e ∆Qh and ∆Qc are de
reased.On the other hand also less work is done, whi
h explains the possibility that ηqmp mayex
eed ηOttoen . In general, these losses are asymmetri
 sin
e they are always dire
tedtowards the temperature gradient in the system. This feature �nally makes the heatpump and engine e�
ien
ies vanish on approa
hing ∆T
rit whi
h usually is inferior to
∆T th
rit. Thus, e�e
tively, the emergen
e of the engine fun
tion is favored.Comparing the numeri
ally found properties of the parallel four-spin 
ir
uit to thoseof the linear three-spin ma
hine [15, 16℄, one �nds good a

ordan
e. Thus, in �rst orderapproximation it is feasible to map both models on ea
h other in that both systems runequivalent Quantum Otto 
y
les and exhibit the same 
hara
teristi
s provided the bathtemperatures and the energy gaps of the bath spins are identi
ally 
hosen.Though, dis
repan
ies between the di�erent systems remain whi
h are unexplainedyet. In order to obtain a more 
onvenient theoreti
al des
ription it will be
ome ne
essaryto in
lude the e�e
ts of 
orrelations on the heat 
urrents 
f. [43℄.In parti
ular, it is presumably inappropriate to assume ideal heat ex
hange under per-fe
t 
onta
t equilibrium if two spins are 
oupled in parallel to a third one. As mentionedalready in Se
. 4.1, in the 
ase of a spin "ladder" 
orrelations will form in a di�erentmanner than in a simple spin 
hain. Nevertheless, 
onta
t equilibrium does develop upto a 
ertain degree, that is why the ma
hine �nally works.4.2.1. Impa
t of the Driving Frequen
yAs sket
hed in Se
. 3.2.3, our quantum ma
hine 
ir
uits run on �nite time s
ales. In
ontrast to an ideal 
lassi
al pro
ess the work turns zero in the quasi-stati
 limit (ω → 0),
orresponding to the stationary s
enario des
ribed in Se
. 4.1. On the other hand,following 
ondition (3.12) a too fast driving speed (ω → ∞) would also lead to a break-down sin
e the dynami
al times
ale of the system would then approa
h that of the baths,inhibiting su�
ient damping.In the following the dependen
e of some heat pump and the heat engine 
hara
teristi
son the driving frequen
y ω are dis
ussed by means of the parallel four-spin 
ir
uit withthe gas spins driven in-phase. We 
hoose the temperature gradients as ∆T = 0.13 and
∆T = 1.5, respe
tively, and leave all other parameters as listed in table 4.1.Fig. 4.11 shows the work ∆W en released by the engine and the heat ∆Qp

h transportedto the hot reservoir by the pump. Both absolute values 
ease for slow and very fastdriving frequen
ies and show a relative maximum around ω ≃ 1/2000. It remains yetun
lear down to what speed the ma
hine 
an be run before the quasi-stati
 limit isrea
hed. A 
orresponding long enough periodi
 time τ = 2π/ω has not even beenrea
hed for a lower-dimensional three-spin ma
hine [41℄, 
onsuming by far less numeri
alruntime.In Fig. 4.12 the e�
ien
ies of the heat engine and heat pump are depi
ted as fun
-tions of ω. While ηen de
ays quasi-monotoni
ally with de
reasing ω, ηp exhibits a max-41
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4.2. Dynami
ally Driven Parallel Four-Spin Cir
uitPSfrag repla
ements
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h as fun
tions of ωimum plateau starting at ω ≃ 10−2 where also work and heat are still su�
iently large(
f. Fig. 4.11). This justi�es the 
hoi
e of ω = 1/128 as driving frequen
y if the othersystem parameters are 
omparably sele
ted.The power 
hara
teristi
s is given in Fig. 4.13. For the engine, power is de�ned as
Pen = −∆W enω, for the heat pump pp = −∆Qp

hω. In both 
ases the power de
reasesmonotoni
ally with ω. From an e
onomi
 point of view a higher driving frequen
y inagreement with (3.12) is thus favorable for the engine, whereas the heat pump shouldbe operated at lower speed to redu
e work input, 
f. Fig. 4.12.Beyond this qualitative analysis it would be favorable to know the e�
ien
y of theendoreversible Quantum Otto 
y
le at maximum power output rather than trying allpossible sets of parameters. In other words, we are looking for an expression analogto the Curzon-Ahlborn e�
ien
y (2.1.3) in the 
ase of a Carnot 
y
le. Although a
orresponding relationship is not yet available, it supposedly would have to depend fromthe bath 
onta
t energy splittings as well as from the bath temperatures.4.2.2. Driven Spin Pair with Mutual CouplingIn this se
tion we dis
uss the impa
ts of 
oupling the driven spins in the parallel four-spin 
ir
uit by means of a 
oupling 
onstant λ1. Otherwise the 
ir
uit is equivalent tothat of Se
. 4.2, using the standard parameters from Tab. 4.1. The gas spins are drivenin-phase, i. e. ϕ = 0.As a 
onsequen
e, heat is now transported by a pair of spins labeled 2ab whi
h, due tothe mutual 
oupling, is found in a 
anoni
al state as a whole and 
an thus be assigned alo
al spin group temperature T2ab, to be 
al
ulated by the �tting routine TempFit [44℄43
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iand the redu
ed state ˆ̺2ab.It turns out that, for rather weak 
oupling (λ1 = λ = 0.01) the 
anoni
al temperature
T2ab is equivalent to the lo
al spin temperatures T2a and T2b obtained via (2.73).Setting λ1 = 0.1 
hanges the situation drasti
ally, though. Now, the lo
al tempera-tures of the single spins are higher than the spin pair temperature, i. e. T2a = T2b > T2ab,to be observed in Fig. 4.15. This behavior is plausible due to the explanations in 2.4.2,a

ording to whi
h the lo
al temperature of a spin or group of spins is des
riptive onlyin the 
ase of weak intera
tion with neighbored groups, say λ = 0.01. Else 
orrelationsmake lo
al entropies in
rease, why lo
al temperatures are no longer intensive.Fig. 4.16 shows the ST -diagrams of the spin pair 2ab running its own thermodynami

y
le as heat pump or heat engine, where T2ab is obtained as des
ribed above and S2abresults from (2.29). At the same time the single spins 2a and 2b still run their individual
y
les, 
f. Se
. 4.2. The dependen
ies of heat, work and e�
ien
ies on ∆T turn out tobe the same as for the un
oupled 
ase where λ1 = 0. Despite of the presen
e of strong
orrelations between the driven spins, it is found that the work performed by the singlegas spins simply adds up to that of the spin pair, ∆W2a + ∆W2b ≃ ∆W2ab as shown inFig. 4.14. Hen
e the in
rease in lo
al temperatures and entropies 
aused by 
orrelationsonly leads to an approximately 
onstant o�set in the ST -diagrams whi
h rules out onintegration.Summarizing, this s
enario is rather equivalent to the un
oupled 
ase and obviouslydoes not furnish any improvement, whi
h one 
ould have assumed be
ause of the internalsymmetry. 45



4. Parallel Quantum Ma
hine Cir
uits4.3. Driving with Relative Phase ShiftIn Se
. 4.2 it was dis
ussed that driving the gas spins in the parallel four-spin 
ir
uitwith zero relative phase would yield the same result as for a 
omparable three-spinma
hine, i. e. no improvement 
ould be a
hieved by an additional spin due to the�ltering fun
tion of the bath spins determining the system. It shows, however, that this
an be 
ir
umvented by introdu
ing a relative phase shift ϕ 6= 0 into the modulation ofthe gas spin energy gaps.In this se
tion the impli
ations hereof are investigated by means of a relative phase
ϕ = π. The modulation fun
tions of the energy gaps be
ome ∆E2a(t) = 2.0+0.25 cosωtand ∆E2b(t) = 2.0−0.25 cosωt. Hen
e both driven spins alternately 
ome into resonan
ewith the bath spins and therefore re
eive the "full" heat quantity per period as it wouldalso be the 
ase for a three-spin ma
hine. For that reason the model 
an be interpretedas 
ombination of two independent three-spin ma
hines rather than as parallel 
ir
uit.In the following this feature and its 
onsequen
es are demonstrated numeri
ally.Fig. 4.19 displays the heat 
urrents for the 
ase the entire system works as heat pump.Sin
e heat is transferred between the system and ea
h heat bath twi
e per period, both
urrent 
urves now exhibit two peaks, ea
h with about the same magnitude as if thegas spins were driven in-phase. In a

ordan
e, both ST -diagrams given in Fig. 4.17approximately 
omprehend twi
e the shape 
ompared to Fig. 4.6. Hen
e ea
h drivenspin transports about the double heat quantity and also performs the double of work perperiod sin
e the modulation is still uniform. The os
illations observed in both diagramsresult from transitions in the spin system indu
ed by the baths during the adiabats dueto the permanent system-bath 
oupling.Correspondingly, one would expe
t the total work and heat per period to s
ale byabout fa
tor two, 
ompared to the three-spin ma
hine and the four-spin 
ir
uit drivenin-phase. This behavior is indeed 
on�rmed by Fig. 4.21 and Fig. 4.22. Ea
h of the spins
oupled in parallel now transports about the same amount of heat and exerts or 
onsumesthe same work per period than the single driven spin in a three-spin ma
hine would do.Thus, the heat engine power output P = ∆W/τ = ∆Wω/2π is also doubled, makingthe parallel four-spin 
ir
uit with phase-shifted modulation about twi
e as good as athree-spin ma
hine. However, in a possible experimental setup this would inevitably
ombined with higher e�ort as two external modulation �elds within a narrow rangewould be needed.As a further 
onsequen
e, Fig. 4.20 shows that the engine and heat pump e�
ien
iesfor phase-shifted driving qualitatively show the same 
hara
teristi
s 
ompared to in-phase driving, ex
ept the 
riti
al temperature gradient is marginally shifted to ∆T
rit =
0.675.It must be noted that the found s
aling behavior of heat and work by fa
tor two isnot exa
t. The deviations hereof may again be tra
ed ba
k to 
orrelations. In Se
. 4.1 itwas shown that the stationary heat 
urrents de
rease for a spin "ladder" 
on�gurationat overall resonan
e, 
ompared to the 
ase where only one spin is detuned. Althoughthis behavior 
annot be simply mapped one-to-one to the present dynami
al s
enario,analogies do exist.46
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4. Parallel Quantum Ma
hine Cir
uitsIf the gas spins are driven with relative phase-shift and alternately ex
hange heatwith the reservoirs, the heat 
urrent �ux through the system and thus heat and workare more than only doubled, 
ompared to the 
ase where both gas spins are driven in-phase. This 
an be interpreted as a 
onsequen
e from the stati
 s
enario and is 
on�rmedby 
omparing the respe
tive heat 
urrents for the 
ases the gas spins are either drivenin-phase (Fig. 4.5) or with relative phase shift (Fig. 4.19).Moreover, the respe
tive Bures measures for both 
ases plotted in Fig. 4.18 over oneperiod yield the double amount of 
orrelations for driving with phase-shift. They alsotra
e the os
illations resulting from bath-indu
ed transitions and being more distin
tivefor phase-shifted driving.At this point a 
lear relationship between heat 
urrents on the one hand and thespin 
hain geometry and 
orrelations on the other hand appears, where, in 
omparison,the latter are linked to di�erent 
ondu
tivities for both driving s
enarios. So far ananalyti
al des
ription hereof is not available, but a promising ansatz is provided by [43℄.
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5. Serial Quantum Ma
hine Cir
uitsIn this 
hapter the interest is pointed at serial quantum ma
hine 
ir
uits, that is, severalma
hine units su
h as dis
ussed in Se
. 3.2.1 shall be 
onne
ted in series in order to obtaina linear ma
hine 
hain with more than one driven spin. For 
omputational reasons werestri
t ourselves to 
ompounds of two serially 
onne
ted units. As displayed in Fig. 5.1our model 
onsists of a 
hain of �ve Heisenberg-
oupled, inhomogeneously split spinsbetween two heat baths, two of whi
h are driven. The system Hamiltonian is that ofthe Heisenberg spin 
hain, given by extending (3.8) to �ve spins.Based on numeri
al simulations it shall be pointed out that ea
h of the subunits Aand B and thus the 
ir
uit as a whole run a Quantum Otto 
y
le for given resonan
e
onditions between adja
ent spins. Similarly the other models investigated so far, the
y
le 
hara
teristi
s su
h as work, heat et
. mainly depend on the lo
al energy gaps andtemperatures of the outermost spins in the 
hain lo
ally 
oupled to the baths. Dependingon their respe
tive 
anoni
al distributions, the entire 
ir
uit either works as heat engineor as heat pump. As it will turn out, the lo
al working mode of units A and B areglobally determined as well.5.1. Cir
uit of Oppositely Dire
ted QuantumMa
hinesWe 
onsider �rst the spin 
hain setup depi
ted in Fig. 5.1. Due to the parti
ular internalenergeti
 geometry of this model, spins A and B are expe
ted to run oppositely dire
ted
y
les, i. e. one works as heat pump while the other runs as heat engine. In this 
ontexta parti
ular role devolves to spin 3 in the middle. Imagine that, if the lo
al energy gapsof spins 2 and 4 are de
reased during an adiabati
 step, their temperatures T2 and T4are lowered also unless they arrive in resonan
e with spin 3. With regard to a systemattra
tor state it is therefore plausible that spin 3 is found at a lower temperature thanthe baths, i. e. T3 < Tc < Th. Provided that both units run ideal Quantum Otto 
y
les,the temperature T3 
orresponds to the average 
anoni
al distribution out of those ofthe bath spins. These exhibit the same temperatures as the baths they are 
oupled to,respe
tively.For this reason it is justi�ed to 
onsider spin 3 as a �nite e�e
tive 
old bath via whi
hunits A and B ex
hange heat. Although it 
ertainly has nothing in 
ommon with anin�nite heat reservoir, i. e. is not a heat sour
e or sink, spin 3 nevertheless a
ts asenvironment, shielding the hot reservoir from unit B and the 
old reservoir from unit A.Due to the tapered internal temperature gradients resulting hereof, the 
y
les performedby the gas spins 2 and 4 are indeed of opposite dire
tion. 51



5. Serial Quantum Ma
hine Cir
uits
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ir
uit of two quantum ma
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tively. Symbol nota-tions are same as above.Be
ause of energy 
onservation, the heat 
urrent entering the e�e
tive bath from oneside must re-emerge on the other side. In parti
ular, the Gibbs relation for the entire
ir
uit, ∆Qh+∆Qc+WA+WB is always ful�lled, whereWi is the work done or 
onsumedby unit i.The bath 
onta
t spins 1 and 5 and the 
entral spin 3 feature 
onstant energy split-tings, here 
hosen as ∆E1 = 2.25,∆E3 = 1.25 and ∆E5 = 1.75 while spins 2 and 4 areboth sinusoidally driven with ω = 1/128. All other parameters are as listed in Tab. 4.1.The resonan
e 
onditions for the driven spins are ful�lled a

ording to
∆E1 ≥ ∆E2(t) = 1.75 + 0.5 sinωt ≥ ∆E3 and
∆E3 ≤ ∆E4(t) = 1.5 + 0.25 sinωt ≤ ∆E5 .For the 
ase the serial 
ir
uit works as heat pump and transports heat from the 
oldto the hot bath, the Quantum Otto 
y
le steps shall be re
apitulated in analogy toSe
. 3.2.2:1. Iso
hori
 step: Spins 2 and 4 are in resonan
e with spin 3. A heat 
urrent �owsfrom spin 4 to spin 2 until lo
al equilibrium is rea
hed. The work is zero sin
e thespe
trum is not deformed.2. Adiabati
 step: The energy gaps of the driven spins are in
reased, both 
arrying thesame average o

upation as spin 3. During this step work is released. Heat 
urrentsbetween the system and the baths as well as inside the system are negligible.3. Iso
hori
 step: Spins 2 and 4 are in resonant 
onta
t with the bath spins 1 and 5,resulting in heat 
urrents Jc > 0 and Jh < 0 from the 
old bath into the systemand from the system into the hot bath, respe
tively. Again no work is applied orreleased.52



5.1. Cir
uit of Oppositely Dire
ted Quantum Ma
hines4. Adiabati
 step: The lo
al energy gaps of spins 2 and 4 are de
reased with 
onstanto

upation probabilities, that is, work has to be applied while heat 
urrents aresuppressed.5.1.1. Serial Cir
uit E�
ien
iesIn the serial Quantum Otto 
ir
uit both subunits A,B exhibit lo
al e�
ien
ies as theye�e
tively transport heat between two heat reservoirs ea
h. Let now the entire 
ir
uitwork as heat engine with net transport from the hot to the 
old reservoir. Then, duringone period the heat quantity ∆Qh > 0 �ows from the hot reservoir into subunit A,working as heat engine between the hot reservoir and the 
old e�e
tive bath spin 3.Thus, an amount of work ∆WA < 0 is released and, via the e�e
tive bath, the heatquantity ∆Q∗ = ∆Qh − ∆WA rea
hes subsystem B working as heat pump. Here theamount of work ∆WB > 0 has to be reinvested to transport the heat ∆Qc < 0 to the
old bath, a

ording to our sign 
onventions. The lo
al engine e�
ien
ies then yield,a

ording to (3.7),
ηenA = −WA/Qh > 0

ηenB = −WB/(Qh +WA) ≡ −WB/(−Qc +WB) < 0Note that, sin
e subsystem B works as heat pump, it is assigned a negative enginee�
ien
y be
ause we are interested in the engine e�
ien
y of the entire 
ir
uit. Asexpe
ted, with (2.12) the global engine e�
ien
y be
omes
ηentot = −(WA +WB)/Qh (> 0)and, for a heat pump, ηptot = −Qh/(WA +WB).The ideal Quantum Otto e�
ien
y for the serial heat pump/engine 
ir
uit is obtainedsimilarly. If we assume perfe
tly 
ontrolled 
y
le steps and energy 
onservation withregard to heat transport through spin 3, the heat 
urrent from spin 2 to spin 4 mustsatisfy

J2→3 = −J3→4 (5.1)or, a

ording to Eq. (3.17),
∆E3

2

(

tanh
∆E1

2Th
− tanh

∆E3

2T3

)

=
∆E3

2

(

tanh
∆E3

2T3
− tanh

∆E5

2Tc

)

. (5.2)Compared to (2.72) this leads to a normalized average energy expe
tation value 〈E∗
3〉
onstant in time,

1

∆E3
〈E∗

3〉 = tanh
∆E3

2T3
=

1

2

(

tanh
∆E1

2Th
+ tanh

∆E5

2Tc

) (5.3)and hen
e to the average temperature
T ∗

3 = ∆E3

[

2 arctanh
[1

2
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tanh
∆E1

2Th
+ tanh

∆E5

2Tc

)]
]−1 (5.4)53



5. Serial Quantum Ma
hine Cir
uitsWith the help of (5.3) the ideal Quantum Otto e�
ien
ies of the heat engine and heatpump for units A and B be
ome, in analogy to Se
. 3.3,
ηOttoen,A = 1 − ∆E3

∆E1
= 0.444 ηOttop,A =

∆E1

∆E1 − ∆E3
= 2.25

ηOttoen,B = 1 − ∆E3

∆E5
= 0.286 ηOttop,B =

∆E5

∆E5 − ∆E3
= 3.5

(5.5)where the values of the ∆Ei from Se
. 5.1 have been inserted.The ideal Quantum Otto e�
ien
ies for the entire serial 
ir
uit are obtained withEq. (2.12),
ηOttoen = 1 − ∆E5

∆E1

= 4.5 ηOttop =
∆E1

∆E1 − ∆E5

= 0.22 (5.6)It is remarkable that these expressions only depend on the energy splittings of the bathspins but not of ∆E3. The same holds for the 
riti
al temperature gradient, taking againthe value ∆T id
rit = 0.714 after (3.21).These 
riteria may be 
he
ked for 
omparing di�erent quantum ma
hine models fea-turing the same boundary 
on�gurations. As it will get 
lear below, this manner ofdes
ription partially fails to des
ribe dynami
 s
enarios in some serial 
ir
uit setups andhas to be improved.5.1.2. Dynami
 engine-pump s
enarioNow the serial �ve-spin 
ir
uit presented in the previous two se
tions shall be run dy-nami
ally, using the listed parameters. In the following, the results of 
orrespondingnumeri
al 
al
ulations are presented.For the 
ase the entire system works as heat pump, the heat 
urrents are shown inFig. 5.2. Relating to the 
y
le steps des
ribed in Se
. 5.1, the visible 
urrent peaksrepresent heat transfer between the 
ir
uit and the hot and 
old reservoir during these
ond iso
hori
 step. On the other hand, internal heat transfer is not resolved sin
eit is not 
onsidered in (2.78). The 
urrent peaks are not of equal height due to theasymmetri
 energeti
 geometry set by the lo
al energy gaps. Further on they are ofweaker magnitude 
ompared to 
orresponding three- and four-spin ma
hine 
y
les. Firstof all this is due to the spin 
hain �resistan
e� whi
h is expe
ted to in
rease with ea
hspin added and the more di�erent frequen
ies are present in the system [41℄. Se
ondly,as will be revealed further on, the lo
al energy gap and the temperature of the e�e
tivebath spin 3 are de
isive here.After heat transfer between the system and the reservoirs, os
illations o

ur whi
h
an again redu
ed to bath-indu
ed transitions. This e�e
t is also visible on the adiabatsin the ST -diagrams depi
ted in Fig. 5.4. As anti
ipated, spins 2 and 4 work as heatpump and heat engine, respe
tively, both running Quantum Otto 
y
les 
orrespondingto the 
y
le steps in Se
. 5.1, while the entire 
ir
uit pumps heat from the 
old to thehot reservoir. Likewise before, the 
hara
teristi
 dips in the ST -diagrams indi
ate the54



5.1. Cir
uit of Oppositely Dire
ted Quantum Ma
hinesemergen
e of leakage 
urrents. While the large dips represent losses o

urring during thebath 
onta
ts, the small ones indi
ate the presen
e of internal losses during the drivenspins ex
hange heat via the e�e
tive bath spin.Fig. 5.3 shows the serial 
ir
uit e�
ien
ies ηen/p of the heat engine and heat pump aswell as the respe
tive Quantum Otto e�
ien
ies ηOttoen/p , both as fun
tions of the globaltemperature gradient ∆T . Like for 
omparable three- and four-spin ma
hines the 
orre-sponding Carnot e�
ien
ies ηCaren/p are never ex
eeded. As expe
ted, the 
hara
teristi
sof ηen/p are similar as for di�erent models with identi
al bath spin 
on�gurations. Minordi�eren
es arise in that the heat pump e�
ien
y is signi�
antly smaller whereas theengine e�
ien
y rea
hes higher values. The reason hereof is found in Fig. 5.5 showingthe heat ∆Qh,c, the global 
ir
uit work ∆Wtot and the lo
al subunit work ∆WA,B. Whilethe quantity of work 
onsumed or exhausted per 
y
le remains in the same range 
om-pared to other similar models, the heat transfer between the system and the reservoirsis substantially smaller here. This goes along with the redu
ed intensity of the heat
urrent peaks as shown above.Fig. 5.6 shows that, unexpe
tedly, the subunits 
hange their lo
al modes of operationat di�erent temperature gradients. With in
reasing ∆T , �rst unit B swit
hes from heatengine to heat pump mode at ∆TB
rit = 0.71 where ∆WB 
hanges sign. Then the signs of
∆Qc and ∆Qh 
hange, and �nally ∆WA = 0 follows at ∆TA
rit = 0.77. As a 
onsequen
ehereof the transition of the entire 
ir
uit where the total work ∆Wtot = ∆WA + ∆WB
hanges sign is signi�
antly shifted rightwards to ∆T
rit = 0.833 > ∆T id
rit = 0.714.For ∆TB
rit ≤ ∆T ≤ ∆TA
rit both units A and B work as heat pumps. Primarily, a workquantity WA/B > 0 has to be inserted per 
y
le to 
ompensate losses due to leakage
urrents in the dire
tion of the internal temperature gradients. Sin
e spin 3 is a �niteheat bath and 
annot be 
ooled down or heated up arbitrarily, it is evidently impossiblethat both heat pumps 
ould work against ea
h other in an e�
ient way. Thus all workinput is dissipated within this range of ∆T , and the energy of spin 3 remains e�e
tivelyun
hanged after one performed 
y
le.For ∆TA
rit ≤ ∆T ≤ ∆T
rit both units work as heat engine and heat pump, respe
tively.However, a smaller amount of work ∆WA < 0 is released from unit A than the quantity
∆WB > 0 to be applied to the latter. This is due to dissipation arising from the mutualin�uen
e of both units as explained later on. Hen
e ∆Wtot > 0 and ∆Qh > 0 at the sametime, therefore the 
ir
uit heat pump e�
ien
y ηp is arbitrarily set to zero in Fig. 5.3.In Fig. 5.7 the lo
al heat pump (p) and heat engine (en) e�
ien
ies of units A and Bare depi
ted, de�ned as

ηAp = −∆Qh/∆WA ηBp = −∆Qc/∆WB

ηAen = −∆WA/∆Qh ηBen = −∆WB/∆Qc .
(5.7)Again it is visualized that, between the lo
al 
riti
al temperature gradients ∆TB
rit and

∆TA
rit both units work as heat pumps. Far from these values, however, the lo
al QuantumOtto e�
ien
ies obtained with (5.5) are approa
hed and may even be ex
eeded.Hen
e both units do behave like three-spin ma
hines, and 
onsequently the entire
ir
uit does so. At those ∆T where ∆WB > 0 and ∆Qc > 0 in Fig. 5.6 the heat pump55
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5.1. Cir
uit of Oppositely Dire
ted Quantum Ma
hines
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ien
y ηBp = −∆Qc/∆WB of unit B would be negative and is set to zero. With regardto unit A the same holds for those ∆T where ∆WA > 0 and ∆Qh > 0. In these 
asesall work input is over-
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h between heat engine and heat pump mode atdi�erent temperature gradients is founded in a slight in
rease of the otherwise nearly
onstant temperature T3 of the e�e
tive �nite heat bath spin 3. This is illustrated inFig. 5.9 by means of the energy expe
tation values of spins i = 1, 3, 5, all normalized to
∆E3, 〈Ẽi〉 = ∆E3

∆Ei
tanh Ei

2Ti
and plotted as fun
tions of the global temperature gradient

∆T , together with the ideally supposed average energy (see (5.3)),
〈E∗

3〉 =
1
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〈Ẽ1〉 + 〈Ẽ5〉
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=
∆E3

2
tanh

∆E3

2T3

=
∆E3

4

(

tanh
∆E1

2Th

+ tanh
∆E5

2Tc

)

. (5.8)This holds be
ause, assuming ideal adiabats, the driven spins 2 and 4 
arry the sameo

upation probabilities as the respe
tive bath spins 1 and 5 just before heat transfervia spin 3, i. e. 〈Ẽ2〉 = 〈Ẽ1〉 and 〈Ẽ4〉 = 〈Ẽ5〉. If spin 3 featured the ideal averageenergy 〈E∗
3〉, the entire 
ir
uit as well as both units would simultaneously swit
h theirrespe
tive modes of operation at ∆T id
rit where the 
anoni
al distributions of both bathspins are equal. In this 
ase, 〈E∗

3〉 = 〈Ẽ1〉 = 〈Ẽ5〉.However, spin 3 is found with an energy 〈Ẽ3〉 > 〈E∗
3〉. The o�set

C ′ = 〈Ẽ3〉 − 〈E∗
3〉 = 0.0064 [∆E]only marginally depends on ∆T over a wide range. This 
onsiderably 
hanges thesituation.Following Fig. 5.9, for ∆T ≤ ∆TB the entire 
ir
uit works as heat pump due to theenergeti
 order of the involved spins,

〈Ẽ5〉 = 〈Ẽ4〉 > 〈Ẽ3〉 > 〈Ẽ2〉 = 〈Ẽ1〉 57
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5.1. Cir
uit of Oppositely Dire
ted Quantum Ma
hinesAt ∆TB = 0.52 the 
anoni
al distributions of spins 3 and 5 are equal, whi
h marks theexpe
ted swit
h from heat engine to heat pump mode in unit B. For unit A the heatpump should emerge at ∆TA = 0.96 where 〈Ẽ1〉 = 〈Ẽ3〉.Comparing Fig. 5.9 and Fig. 5.6 one would expe
t that ∆TB = ∆TB
rit and ∆TA =
∆TA
rit. Due to the presen
e of leakage 
urrents, however, both transition points areshifted towards lower internal temperature gradients whi
h, for unit B, 
orresponds to ahigher global temperature gradient. For this reason, Fig. 5.6 shows the a
tual situation.In addition, the zero points of ∆Qh,c are displa
ed as well. This behavior is the sameas for the three- and four-spin models des
ribed above where leakage 
urrents 
ausethe breakdown of the heat pump and the emergen
e of the engine fun
tion at smaller
riti
al temperature gradients than ideally expe
ted. Furthermore, sin
e heat and workfun
tions are proportional to ea
h other, their absolute values and in
linations de
rease,
ompared to the 
ase of lossless transport in the ideal Quantum Otto 
y
le.The energeti
 in
rease C ′ in spin 3 is of magnitude 10−2 in units of the lo
al energysplittings ∆E . To 
he
k whether this 
an be attributed to the weak but present 
orre-lations within the spin 
hain, the Bures distan
e measure between the a
tual state andthe produ
t of the un
orrelated lo
al states (
f. (2.35)),

D2 = Tr
{
(ˆ̺S − (ˆ̺1 ⊗ ˆ̺2 ⊗ ˆ̺3 ⊗ ˆ̺4 ⊗ ˆ̺5))

2}is plotted in Fig. 5.8 over one period τ , yielding only a magnitude of 10−5[∆E]. Thisis mu
h too small to explain the mentioned up-shift e�e
t sin
e also the spin-spin in-tera
tion has been 
hosen in the weak 
oupling limit (λ = 0.01). Nevertheless, strongsimilarities to the 
hara
teristi
s and magnitude of the heat 
urrents (Fig. 5.2) are ob-servable, indi
ating 
lear mutual dependen
ies. The smaller peak in Fig. 5.8 representsthe internal heat 
urrent Jint via the e�e
tive bath spin whi
h is invisible in the heat
urrent 
hara
teristi
s. Only the higher peak 
an be dire
tly linked to the heat 
urrents
Jh,c between the system and the hot and 
old reservoir.The explanation for the up-shift C ′ may �nally be founded in that during the evolutionof the system towards its non-equilibrium attra
tor state some of the heat transportedthrough the 
hain e�e
tively remains stu
k in the �bottlene
k� spin 3 due to internalleakage 
urrents. As shown in Fig. 5.10, the energy expe
tation value of spin 3 〈Ẽ3(t)〉asymptoti
ally approa
hes the stable average energy 〈Ẽ3〉�nal ≃ −0.2135[∆E] for aninitial energy 〈E∗

3〉 ≃ −0.22 and ∆T = 0.4. For better visibility os
illations of 〈Ẽ3(t)〉are omitted.We remark that the driven spins 
ould also be modulated with other relative phasesthan done here. The best heat transport through this kind of serial 
ir
uit has howeverbeen found for the 
ase that both driven spins simultaneously are in resonant 
onta
twith spin 3, sin
e only in this 
ase the latter features a 
onstant energy and temperature,allowing for easier investigation. If otherwise the driven spins alternately ex
hange heatwith the e�e
tive bath, its energy and temperature os
illates around an average value.Finally the setup as in �gure 5.1 
ould be altered su
h that two identi
al subunits hadto work against ea
h other. Then ∆WA = −∆WB and, as 
laimed by the Curie prin
iplefor the absen
e of any asymmetry, the total work would vanish and solely an e�e
tive61
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ur dueto long times of resonant 
onta
t between adja
ent spins, labeled F, H and
C (see text). While spins 2,3 and 4 equilibrate (F ), Spin 2 does not rea
hthe energy level of spin 1 (H).leakage transport from the hot to the 
old bath would remain, e�e
tively redu
ing thema
hine fun
tion to a pure transport phenomena.If, in addition, both reservoirs had the same temperatures, the resulting highly sym-metri
al 
on�guration might be used to 
ool the middle spin down to a minimal tem-perature determined by the 
anoni
al distributions of the bath spins. The same 
ouldalso be a
hieved with a driven three-spin 
hain 
oupled to one heat bath only [41℄.5.1.3. Extensions of the Ideal Quantum Otto Cy
leAs indi
ated above, the des
ription of the ideal Quantum Otto 
y
le does 
orre
tlypredi
t the Quantum Otto e�
ien
ies of the engine-pump 
ir
uit with �bottlene
k� butis obviously unable to give an adequate estimate for the global 
riti
al temperaturegradient without further modi�
ations.First of all, the 
onservation of energy for the heat 
urrent running through the ef-fe
tive bath (5.2) does not seem to work any more for any average temperature otherthan T ∗

3 from (5.4). However, remedy is found in Fig. 5.11 where the energy expe
tationvalues of all spins are plotted over one period for the 
ase the entire 
ir
uit works as heatpump. During heat transfer via the e�e
tive bath spin marked F , spins 2,3 and 4 arein resonant 
onta
t and their energies approximately equal. Thus, even for more thantwo spins the intuitive view of 
onta
t equilibrium holds at least up to a 
ertain degree,even in a dynami
al s
enario. While the energies of spins 4 and 5 approa
h ea
h other62



5.1. Cir
uit of Oppositely Dire
ted Quantum Ma
hinesas well during heat in�ow from the 
old bath (labeled C), the energy of spin 2 does notfully rea
h that of spin 1 although both intera
t (labeled H). It is generally found that,if unit A works as heat pump and B as engine, spin 2 features a higher temperaturethan it would under idealized 
onditions, i. e. optimal heat transfer. The same happensto spin 4 in the 
ontrary 
ase. For ∆TB ≤ ∆T ≤ ∆TA where units A and B work asheat pumps (see Fig. 5.6) both gas spins do not fully equilibrate with the bath spins.As pointed out in the following, Eq. (5.2) remains valid for T3 6= T ∗
3 by a phenomeno-logi
al modi�
ation. Firstly, Eq. (5.3), giving the distribution of spin 3, is rewrittenas

tanh
∆E3

2T3

=
1

2

(

tanh
∆E1

2Th

+ tanh
∆E5

2Tc

− C

) (5.9)where
C = 4C∗/∆E3 (5.10)with C∗ taken from �gure 5.9 and introdu
ed as a phenomenologi
al 
onstant. For thepresently used parameters the value C = 0.0192 is found. The lo
al 
riti
al gradients

∆TB and ∆TA are now given by
tanh

∆E1

2Th

= tanh
∆E3

2T3

=⇒ ∆TA =
∆E1

2 arctanh
(

tanh ∆E5

2Tc
− C

) − Tc > ∆T id
rit ,(5.11)
tanh

∆E5

2Tc
= tanh

∆E3

2T3
=⇒ ∆TB =

∆E1

2 arctanh
(

tanh ∆E5

2Tc
+ C

) − Tc < ∆T id
rit .(5.12)These expressions only depend on the initially unknown parameter C to be obtainedfrom the numeri
s and, in general, are supposed to be a fun
tion of ∆E3, the drivingfrequen
y ω and the other 
onstant model parameters (see table 4.1).Over a wide range a slight dependen
e on ∆T is visible whi
h, however, may benegle
ted within the frame of this phenomenologi
al ansatz. If C = 0 it would be again
∆TB = ∆T id
rit = ∆TA = Tc(∆E1/∆E5 − 1) .On the other hand, the elevated energy that e. g. spin 4 exhibits after having been in res-onant 
onta
t with spin 5 is in
luded by assuming the 
old bath at a raised temperature

T ∗
c . The altered 
ontinuity 
ondition now reads

∆E3

2

(

tanh
∆E1

2Th
− tanh

∆E3

2T3

)

=
∆E3

2

(

tanh
∆E3

2T3
− tanh

∆E5

2T ∗
c

) (5.13)leading to the following distribution of spin 4 for ∆T ≥ ∆TA:
−2 〈E∗

5〉 /∆E5 = tanh
∆E5

2T ∗
c

= tanh
∆E5

2Tc
− C (5.14)63



5. Serial Quantum Ma
hine Cir
uitsAn analog expression is obtained for spin 2 if ∆T ≤ ∆TB:
−2 〈E∗

1〉 /∆E1 = tanh
∆E1

2T ∗
h

= tanh
∆E1

2Th

− C (5.15)From a physi
al point of view, the spin system evolves into a stationary non-equilibriumstate where either spin 2 or 4 do not su�
iently equilibrate with the respe
tive bath
onta
t spins. Eventually this 
an be explained as well with the o

urren
e of leakage
urrents. Even if unit A works as engine at ∆T > ∆TA, spin 2 transports less heatdue to the raised 
onstant average temperature of spin 3 why, in turn, spin 4 engagestowards a state with in
reased temperature in order that (5.13) is ful�lled. The analoginverse holds if the entire 
ir
uit works as heat pump for ∆T < ∆TB . In between, if
∆TB ≤ ∆T ≤ ∆TA, both units work as heat pumps and 
onsume work only to 
om-pensate losses. Here, both the hot and 
old reservoir are assumed to feature elevatedtemperatures T ∗∗

h and T ∗∗
c , respe
tively. This may be modeled by

tanh
∆E1

2T ∗∗
h

= tanh
∆E1

2Th

− (1 − a)C (5.16)
tanh

∆E5

2T ∗∗
c

= tanh
∆E5

2Tc

− aC (5.17)where a for the rest is an unknown fun
tion of ∆T and the other system parameters,and 0 ≤ a ≤ 1 for ∆TB ≤ ∆T ≤ ∆TA.Finally, the 
riti
al temperature gradients for units A and B 
al
ulated above leadto the one for the entire system. Taking into a

ount that WB = 0 at ∆TB, the workfun
tion ∆WB(∆T = Th − Tc) of unit B writes
∆WB(∆T ) =

1

4
(∆E5 − ∆E3)

(

tanh
∆E5

2Tc

− tanh
∆E1

2(∆T + Tc)
+ C

) (5.18)This fun
tion is also assumed to hold for ∆T ≥ ∆TA, taking into a

ount the dissipationoriginating from the ex
ess work to be applied to system B sin
e here the driven andbath spin do not fully equilibrate. Otherwise Tc 
ould be repla
ed by T ∗
c from Eq. (5.14)whi
h would give rise again to the ideal 
riti
al gradient ∆T id
rit.In analogy to this, the work fun
tion ∆WA(∆T ) be
omes

∆WA(∆T ) =
1

4
(∆E1 − ∆E3)

(

tanh
∆E1

2(∆T + Tc)
− tanh

∆E5

2Tc
+ C

) (5.19)and �nally, the entire work fun
tion gets
∆Wtot(∆T ) = ∆WA(∆T ) + ∆WB(∆T )

=
1

4
(∆E1 − ∆E5)

(

tanh
∆E1

2(∆T + Tc)
− tanh

∆E5

2Tc

)

+
C

4
(∆E1 + ∆E5 − 2∆E3)(5.20)64
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Figure 5.12.: Work ∆W 
al

A/B of units A,B and total 
ir
uit work ∆W 
al
tot , 
al
ulated withEqns. (5.18) - (5.20) for ∆E3 = 1.25 and C = 0.0192. ∆W 
al
tot 
hanges signat ∆T 
al

rit = 1.45, 
f. Eq. (5.21).The transition point where ∆Wtot = 0 is obtained as

∆T
rit =
∆E1

2

[

arctanh

(

tanh
∆E5

2Tc
− C(∆E1 + ∆E5 − 2∆E3)

∆E1 − ∆E5

)]−1

− Tc (5.21)This expression depends on the internal geometry in terms of ∆E3 as well as on theenergeti
 up-shift in spin 3 read out from Fig. 5.9 with (5.10).For C > 0 and ∆E3 < ∆E1, ∆E5 we have ∆T
rit > ∆T id
rit. As a result, the mutual in-�uen
e between the subunits via the e�e
tive bath spin 
auses the entire 
ir
uit to 
hangeits mode of operation at a higher 
riti
al temperature gradient than ideally expe
ted.This is also 
lari�ed by 
onsidering the energy expe
tation values 〈Ẽi〉 normalized to
∆E3. Globally seen, work is released only if

(∆E1 − ∆E3)
(

〈Ẽ1〉 − 〈Ẽ3〉
)

> (∆E5 − ∆E3)
(

〈Ẽ3〉 − 〈Ẽ5〉
)Moreover, the fa
tor 1/4 appearing in the expressions derived for ∆WA/B indi
ates ageneral redu
tion of both work and transported heat due to the presen
e of spin 3, even if

C = 0. This also applies to other models 
ontaining an e�e
tive bath spin (see Se
. 5.2)and 
an be linked to the elevated resistan
e of the �ve-spin 
hain. Considering e. g. athree-spin ma
hine, the fa
tor 1/2 rules instead, 
f. (3.4), (3.5). 65



5. Serial Quantum Ma
hine Cir
uitsAll in all, the given ansatz is rather phenomenologi
al but, at least, it 
an roughlyexplain the shift of the global 
riti
al temperature gradient in a �bottlene
k� model.Compared to the des
ription of the ideal Quantum Otto 
y
le, only one additionalextension has been introdu
ed, namely C.A plot of the work fun
tions for the entire 
ir
uit and both subunits, 
al
ulated with(5.18), (5.19) and (5.21), is depi
ted in Fig. 5.12 for ∆E3 = 1.25 and C = 0.0192. Asexpe
ted, the zero points ∆TA/B 
oin
ide with the interse
tion points from Fig. 5.9.While, qualitatively, the 
al
ulated work fun
tions are quite similar to the numeri
allyobtained ones displayed in Fig. 5.5 and Fig. 5.6, the obtained 
riti
al temperature gra-dient of the entire 
ir
uit, ∆T 
al

rit = 1.45 is mu
h too large 
ompared to the a
tual valueof ∆T
rit = 0.83.Hen
e, the e�e
ts of leakage 
urrents must ne
essarily be taken into a

ount. As men-tioned, this will indu
e shifts of the lo
al 
riti
al gradients ∆TA/B and also a downs
alingof the work fun
tions. Up to now, however, this 
an only be done with other ad-ho
approa
hes, introdu
ing more 
orre
tion terms su
h as s
aling fa
tors and zero shifts
∆T → ∆T ± ∆ to ∆WA/B into Eqns. (5.18) - (5.20), likewise the approa
h in [16℄.As it will be shown below, the o�set C 
hanges if ∆E3 is altered. This behavior and itsimpa
ts on the global 
ir
uit 
hara
teristi
s will now be investigated further by meansof some more examples.5.1.4. Modi�ed Cir
uit Con�gurations � Variation of theEnergeti
 GeometryIn order to determine the dependen
e of the 
ir
uit 
hara
teristi
s on the lo
al energysplittings, we examine an additional example where the lo
al energy gap of spin 3 is setto ∆E3 = 0.25 and the amplitudes of spins 2 and 4 are adjusted in order to to agree withthe new resonan
e 
onditions. This model, referred to as 
ir
uit 2, is found to exhibit asubstantially di�erent behavior than the prior one.For the 
ase the 
ir
uit works as heat pump, the ST -diagrams of units A,B aredisplayed in Fig. 5.13. Compared to the previously investigated 
ir
uit (Fig. 5.4) theirshapes are rather re
ti�ed, indi
ating that leakage 
urrents are 
onsiderably suppressedhere. In parti
ular, the small dips related to leakage within the spin 
hain fa
tuallyvanish.This quasi-re
ti�
ation follows from the low value of ∆E3, leading to faster �strokevelo
ities� of the gas spin energy gaps and thus to shortened resonan
e times betweenneighbored spins. In physi
al terms the time derivatives of the lo
al Hamiltonian of gasspins 2 and 4 read

˙̂
H2,4 = 1

2
ω∆E0

2,4 cosωt (5.22)with in
reased amplitudes ∆E0
2,4 = 1

2
(∆E1,5 − ∆E3). In the following we 
on
entrateon the in�uen
e of variations of ∆E3 on the system 
hara
teristi
s whereas the impa
tsof di�erent driving frequen
ies ω has not been resear
hed yet.The redu
tion of leakage is also apparent from the heat 
urrents depi
ted in Fig. 5.14,featuring asymmetri
 shapes with �at slopes. This is quite similar to the model with66
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uit 2 (de�ned on p. 66) working as heat pump (∆T = 0.13): ST -diagrams of the driven spins of units A and B, working as heat pump andheat engine, respe
tively.arti�
ial de
oupling dis
ussed in Se
. 3.3.1, 
f. Fig. 3.4). After the iso
hori
 step whereheat is ex
hanged with the reservoirs, the heat 
urrents into and out of the systemmay de
ay slowly sin
e the gas spins are rapidly driven out of resonan
e and thereforeba
k�ow is inhibited. Nonetheless the driven spins remain 
oupled to the baths whi
his indi
ated by the ubiquitous os
illations during the adiabats.The altered system geometry neither leaves the 
hara
teristi
s of the work and heatfun
tions un
hanged. Both are almost doubled as the 
omparison of �gures 5.15 and 5.5yields. The in
rease of heat goes in hand with heat 
urrent peaks of higher magnitudethan those for the prior model (
f. Fig. 5.2).In 
ontrast, the e�
ien
ies ηen/p of the whole 
ir
uit drawn in Fig. 5.17 remain qual-itatively unaltered in essen
e. They approa
h the ideal Quantum Otto e�
ien
ies
ηOttoen = 0.222 and ηOttop = 4.5 for values of ∆T afar the 
riti
al gradient for the en-tire 
ir
uit, being right-shifted again to ∆T
rit = 0.87 where the 
ir
uit e�
ien
ies de
ayto zero.The a
tual di�eren
e to the previous model turns out in Fig. 5.20, displaying the lo
alheat engine and pump e�
ien
ies ηA/Ben/p of units A,B together with the 
orrespondinglo
al Quantum Otto e�
ien
ies. These take the values ηA,Ottoen = 0.889 and ηA,Ottop =
1.125 for unit A and ηB,Ottoen = 0.857 and ηB,Ottop = 1.167 for unit B. Both units swit
hmu
h more abruptly between heat engine and heat pump mode and their e�
ien
ies
onverge faster towards the lo
al ideal Quantum Otto bounds sin
e internal leakage
urrents are widely suppressed. Otherwise the slopes of the de
aying e�
ien
y fun
tionswould be mu
h �atter, 
f. Se
. 4.2 and [16℄.In analogy, Fig. 5.16 shows that for both subunits the work and heat fun
tions equalzero at the same temperature gradients, i. e. ∆WB = ∆Qc = 0 at ∆TB
rit = 0.7 and
∆WA = ∆Qh = 0 at ∆TA
rit = 0.743, revealing again that lo
ally dissipation is minimized.Globally seen, however, the situation remains un
hanged. For ∆TB
rit ≤ ∆T ≤ ∆TA
ritboth subsystems again work as heat pumps and 
onsume work only to 
ompensate losses.67
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〈Ẽ5〉
〈E∗

3〉

〈E〉 [∆E]

C∗

Figure 5.18.: Energy expe
tation values for 
ir
uit 2 (p. 66): 〈Ẽi
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5. Serial Quantum Ma
hine Cir
uitsAs mentioned, this is ne
essary to keep the e�e
tive bath spin 3 on its 
onstant averageenergy.Likewise, within ∆TA
rit ≤ ∆T ≤ ∆T
rit subsystem A works as heat engine and Bas pump. Again, ∆Qh > 0 and ∆Wtot > 0 be
ause of ∆WB > −∆WA, i. e. unit
B 
onsumes more work than A releases and, e�e
tively, work must be expended totransport heat from the hot to the 
old reservoir.For the present model the energeti
 up-shift C∗ = 0.0009[∆E] of spin 3 is found fromin Fig. 5.18, yielding C = 4C∗/∆E3 = 0.014 whi
h is smaller than before. As indi
atedabove, the redu
ed value of ∆E3 leads to a raised "stroke" velo
ity and thus to shortenedresonan
e times sin
e driving is e�e
tively faster. Consequently, internal leakage 
urrentsare more e�e
tively suppressed and the heat quantity stu
k in the bottlene
k spin istherefore redu
ed. As a result, the di�eren
e in 
anoni
al distributions between the bathspins on the one hand and spin 3 on the other hand is in
reased, leading to in
reased heattransport through the 
ir
uit via spins 2 and 4 whi
h, in relation, release or 
onsumeeven more work due to the larger internal energy gradients. At the same time, Fig. 5.17indi
ates that more work has to be expended for dissipation balan
e in unit B sin
e,for ∆T > ∆T
rit the global engine e�
ien
y ηen undergoes its pendant from the priormodel.Following Eq. (5.11) and (5.12), the zero points of the lo
al subunit work fun
tions
∆WA/B should be shifted to lower lo
al internal temperature gradients for smaller valuesof C as well, whi
h is 
on�rmed by Fig. 5.18. Compared to Fig. 5.16, additional leakage-indu
ed adjustments in this sense appear also. However these are less distin
tive sin
eleakage 
urrents are redu
ed. After (5.20) the zero point of the entire 
ir
uit workfun
tion ∆Wtot(∆T ) is expe
ted at ∆T
rit = 2.0, being far too big to mat
h with thea
tual value of ∆T
rit = 0.87 from Fig. 5.16. Hen
e, in order to obtain the right zeropositions and slopes of ∆WA/B and ∆Wtot adequate 
orre
tion fa
tors re�e
ting lossesare needed on
e more.A 
loser look on the pro
esses during the iso
hores is furnished in Fig. 5.21 by meansof the energy expe
tation values 〈Ei〉 for all spins i plotted over one period τ = 2π/ω.Compared to Fig. 5.11, resonan
e times between adja
ent spins are shortened here.During the internal iso
hori
 step with heat transfer via spin 3, labeled F , the energiesof spins 2,3 and 4 approa
h quite well, indi
ating su�
ient 
onta
t equilibrium. However,like in the previous 
ase, the driven spin 2 does not su�
iently approa
h the averageenergy level 〈E1〉 of spin 1 (labeled H) and thus remains at a higher temperature. Sin
ethis is related to dissipation in unit B, the engine fun
tion of the entire 
ir
uit emergesat an even more in
reased gradient ∆T
rit where, �nally, unit A starts to release morework than B 
an 
onsume.Finally, weak 
orrelations of magnitude and 
hara
teristi
s 
omparable to the heat
urrents (Fig. 5.14) are found in the system, displayed in Fig. 5.19 by means of theBures distan
e measure over one period (see (2.35)). Again the internal heat 
urrentsare made visible by peaks.72
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5.1. Cir
uit of Oppositely Dire
ted Quantum Ma
hines
∆E3 ω C ∆TA ∆TA
rit ∆TB ∆TB
rit ∆T
rit with (5.21)1.25 1/128 0.02 0.96 0.771 0.52 0.708 0.833 1.450.75 1/128 0.015 0.88 0.747 0.564 0.707 0.827 1.70.50 1/128 0.0135 0.863 0.743 0.577 0.704 0.836 1.80.25 1/128 0.013 0.859 0.743 0.581 0.7 0.87 2.0Table 5.1.: Serial 
ir
uit: Chara
teristi
 results for di�erent values of ∆E3Further Examples: Cir
uits 3 and 4In a third example for a bottlene
k model, referred to as 
ir
uit 3, we 
hoose ∆E3 = 0.75and adjust the amplitudes of the driven spins, whereas all other parameters are leftun
hanged, see Tab. 4.1. From Fig. 5.22 one �nds the energy up-shift C = 0.015.A

ordingly, ∆TA ≃ 0.827 and ∆TB ≃ 0.564. Provided that the driving frequen
y isunaltered, the stroke velo
ity de
reases be
ause of smaller internal energy gradients.This leads to longer spin 
onta
t times than in 
ir
uit 2 (p. 66), why internal leakage
urrents are invoked again. As displayed in Fig. 5.23, all heat and work fun
tions equalzero at di�erent ∆T and mainly 
ome with absolute values in between those of 
ir
uits1 and 2, a

ording to the intermediate value of C.Apparently, the parameter C 
ru
ially in�uen
es the heat transport 
apability inthese systems and therefore is a resistan
e indi
ator. C de�nitely depends on ∆E3 and,assumedly, also on ω whi
h however is to be veri�ed numeri
ally yet.Following Fig. 5.23, the a
tual 
riti
al temperature gradients ∆TA
rit = 0.74 and

∆TB
rit = 0.71 of the subunits are shifted inbound 
ompared to ∆TA/B from Fig. 5.22.The 
riti
al gradient of the whole 
ir
uit lies at ∆T
rit = 0.827.Example No. 4 
omes with ∆E3 = 0.5 and C = 0.0135, taken from Fig. 5.24. Itsheat and work fun
tions provided in Fig. 5.25 only yield small dis
repan
ies to those of
ir
uit 3. Here, the 
riti
al gradient is found at ∆T
rit = 0.836.Summary and overviewThe stroke velo
ities, given by the time derivatives of the lo
al Hamiltonians of the drivenspins 2 and 4 in Eq. (5.22) have been found to determine the spin resonan
e 
onta
t timeswhi
h are de
isive for the performan
e of heat transfer. Therefore they 
onsiderablya�e
t the internal leakage 
urrent behavior and thus the parameter C. Expe
tedly, inaddition to ∆E3 the impa
t of the driving frequen
y ω on C is 
onsiderable as well,whi
h is yet subje
t to veri�
ation. Depending on ∆E3 (and ω), the heat 
ondu
tivityof the 
ir
uit is altered by 
hanging the resistan
e of spin 3 via the parameter C. On theother hand, the global 
ir
uit e�
ien
ies are 
omparable for di�erent sets of parameters.An overview of obtained 
hara
teristi
 values depending on ∆E3 for all presentedexamples is given in table 5.1. In �rst approximation, the a
tual 
riti
al temperaturegradient obtained from the numeri
s 
an be 
onsidered independent of ∆E3, althoughit is expli
itly 
ontained in (5.21) as well as via C. This is made plausible in that theinvestigated models feature about the same 
riti
al gradient ∆T
rit. Solely 
ir
uit 275



5. Serial Quantum Ma
hine Cir
uitswhere ∆E3 = 0.25 breaks ranks. This, however, seems to be a spe
ial 
ase sin
e onlyhere internal leakage 
urrents are su�
iently suppressed.For the rest, all other values in table 5.1 monotonously depend on ∆E3. It is easilyveri�ed that the ansatz from Se
. 5.1.3 
orre
tly des
ribes the positions of the lo
al 
riti-
al gradients ∆TA/B where ∆WA/B = 0. It takes into a

ount the dissipation arising dueto the fa
t that at least one of the driven spins does not equilibrate with the respe
tivebath spin during heat transfer between the system and the a

eptor bath. Additionally,one 
an state that, even if for this 
lass of serial quantum ma
hine 
ir
uits dire
t leakage
urrents from the hot to the 
old bath are not present, the same e�e
ts arise as if thiswas the 
ase sin
e, in some sense, the 
ir
uit subunits work against ea
h other due tothe e�e
tive bath fun
tion of the �bottlene
k� spin.It must be noted that the right-shift of ∆T
rit 
annot be exploited up to the fullrange like in models with linear energeti
 gradients be
ause, within the 
riti
al range,all expended work is needed to balan
e dissipative losses.In general, even if adequate �tting parameters for leakage 
urrents 
an be found, thea
tual pro
esses within these rather 
omplex systems are di�
ult to 
hara
terize.Summarizing, the serial �ve-spin 
ir
uit with a "bottlene
k" spin does indeed run aQuantum Otto 
y
le, however, a better performan
e and more e�
ient heat transport ispossible with a three-spin or four-spin ma
hine, so as with the parallel four-spin 
ir
uitdriven with relative phase shift.5.2. Serial Cir
uit of Dire
ted Quantum Ma
hinesAfter having looked at oppositely dire
ted quantum ma
hines in the previous se
tion, weinvestigate now a serial 
ir
uit with a funnel-shaped global energy gradient as depi
tedin Fig. 5.26. Di�erently to the "bottlene
k" model, units A and B are expe
ted to runQuantum Otto 
y
les in the same dire
tion and work in unison either as heat engines orheat pumps due to the dire
ted energeti
 gradient. This in
ludes a dire
ted temperaturegradient within the 
ir
uit as well. The Quantum Otto 
y
le steps performed analogouslyto the des
ription in Se
. 5.1.Likewise before the 
ir
uit is a Heisenberg spin 
hain whose Hamiltonian is givenby (3.8) extended to �ve spins. For numeri
al investigations the spin energy splittingsare 
hosen as ∆E1 = 3.0, ∆E2(t) = 2.75 + 0.25 cosωt, ∆E3 = 2.5, ∆E4(t) = 2.25 −
0.25 cosωt and ∆E5 = 2.0, ful�lling the resonan
e 
onditions

∆E1 ≥ ∆E2(t) ≥ ∆E3 ≥ ∆E4(t) ≥ ∆E5Similarly, for the lo
al temperatures one �nds
Th = T1 > T3 > T5 = TcSpins 2 and 4 are driven with a relative phase shift of half a period in order to bring theminto resonan
e with spin 3 simultaneously, sin
e in this 
ase a 
onsiderable redu
tion ofleakage 
urrents is found and heat transport is improved. The temperature of the 
old76
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ir
uit of two quantum heat pumps/engines between two heat baths.bath is 
onstant, βc = 1/Tc = 0.7 whereas that of the hot bath is varied. This set ofparameters yields the same ideal 
riti
al temperature gradient as for all previous models,i. e. ∆T id
rit = 0.714, allowing for 
omparison. For ω and the 
oupling 
onstants see table4.1.In Fig. 5.28 the heat engine and heat pump e�
ien
ies ηen/p for the whole 
ir
uit aredrawn as fun
tions of ∆T . Both rapidly approa
h their ideal Quantum Otto bounds
ηOttoen = 0.333 and ηOttop = 3 and drop down steeply on approa
hing the 
riti
al temper-ature gradient found at ∆T
rit = 0.68, being very 
lose to ∆T id
rit. These results implythat dissipative losses are small.On the other hand, leakage 
urrents do o

ur sin
e the ST -diagrams depi
ted inFig. 5.2 for the 
ase both units work as heat pumps exhibit large typi
al leakage dipsand strong os
illations on the adiabats, re�e
ting the bath in�uen
e. Furthermore, thepeaks of the heat 
urrents depi
ted in Fig. 5.30 are of symmetri
 shape, indi
atinginternal heat 
urrent ba
k�ow, and also show the pertinent os
illations.However, the apparent 
ontradi
tion is resolved in that, up to a 
ertain degree, theinternal losses of spin 2 in the dire
tion of the global temperature gradient are takenby spin 4 after internal iso
hori
 heat transfer via spin 3. Sin
e the ST -diagrams ofboth driven spins are roughly rotationally-symmetri
al, one 
an 
on
lude that the workdissipated in unit A due to losses is released again and thus su�
iently 
ompensated in
B, and vi
e versa. Contrarily, in a simple three-spin ma
hine the leakage heat wouldsimply vanish into the reservoirs and would therefore be lost.Again the 
anoni
al distribution of spin 3 is about 
onstant in time. In this 
ase itapproximately equals the ideal average of the bath spins (
f. Eq. (5.3)),

2 〈E3〉 /∆E3 ≡ tanh
∆E3

2T3

=
1

2

(

tanh
∆E1

2Th

+ tanh
∆E5

2Tc

) (5.23)sin
e there are no prerequisites for a 
onstant energy up-shift su
h as for a �bottlene
k�spin. 〈E3〉 is the energy expe
tation value of spin 3 after 2.72.Hen
e spin 3 takes again the role of an e�e
tive heat bath with a temperature inbetween of those of the baths, shielding both units from ea
h other. However, the77
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onne
ted ma
hine units A,B, working inunison as heat pumps here. The diagrams are roughly rotationally-symmetri
al.shielding 
apability is 
onsiderably redu
ed here due to the unidire
tional temperaturegradient.In spite of the above said, losses are still present during heat transfer with the reservoirsas well as internally. This is learned from Fig. 5.29 and Fig. 5.31 where the heat and workfun
tions ∆Qh,c and ∆W are displayed. They are of similar magnitude as for 
omparablethree- and four-spin models and 
hange sign at di�erent gradients ∆T . However, thishappens on a mu
h smaller s
ale and mu
h 
loser to ∆T id
rit than observed before. Asindi
ated already by the ST -diagrams depi
ted in Fig. 5.2, units A and B run indeedthe same thermodynami
 
y
le sin
e the work fun
tions ∆WA/B 
arry the same sign.On larger s
ales it turns out that ∆WA ≈ ∆WB, whereas the magni�
ation in Fig. 5.31shows that ∆WA < ∆WB be
ause a small amount of work in unit B is expended to
ompensate the losses emerging in A. As a 
onsequen
e, both units 
hange their modesof operation at slightly di�erent temperature gradients ∆TA
rit 6= ∆TB
rit, symmetri
allyto ∆T
rit. For the rest, the Gibbs relation ∆Qh + ∆Qc + ∆WA + ∆WB = 0 is ful�lled.Sin
e the distribution of spin 3 equals about the ideal one (see (5.23)), it is easy toshow that only half as mu
h heat is ex
hanged between the system and the baths as itwould be the 
ase for a three-spin ma
hine with the energeti
 gradient (∆E1 − ∆E5)and the same bath spin 
on�gurations (∆E1/Th) and (∆E5/Tc). For the 
ase the 
ir
uitruns as heat pump, this is now demonstrated by means of the ideal Quantum Otto 
y
ledis
ussed in Se
. 3.3.The heat �ux from the 
old bath into unit B is 
al
ulated as
∆Qh→B =

∆E5

2

(

tanh
∆E5

2Tc
− tanh

∆E3

2T3

)

=
∆E5

4

(

tanh
∆E5

2Tc
− tanh

∆E1

2Th

)

> 0The work for the entire 
ir
uit be
omes
∆Wtot = ∆WA + ∆WB =

1

4
(∆E1 − ∆E5)

(

tanh
∆E5

2Tc
− tanh

∆E1

2Th

)

> 078
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Figure 5.30.: Dire
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urrents
Jh, Jc over one period τ .The heat �oating from unit A into the hot bath, ∆QA→h is obtained analogously.All these fun
tion are redu
ed by a fa
tor 2, 
ompared to (3.17) and (3.16). Appar-ently, the additional spin in the middle leads to a downgrade in 
ondu
tivity whereas, of
ourse, the Quantum Otto e�
ien
y ηOttop = 3 remains untou
hed sin
e it only dependson ∆E1 and ∆E5. This limitation of heat throughput 
an be put on a level with aresistan
e to be assigned to spin 3. As dis
ussed above, the same e�e
t analogouslyarises in models with a �bottlene
k� spin where it is further ampli�ed by the mentionedenergeti
 up-shift.In 
omparison, a three-spin ma
hine with the same 
anoni
al bath spin distributionsbut a smaller energeti
 gradient ∆E∗

1 − ∆E∗
5 = x(∆E1 − ∆E5), 0 < x < 1 wouldtransport more heat with the same work to be applied. Therefore, it would exhibit ahigher ideal Quantum Otto e�
ien
y for the heat pump and a lower one for the engine.Sin
e, however, these e�
ien
ies depend on 
on
rete values of the bath spin splittings,a detailed 
omparison is not possible.Fig. 5.32 shows the lo
al heat engine and heat pump e�
ien
ies ηA/Ben/p as well asthe 
orresponding Quantum Otto e�
ien
ies for units A and B whi
h take the values

ηA,Ottop = 6.0, ηB,Ottop = 5.0, ηA,Ottoen = 0.167 and ηB,Ottoen = 0.2.Both heat pump e�
ien
ies de
ease simultaneously to zero, whereas the emergen
eof the heat engine fun
tion in unit B is slightly shifted 
ompared to that of unit A,i. e. ∆TB
rit > ∆TA
rit, sin
e, as mentioned, a small work input into system B is requiredto 
ompensate the losses in A (
f. Fig. 5.31). Far away from ∆T
A/B
rit both heat pumpe�
ien
ies rapidly approa
h their respe
tive Quantum Otto bounds, whereas the en-gine e�
ien
ies also 
onverge but e�e
tively stay below. Following Fig. 5.28, the same80
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5. Serial Quantum Ma
hine Cir
uitsbehavior is found for the entire 
ir
uit.From a general point of view, the dependen
ies between global and lo
al enginee�
ien
ies are the same as in Se
. 5.1.1. A heat quantity ∆Qh from the hot bath�oats into unit A where the work ∆WA < 0 is emitted, leading to the engine e�-
ien
y ηAen = −∆WA/∆Qh. Via spin 3 the remaining heat ∆Q∗ = ∆Qh − ∆WA isforwarded to unit B where another amount of work ∆WB < 0 is released. This leads to
ηBen = −∆WB/(∆Qh + ∆WA) = −∆WB/(∆Qc + ∆WB).For the entire 
ir
uit, the self-
onsistent relation

ηtoten = ηAen + ηBen − ηAenηBen = −(WA +WB)/Qh and ηptot = 1/ηentotholds by virtue of the Gibbs relation or the 
ontinuity 
ondition for the heat �ux throughthe e�e
tive bath, respe
tively, i. e. ∆Qh + ∆WA = −(∆Qc + ∆WB).Summarizing, this 
ir
uit of two unidire
tionally working quantum ma
hine units
omes pretty 
lose to the des
ription of the ideal Quantum Otto 
y
le sin
e the 
ir
uite�
ien
ies rapidly approa
h their Quantum Otto bounds. The 
riti
al temperaturegradient neither is too di�erent from the ideal one. In spite of all, a simple three- orfour- spin ma
hine 
ir
uit is preferable due to its higher heat transport 
apability, relatedto a lower spin 
hain resistan
e.It must also be remarked that, possibly, the spe
ial 
hara
ter of the presented modelis only a 
onsequen
e of the relative phase the gas spins 2 and 4 are driven with, guar-anteeing simultaneous resonan
e to spin 3 and therefore better heat transfer. For otherrelative phases a signi�
antly di�erent behavior of the 
ir
uit might emerge, 
on
erninge�
ien
ies, heat transport and leakage 
urrents.

82



6. Complex Quantum Ma
hineCir
uitsIn this 
hapter generalized quantum ma
hine 
ir
uits shall be investigated with regardto e�
ien
y and heat transport behavior. This is purely meant to be an extension ofthe ideal Quantum Otto 
y
le dis
ussed in Se
. 3.3, that is, full step 
ontrol is assumed,and neither leakage 
urrents nor 
orrelations are taken into a

ount. Two or moreresonant spins are supposed to equilibrate, approa
hing an average energy. In pra
ti
ethis is feasible only in a �rst approximation, as seen in the previous 
hapters. However,these simplifying assumptions have to be made for la
k of a fully quantum me
hani
aldes
ription and be
ause numeri
al 
al
ulations have not been available due to insu�
ient
omputing 
apa
ities for 
orresponding high-dimensional systems.6.1. E�
ien
ies of Elementary Quantum Ma
hineNetworks6.1.1. Cir
uit of Three Ma
hine UnitsPSfrag repla
ements BathABathB
BathC TC TA

TB
Unit A

Unit B
Unit C ∆EA

∆EB

∆EC

∆Em

Figure 6.1.: Quantum ma
hine network with one 
onne
tor spin. Unit A works as heatengine, B and C as heat pumps. Symbols for 
ouplings are same as above.Consider a model of three quantum ma
hine subunits labeled A,B and C as depi
tedin Fig. 6.1. Ea
h unit is 
oupled to an in�nite heat bath with temperature Ti (i =
A,B,C) on one side via a bath spin with lo
al energy gap ∆Ei. All ma
hines are83



6. Complex Quantum Ma
hine Cir
uitsmutually 
onne
ted via a 
onne
tor spin with energy gap ∆Em and temperature Tm,interpreted again as e�e
tive heat bath. The intera
tion between two neighbored spinsis of Heisenberg type, staying in the weak 
oupling limit (
f. Se
. 2.5.1).System A shall work as heat engine, the others as heat pumps. Therefore the energygaps of the bath spins are ordered ∆EA > ∆EB,∆EC > ∆Em and, without loss ofgenerality,
e−∆EA/TA > e−∆EB/TB > e−∆EC/TC (6.1)whi
h is also of the order of the respe
tive energy expe
tation values of the bath spins,

〈EA,B,C〉. For further simpli�
ation all ma
hines are operated in-phase, i. e. all drivenspins are simultaneously brought into resonant 
onta
t with the 
onne
tor spin. Providedan ideal Quantum Otto 
y
le s
enario, the latter exhibits the average distribution (
f.Se
. 5.1.1 and Eq. (2.72))
〈Em〉 /∆Em = tanh

∆Em

2Tm

=
1

3

(

tanh
∆EA

2TA

+ tanh
∆EB

2TB

+ tanh
∆EC

2TC

)

. (6.2)In the following the shorthand notation Xi ≡ tanh ∆Ei

2Ti
is used where i = A,B,C refersto one of the subunits, and i = m labels the 
onne
tor spin.In order to determine the heat engine e�
ien
y of the entire 
ir
uit related to thereservoir of unit A, we �rst make an ansatz for the joint engine e�
ien
y of units B and

C 
oupled in parallel,
ηBCen = 1 − b∆EB + c∆EC

∆Em
< 0where the 
oe�
ients b and c des
ribe the amount of heat transferred into the respe
tiveunit. This expression is negative sin
e B and C a
tually work as heat pumps, however weare looking for a global heat engine e�
ien
y. Together with the lo
al engine e�
ien
yof unit A, ηAen = 1 − ∆Em

∆EA
and (2.12) the engine e�
ien
y of the entire 
ir
uit reads

ηtoten = ηAen + ηBCen − ηAenηBCen = 1 − b∆EB + c∆EC

∆EA

. (6.3)The 
orresponding heat pump e�
ien
y is the inverse hereof, ηtotp = 1/ηtoten .Furthermore, with Eqns. (3.16) and (3.17) the work done by ea
h unit and the 
or-responding heat �uxes 
an be obtained. The heat transport out of unit A through the
onne
tor spin per 
y
le,
∆QA→m =

∆Em

2
(Xm −XA)is 
onserved and splits up into

∆QA→m = −(∆Qm→B + ∆Qm→C) =
∆Em

2
(XB −Xm) +

∆Em

2
(XC −Xm) .Thus, identify

b ≡ Xm −XB

XA −Xm

c ≡ Xm −XC

XA −Xm

b+ c = 1 . (6.4)
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6.1. E�
ien
ies of Elementary Quantum Ma
hine NetworksSpe
ial 
asesProvided that the bath 
onta
t spins of the �re
eptor� units B,C feature the same
anoni
al probability distributions, ∆EB

TB
= ∆EC

TC
. Then b = c = 1

2
, and (6.3) simpli�esto

ηtoten = 1 − ∆EB + ∆EC

2∆EA
.If, on the other hand, ∆EB = ∆EC ≡ ∆EBC , one obtains (
f. Se
. 2.1.5)

ηtoten = 1 − ∆E

∆EA
.Comparison to a Swap S
enarioIn a possible s
enario of a network of quantum ma
hines one might desire sele
tive
ontrol on between whi
h subunits heat transport e�e
tively takes pla
e. Hen
e, insteadof assuming heat transfer via 
onta
t equilibrium let us now simulate this 
ontrol in thata 
y
li
 swapping of states between the gas spins in Fig. 6.1 is assumed, governed bysome �playing rules� that de�ne the order of swapping. Ea
h time the 
onne
tor spinspin is in resonant 
onta
t with one of the gas spins of units A, B or C, both shallex
hange their respe
tive state. In su

ession the involved gas spin shall run a QuantumOtto 
y
le, 
f. Se
. 3.3. Note that in this 
ase swapping does not require additionalwork expense be
ause the energy gaps of the spins to be swapped are equally split [41℄.With regard to Fig. 6.1, let the 
onne
tor spin initially feature the same state as thegas spin of unit A, or Xm = XA in shorthand notation. Then it swaps with the gasspin of unit B, Xm ↔ XB. This is repeated 
ounter-
lo
kwise until the 
onne
tor spinreturns to its initial state XA. Skipping some 
al
ulations, the engine e�
ien
y relatedto reservoir A be
omes for this �proto
ol�:

ηswapen = 1 − c∆EC + b∆EB

∆EAwith the 
oe�
ients c = XB−XA

XC−XA
and b = XC−XB

XC−XA
. It is easy to show that this ex
eeds theengine e�
ien
y obtained for the 
ase where 
onta
t equilibrium was assumed, providedthat the order of the lo
al energy splittings is ∆EA > ∆EC > ∆EB. Similarly, the sameapplies to ∆EA > ∆EB > ∆EC for 
lo
kwise operation. The 
onverse holds for the heatpump e�
ien
ies related to the bath of unit A, respe
tively.This simple s
enario points at a mu
h more fundamental 
on
lusion, namely, the bestway to transport heat in spin systems 
an be performed by swapping of states, beingrather a quantum me
hani
al way of 
ontrol (
f. [45℄). Therefore this may be thefavorable operation method for quantum ma
hine networks.
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6. Complex Quantum Ma
hine Cir
uitsPSfrag repla
ements Conne
tor Unit AUnit B1

B2

B3

BN

ReservoirGas spinBath 
onta
t spinFigure 6.2.: Quantum ma
hine network. The 
onne
tor spins 
ouples unit A, runningas heat engine, to units B1, . . . , BN whi
h are heat pumps.6.1.2. Cir
uit of N Ma
hine UnitsThe three-ma
hine 
ir
uit from Se
. 6.1.1 is now extended to N heat pump 
lients
Bj, j = 1, . . . , N as depi
ted in Fig. 6.2. The order of lo
al energy gaps of bath and
onne
tor spins is 
hosen as ∆EA > ∆EBj

> ∆Em for any j. The average distributionof the 
onne
tor spin now reads
Xm ≡ tanh

∆Em

2Tm
=

1

N + 1

(
N∑

j=1

tanh
∆EBj

2TBj

+ tanh
∆EA

2TA

)

. (6.5)Using analog shorthand notations (e. g. XBj
= tanh

∆EBj

2TBj

), the heat transported out ofthe heat engine unit A through the 
onne
tor spin and the respe
tive work be
ome
QA→m =

∆Em

2
(XA −Xm) and WA =

1

2
(∆EA − ∆Em) (XA −Xm)while all heat pump 
lients Bj together perform the work

W = −1

2

N∑

j=1

∆EBj
(Xm −XBj

) .The global engine e�
ien
y yields
ηtoten = 1 −

∑N
j=1 ∆EBj

(Xm −XBj
)

∆EA(Xm −XA)
. (6.6)Espe
ially for equal energy splittings ∆EB1

= ∆EB2
= . . . = ∆EBN

≡ ∆E this be
omes
ηtoten = 1 − ∆E

∆EA

.If all bath spins exhibit the same distributions, XB1
= XB2

= . . . = XBN
, we wouldobtain

ηtoten = 1 −
∑N

j=1 ∆EBj

N∆EA

.86



6.2. Generalized quantum ma
hine networksFinally, for M heat engines A1, A2 . . . AM and N heat pump 
lients B1, B2, . . . , BN ,Eq. (6.6) is modi�ed to
ηtoten = 1 −

∑M
j=1 ∆EBj

(XBj
−Xm)

∑N
i=1 ∆EAi

(XAi
−Xm)

(6.7)For the �rst spe
ial 
ase, ∆EAi
≡ ∆EA and ∆EBj

≡ ∆EB, we obtain
ηtoten = 1 − ∆EB

∆EAFor the se
ond spe
ial 
ase where all XAi
and all XBj

are equal amongst ea
h other,
ηtoten = 1 −

N
∑M

j=1 ∆EBj

M
∑N

i=1 ∆EAi

.By simply 
ombining all these expressions it should be able to 
al
ulate the e�
ien
ies forarbitrary 
omplex quantum ma
hine 
ir
uits within the frame of the ideal des
riptionof the Quantum Otto 
y
le. Therefore only some simple elementary 
ases have beenpresented here. In pra
ti
e, however, it remains yet un
lear what would happen ina
tual network s
enarios under 
onsideration of 
orrelations and leakage 
urrents and,primarily, an energeti
 up-shift of the 
onne
tor spin in analogy to Ch. 5.6.2. Generalized quantum ma
hine networksFinally, 
onsider a simple array of four elementary quantum ma
hine 
ir
uits as displayedin Fig. 6.3. They are all driven in-phase and 
oupled to a heat bath on one side and toan edge or node spin of a spin network mesh on the other side. All node spins featurethe same lo
al energy splitting ∆Em. The energies of the bath spins are determinedby their lo
al energy gaps ∆EAi
and the respe
tive bath temperatures TAi

. The energyexpe
tation values shall be ordered
〈EA1

〉 > 〈EA2
〉 > 〈EA3

〉 > 〈EA4
〉When the gas spins of all units simultaneously are in resonant 
onta
t with the respe
-tive node spins, the latter will adopt the 
orresponding bath spin distributions afterequilibration, being

Xmi
≡ tanh

∆Em

2Tmi

= tanh
∆EAi

2TAiwhere Tmi
are the respe
tive node spin temperatures.In the following the whole spin mesh is supposed to relax into equilibrium, leadingto an overall average distribution. This is 
ompleted by heat 
urrents equalizing thedi�eren
es between the distributions XAi

of the node spins. Indeed su
h a behavior isfound in Heisenberg-
oupled spin rings [46℄. 87



6. Complex Quantum Ma
hine Cir
uits
PSfrag repla
ements
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bathdriven spinbath 
onta
t spinnode spin
Figure 6.3.: Network mesh of four quantum ma
hines Ai (i = 1, 2, 3, 4) 
onne
ted vianode spins mi (see text). The gas, node and bath 
onta
t spins are repre-sented by arrows, small and big dots, respe
tively.In analogy to an ele
tri
 
ir
uit, it is thus manifest to interpret the di�erent dis-tributions XAi

of the node spins as potentials. Then the potential di�eren
e Uij =
∆Em

2
(XAi

−XAj
) between the nodes of units Ai and Aj 
an be 
onsidered as a kind ofvoltage. It is easily veri�ed that along one mesh all Uij-terms add up to zero,

∑

i,j

Uij = 0 .This is analog to the Kir
hho� mesh rule for ele
tri
al 
ir
uits, ex
ept that here thevoltage only exists at the beginning but not during the whole 
y
le be
ause equilibriumshall be attained within the mesh at the end of ea
h 
y
le. Nevertheless, a

ording toSe
. 6.1.1 heat 
urrents emerge due to the potential di�eren
es sin
e a heat quantity ise�e
tively transported per period.At all edges of the mesh the heat 
urrent in�ows and out�ows add up to zero due toenergy 
onservation,
∑

i

Ji ≡
∆Em

2

∑

i

(XAi
−Xmi

) = 0 ,
f. Se
. 4.1. This 
an be seen in relation to the Kir
hho� node rule, in turn.Summarizing, under the simplifying assumptions of the ideal Quantum Otto 
y
lemodel a 
ir
uit of quantum thermodynami
 ma
hines 
an be 
ompared to an ele
tri

ir
uit. Hereof analogs to the Kir
hho� rules arise. These should prin
ipally be appli
a-ble also for more general su
hlike heat pump networks where nodes are not ne
essarily
oupled to in�nite heat reservoirs as indi
ated in Fig. 6.3, but also to neighbored meshes,serving as e�e
tive heat baths likewise in Ch. 5.
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7. Quantum Ma
hines versusBrownian MotorIn this thesis, only ma
hine models realized with spin 
hains have been investigatedso far. Another 
lass of mi
ros
opi
 systems being able to 
onvert heat into work areBrownian motors. A Brownian motor is generally understood to be based on someparti
les in 
onta
t with one or several heat baths from whi
h thermal �u
tuations arise.Consequently, the parti
les are exposed to non-equilibrium. A further typi
al ingredientis a spatial rat
het potential whi
h has the fun
tion to re
tify these �u
tuations, resultingin a net 
urrent of parti
les.If a load for
e is added against the dire
tion of this 
urrent, me
hani
al work maybe extra
ted. This 
an be interpreted as an energeti
 transfer from the motor to theload, or in that the potential energy of the parti
les raises [22℄. A famous exampleis the rat
het-and-pawl setup by Feynman [47℄, see also [48℄. Further appli
ations arewidespread in 
ell biology and nanote
hnology.A spe
ial 
lass of Brownian motors is given by the Sakagu
hi model, see e. g. [49℄where the Brownian parti
le moves in a spatially periodi
 and asymmetri
 potential andalternately intera
ts with two thermal baths of di�erent temperatures in spa
e. Thisrat
het pi
ture in 
ombination with non-equilibrium is allows to break detailed balan
e,i. e. di�erent probabilities to 
ross the potential barriers in either dire
tion are neededfor dire
ted parti
le �ux. In general, the motion of parti
les is governed by a Langevinequation
ẋ(t) = −1

γ
U ′(x, t) − 1

γ
Fext +

√

2D(x, t) ξ(t) (7.1)relating the parti
le velo
ity ẋ to the gradient of the spatial potential U ′(x, t), theexternal for
e Fext and a Gaussian noise ξ(t) following the auto 
orrelation fun
tion
〈ξ(t)ξ(t′)〉 = δ(t− t′). The vis
ous drag 
oe�
ient γ and the di�usion 
oe�
ient D(x, t)obey the dissipation relation γD(x, t) = kBT (x, t) where T denotes the absolute tem-perature and kB the Boltzmann 
onstant [19℄.In the same referen
e the model depi
ted in the upper part of �gure 7.1 is dis
ussed,being similar to the Sakagu
hi 
ase. The potential U(x) is time-independent but inho-mogeneous in spa
e. A parti
le moving in x-dire
tion is mainly in 
onta
t with a hotreservoir at temperature Th, only on small segments it is exposed to a 
old reservoir attemperature Tc. The parti
le motion is re
ti�ed rightwards as the 
ooling happens on ades
ending part of the potential. At the potential barriers the hot reservoir raises theparti
le's energy by ∆E = ∆W , whereas the heat ∆Q is transferred to the 
old bath.If this work is expended against some load, the hot reservoir has to be re
harged with89



7. Quantum Ma
hines versus Brownian Motor
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Figure 7.1.: Upper part: generalized rat
het pi
ture of a Brownian motor, lower part:ma
hine 
hain pi
ture
∆W + ∆Q. On the other hand, in the load-free 
ase where all of the work ∆E = ∆Wis dissipated ba
k into the hot reservoir as the parti
le moves along the down-slides oflength L, only a re
harging with ∆Q is ne
essary. As depi
ted in the lower part ofFig. 7.1 this s
enario 
an be mapped onto a periodi
 array of heat engines 
onne
ted viathe said down-slides at temperature Th. Supposed that the heat engines work reversiblyin the load-free 
ase, the heat ∆Q to re
harge the engines is

∆Q+ ∆E

Th
=

∆Q

Tc
=⇒ ∆Q =

Tc

Th − Tc
∆EThis may be realized by reversibly operating a heat pump between both reservoirs:

∆Q

Th
=

∆Q−Ein
Tcyielding a minimum energy input per period of Ein = (Tc/Th)∆E. Otherwise the heat

∆Q is simply lost.With regard to dire
ted heat transport, this model of serially 
onne
ted heat enginesis very similar to the serial quantum ma
hine 
ir
uits from Ch. 5. It may be argued thata heat engine 
ombined with a down-slide in the Brownian Motor model 
orresponds toone pair of a heat engine and a heat pump in the serial 
ir
uit model. As depi
ted inFig. 7.2 the latter is arranged as a 
hain between two heat baths. Spatial asymmetry90



PSfrag repla
ements
Hotbath
Th

Coldbath
Tc

∆Esm∆Esm
∆Eb∆Eb∆Eb engineengine pumppump. . . . . .
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Figure 7.2.: Chain of pairwise arranged quantum heat engines and heat pumps betweentwo thermal reservoirs. ∆Esm,∆Eb are the lo
al energy gaps of the 
on-stantly split spins n = 1, . . . , N .is arranged for by the 
onstant lo
al energy splittings of spins n = 1, . . . , N , whi
h mayonly take one of two values, say ∆Esm(all) < ∆Eb(ig). For any gas spin i in betweenwith lo
al energy splitting ∆Ei(t) the resonan
e 
ondition ∆Esm ≤ ∆Ei(t) ≤ ∆Eb mustapply.While in the rat
het model energy transport happens via a parti
le moving throughthe potential lands
ape and steadily being in 
onta
t with the thermal environments,the spins transporting heat in the quantum ma
hine model are spatially �xed, and thewhole 
hain is only lo
ally 
oupled to in�nite heat reservoirs at the end of the 
hains.In between, the sole environment to ex
hange energy with is the external driving sour
ewhi
h a
ts as working reservoir and enables the heat 
urrent to over
ome the potentialbarriers by modulating the lo
al energy gaps of the gas spins. As dis
ussed in Se
. 3.2.1a semi-
lassi
al driver su
h as an external magneti
 �eld is inappropriate for this purposesin
e the work released by the ma
hine units 
annot be extra
ted. A better option is to
ouple the gas spins to harmoni
 os
illators, 
f. [14℄.Given a reversible working reservoir, no ex
ess energy is lost if an amount of work ∆Wis applied to one of the heat pumps in Fig. 7.2. The same work −∆W rather is releasedagain by the heat engines 
orresponding to the down-slides in the rat
het model. Forreasons of simpli
ity, this is made plausible here with the model of the ideal QuantumOtto 
y
le, negle
ting any kind of dissipative e�e
ts.The 
ondition of energy 
onservation for the heat 
urrent through the spin n with
∆En = const reads (
f. (3.17) and (5.2))

∆En

2

(

tanh
∆En−1

2Tn−1

− tanh
∆En

2Tn

)

=
∆En

2

(

tanh
∆En

2Tn

− tanh
∆En+1

2Tn+1

)

,leading to the distribution
tanh

∆En

2Tn

=
1

2

(

tanh
∆En−1

2Tn−1

+ tanh
∆En+1

2Tn+1

)

.This 
an �nally be redu
ed to an expression only depending on spins 1 and N whi
h,respe
tively, exhibit the same temperatures temperatures Th and Tc as the baths,
tanh

∆En

2Tn
=

1

N − 1

(

(N − n) tanh
∆E1

2Th
+ (n− 1) tanh

∆EN

2Tc

)
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7. Quantum Ma
hines versus Brownian Motorwhere ∆E1 = ∆Eb and ∆EN = ∆Esm.Thus, the 
anoni
al distributions of all 
onstantly split spins mark a gradient dire
tedfrom the hot to the 
old bath whi
h is tantamount to global non-equilibrium. If now thegas spin between spins n− 1 and n works as heat pump, i. e. ∆En−1 = ∆Esm < ∆En =
∆Eb (
f. Fig. 7.2), the work to be applied is

∆Wn−1,n =
1

2(N − 1)
(∆Esm − ∆Eb)(tanh

∆E1

2Th
− tanh

∆EN

2Tc

)

> 0and, 
onsequently, in the heat engine between spins n and n+1 the same amount of work
∆Wn,n+1 = −∆Wn−1,n < 0 is released. In this most ideal situation the obligatory heatquantity ∆∆Q = ∆Esm

2(N−1)
tanh ∆Esm

2Tc
must be paid only on
e to the 
old bath at the endof the spin 
hain. In 
ontrast, for N potential barriers in the rat
het the heat quantity

N∆∆Q is lost.Interpreting both model systems as possibilities for dire
ted heat transport, the quan-tum ma
hine 
hain would be favored under ideal 
onditions, the more so as phase-
oherent driving may be enabled.The presen
e of leakage 
urrents would 
hange the situation, however. Losses withinea
h partial heat pump then do require 
ompensation, to be furnished by the externaldriving sour
e. Therefore the said advantage of the spin 
hain model is likely to beredu
ed for dynami
al s
enarios. On the other hand, losses might be kept small for asu�
iently large global temperature gradient.Ref. [19℄ mentions further that the spatial temperature dependen
e in the rat
hetmodel (upper part of Fig. 7.1) may be dissolved by applying the transformation {T, U, x} →
{κT, κU, κx} with κ = Th/Tc to the segments at temperature Tc, 
hanging their heightand length. In the following all potential barriers vanish and all down-slides line upas one straight slope along whi
h the Brownian parti
le moves unidire
tionally, drivenby alternating segments at temperature Th and Tc representing the heat engines in thelower part of Fig. 7.1.Similarly, for the sole purpose of dire
ted heat transport, the des
ribed s
enario ofa 
hain of quantum ma
hines and heat pumps may likewise be repla
ed by a simplehomogeneously split spin 
hain, featuring unidire
tional heat transport from the hot tothe 
old heat reservoir.It remains an open question if the 
onsidered 
hain of quantum ma
hines representssomething like the quantum limit of a Brownian motor, i. e. if one 
an be mapped ontothe other. The similarity of both models nevertheless 
alls for further resear
h.
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8. Summary and OutlookHow small 
an quantum systems be in order to work as thermodynami
 ma
hines? Downto what s
ales is it possible to downs
ale modern devi
es for this purpose, and wheredoes the transition from 
lassi
al to quantum thermodynami
 behavior a
tually o

ur?In this work numeri
al simulations on several quantum ma
hine models realized withmodulated spin 
hains have been presented and 
hara
terized with regard to e�
ien
yas well as heat and work 
hara
teristi
s.All this has been built on a basi
 approa
h given in [16, 15℄, where it was �rst shownthat a single spin 
an run a thermodynami
 
y
le, more pre
isely a Quantum Otto 
y
le.For further 
omparison, an idealized des
ription of su
h a Quantum Otto 
y
le [11℄was 
onsulted and veri�ed numeri
ally by manipulating the spin-spin 
oupling strengthwithin the three-spin ma
hine.With regard to extended quantum ma
hine 
ir
uits, it has been found that, in a �rstorder approximation, extended models su
h as paralleled units also run Quantum Otto
y
les, show a similar behavior as the basi
 three-spin ma
hine model. The same appliesto serial 
ir
uits in
luding their subunits. Here the 
onne
tor spins not only arrangefor lower heat 
ondu
tivity but also appear as e�e
tive �nite heat baths, shielding thesubunits from ea
h other and determining their lo
al mode of operation as heat engineor pump. This in�uen
e be
omes 
ru
ial for models with tapered internal temperaturegradients sin
e, in this 
ase, the e�e
tive bath spins are heated up. This eventually leadsto 
onsiderable dissipation e�e
ts.The 
on
ept of serial and parallel quantum ma
hine networks 
an be expanded tomore 
omplex arrangements. Some examples hereof have been presented with respe
tto the ideal Quantum Otto 
y
le. It has been shown that the behavior of heat 
urrentin a spin 
hain 
an be mapped to that of ele
tri
al 
urrent in an ele
tri
 
ir
uit, andanalogs to the Kir
hho� rules apply.Moreover, 
omparisons with other models of dire
ted heat transport are feasible, whi
hhas been shown for the rat
het model for a Brownian motor.All these quantumma
hine models share the general problem of being high-dimensional,why analyti
al quantum me
hani
al des
riptions are hardly available and numeri
al in-vestigation 
ould only be 
arried out so far for dynami
 models with no more than�ve spins. For these reasons more detailed 
omprehension of a
tual pro
esses in these
omplex systems is hard to set. Thus, 
ommon e�e
ts su
h as leakage 
urrents and dis-sipation had to be approa
hed via a phenomenologi
al ansatz while 
orrelations 
ouldonly be invoked on a qualitative level.Remedy 
an possibly be found in a promising re
ent approa
h to quantum thermo-dynami
 pro
esses with external 
ontrol [50℄ whi
h also may be able to yield analyti
alexpressions for the e�
ien
y of a quantum ma
hine at maximum power output. A93



8. Summary and Outlook
omparison to the results obtained so far will be subje
t of future investigation. Thein
lusion of quantum e�e
ts into the dis
ussed models will be of similar importan
e. Apotential starting point for this purpose is furnished by [43℄.Nevertheless, the presented approa
hes and underlying 
on
epts are able to deliver atleast qualitative insight into the 
ompli
ated dynami
s of the treated 
lass of thermo-dynami
 ma
hine models from a theoreti
al viewpoint.Anyway, it will �nally be left to experiment to realize thermodynami
 pro
esses inquantum systems su
h as spin 
hains. Not until then will it reveal if the 
on
eptspresented here are really appli
able in physi
al sense.
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A. Appendix: Note on Numeri
alMethodsAll models treated in the present work have been solved in Mathemati
a with the help ofa four-step Runge-Kutta algorithm and the notepads Temp-tools [44℄ and QMDef [51℄.As mentioned, 
losed analyti
al solutions are impossible to obtain due to the highdimensionality of the Liouville spa
es 
orresponding to the 
onsidered spin systems. Forreasons of insu�
ient memory and enormous runtime requirements numeri
al investiga-tion of these dynami
al s
enarios had to be limited to �ve spins up to the present.In order to solve the master equation for the redu
ed density matrix ˆ̺ of the spinsystem after [17℄ (see 
hapter 2.3) the Liouville super-operator L̂ is 
al
ulated for agiven number of sampling points using [44℄, then interpolated over one period τ = 2π/ωand periodi
ally 
ontinued. This handling is possible be
ause L̂ does not depend onthe a
tual state of the system but only on the (known) time-dependent eigenvaluesand 
onstant given parameters (temperatures, 
oupling 
onstants et
.), and providesan enormous advantage in runtime, 
ompared to the 
al
ulation of L̂ four times per
al
ulation step. Furthermore, the initial system state ˆ̺int is usually 
hosen a globalthermal state for reasons of simpli
ity.The 
hosen step size is h = 0.2 time steps whi
h is small enough to avoid the tra
eor the diagonal elements of ˆ̺ from diverging. At the same time, arriving at the non-equilibrium attra
tor state of L̂ requires evaluation over a large enough number of timesteps. For three- and four-spin models a total time of Tf = 10, 000 time steps is su�
ient,whereas for �ve-spin models Tf = 30, 000 is ne
essary. In general, a too small value of
Tf will be indi
ated by non-
omplian
e of the Gibbs relation for the whole system,
∆W + ∆Q 6= 0. In addition, the relative numeri
al error herein only remains negligible(< 1%) for adequately small intervals in terms of the periodi
 time τ = 2π/ω in whi
hdata points are saved to a �le for further evaluation.Another di�
ulty arises from the fa
t that Mathemati
a, but also other interpreters,usually sort numeri
al eigenvalues by order. Whenever energy level 
rossings o

ur inthe observed four-and �ve-spin systems, the order of energy eigenvalues and eigenve
torsis therefore altered. As a 
onsequen
e, 
al
ulating the system state in the system energyeigenbasis leads to a wrong Liouvillian L̂ and to meaningless results. This problem 
anbe 
ir
umvented by moving to a produ
t basis, but for the sake of runtime, sin
e thenall matri
es to be multiplied 
ontain 
onsiderably more non-zero entries.For evaluation, the density matrix entries are interpolated again over the whole rangeof time evolution. The heat 
urrents follow from (2.78) while the lo
al states of the singlespins and spin groups are obtained by the routines RedStateQubit and Tra
eOutQubit[51℄, respe
tively. The lo
al temperatures are extra
ted by the fun
tion TempSpin [44℄.95



A. Appendix: Note on Numeri
al MethodsThe Work ∆W and heat ∆Q result from integrating the ST -
urves and heat 
urrents Jover one period as dis
ussed in Se
. 3.1, using a simple Newton integration algorithm.This work has been written in LATEX. All �gures were 
reated in Inks
ape, diagramswere plotted with Gnuplot.
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