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1. Introduction

Since modern applications in the realm of physics shrink more and more towards quan-
tum scales, the question of how classical thermodynamics could be understood on the
basis of quantum mechanics has grown in importance. It has recently been shown that
entanglement between a small quantum system and its large environment leads to a
local equilibrium state and thus to thermodynamic behavior, without any further as-
sumptions to be invoked [1, 2]. This has not been the case so far for previous descriptions
of statistical mechanics introduced by Boltzmann [3], describing the emergence of clas-
sic macroscopic behavior out of few microscopic properties. For example, the widely
accepted Gibbsian ensemble theory does not get along without ergodicity [4|, being
plausible but incapable of proof.

The present work deals with thermodynamic machines on the quantum level. An
adequate description of corresponding machine cycles first requires mapping of the es-
tablished classical thermodynamic variables to quantum mechanical analogs, which is
done by exploiting typical properties of quantum systems such as energetic discreetness.
For example, work and heat may be linked to the temporal change of the spectrum
and the occupation probabilities, respectively. Also the definition of a temperature in
quantum systems is feasible if correlations such as entanglement are small [5].

Like in the classical case, two basic conditions precedent to a quantum machine cycle
are the presence of asymmetry, following the Curie principle [6|, and agreement with the
second law of thermodynamics. Thus, on the one hand, a quantum system running a
thermodynamic cycle needs to be coupled to two environments of different temperatures
to exchange heat with. Moreover, internal asymmetry is required in order that work is
released or consumed by the system during interaction with a work reservoir. On the
other hand, it is generally claimed that the celebrated Carnot efficiency can never be
exceeded by a quantum machine either.

An early investigation of a quantum thermodynamic cycle is given in |7|. More recent
approaches are found in [8] and [9, 10, 11|, where externally driven discrete quantum
systems interacting with environmental baths are analyzed. Further on, discussions of
quantum thermodynamic machines are provided in |12, 13]|. Eventually, |14] deals with
a study on an autonomous machine model.

In the frame of this work a previously investigated model of an inhomogeneously split
Heisenberg spin chain locally coupled to two heat baths with different temperatures
[15, 16] is used. The baths are modeled by a master equation under Born-Markov ap-
proximation featuring a non-equilibrium state as stationary solution |17, 18]. Depending
on the global temperature gradient and the local Zeeman splittings the system runs as
a heat pump or heat engine if a part of the chain is periodically modulated by an ex-
ternal field. The driven spin is in a thermal state due to the decohering bath influence
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and thus has a local temperature and thermal entropy. If it comes into resonance with
the bath contact spins a heat current between the system and the baths occurs. This
thermodynamic cycle on the quantum level is identified as Quantum Otto cycle. The
thermodynamic variables heat and work are controlled by the temporal change of the
spectrum and the occupation probabilities, respectively.

After an overview of pertinent theoretical concepts in chapter 2, the quantum ther-
modynamic machine model described above is introduced in 3 with respect to the ideal
Quantum Otto cycle, assuming perfectly controlled cycle steps. In the following, exten-
sions to the three-spin model are numerically investigated and compared to each other
with respect to essential thermodynamic properties such as efficiency and heat transport
capability. Hence chapter 4 deals with quantum machines connected in parallel whereas
chapter 5 points at serial circuits.

Further on, chapter 6 gives a short outlook of more complex quantum machine circuits
of which some examples are treated. Finally, the models presented in chapter 5 are
mapped on a scenario of a thermal Brownian motor [19] in chapter 7.



2. Theoretical Basics

2.1. Classical Thermodynamics

2.1.1. Gibbsian Fundamental Form

The intrinsic energy U of a thermodynamic system is generally described by the Gibbsian
fundamental form

AU =dQ +dA=TdS + Y _ &dX; (2.1)

where the entropy S and the generalized volumes X, are energetic extensive variables
defined in phase space. The conjugated energetic intensive variables are temperature T’
and the generalized pressures &;:

oUu ou

=35 S oy,

(2.2)

For any closed path in phase space energy is conserved: de = 0. A periodic process
therefore returns to the initial state after one performed cycle |20].

2.1.2. The Second Law of Thermodynamics

The second law can be expressed in multiple ways. For example, it is impossible to con-
struct a periodically working machine which simply converts heat from a single reservoir
into mechanical work. Another way of explanation is to say that heat never sponta-
neously flows from a colder to a hotter reservoir. In terms of entropy this is expressed
as

dsS >0. (2.3)

The equal sign holds for reversible processes where no entropy is produced and the
described thermodynamic system remains in a global stationary equilibrium state. Oth-
erwise an irreversible process is on hand which does not autonomously run backwards,
rather entropy has to be produced somewhere else in the world in order to reverse it.

From a macroscopic point of view this behavior is intuitively clear as it corresponds
to everyday experience. From a microscopic point of view, however, one would not
initially expect that a system should evolve irreversibly into a stationary state since the
classical microscopic Hamilton equations as well as Hamiltonians are invariant under
time inversion and therefore should yield reversible dynamics.

Thus, further assumptions are needed in order to derive the second law from the
microscopical equations of motion, the more so as those cannot be calculated for each
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single particle. One approach is given by Boltzmann’s postulate, linking entropy to
the number of accessible microstates under given macroscopic constraints. Further, the
Gibbsian ensemble approach introduces a statistical ensemble in which each accessible
microstate is virtually represented by a point in phase space I'. For big systems the
discrete ensemble of points passes into the density of states, giving the probability to find
the system in a certain space element of I'. Since the concept of quasi-ergodicity claims
the system trajectory to come arbitrarily close to every possible point of I' within its
evolution in time, the temporal system average is replaced by an ensemble average over
all microstates for infinite timescales. However, these assumptions cannot be generally
proved. In addition, irreversibility has to be introduced rather artificially by the concept
of “coarse graining”.

These deficiencies are overcome by the theory of quantum thermodynamics, being a
recent approach based on quantum mechanics where the evolution of a small quantum
system weakly coupled to a bigger environmental system is investigated. It turns out
that the derivation of the second law out of Schrodinger dynamics is possible without
further assumptions such as ergodicity or coarse-graining. More detailed descriptions
may be found in |21, 2, 1].

2.1.3. Carnot Cycle

In the frame of this thesis about quantum thermodynamic machines their classical equiv-
alents shall be briefly described first. See also [20].

A Carnot cycle is a periodic thermodynamic process where energy in the form of heat
and work is transferred between two heat reservoirs of different temperatures 7}, and T,
referred to as the hot and the cold bath, respectively, and a reversible work reservoir
such as a piston. The latter always features constant entropy since it exchanges no heat
with the working gas, and neither do the heat reservoirs exert any work. In order to
fulfill these conditions the cycle has to run in the quasistatic limit, that is, infinitesimally
slow.

Furthermore, an auxiliary system is needed which must not count for the overall
energetic balance. Thus, it necessarily has to be restored to its initial state after each
cycle. It represents the virtual physical machine and is realized by an ideal working gas
in most instances.

If heat is about to be transferred into mechanical work, the system works as heat
engine. If otherwise mechanical work is applied in order to transport heat from the cold
to the hot reservoir, the system works as heat pump or refrigerator.

The Carnot cycle runs in four steps:

1. Isothermal expansion: The working gas, initially at temperature T}, is coupled to
the hot bath and to the piston at the same time. Then a heat flux AQ); emerges
from the hot bath to the working gas. The latter therefore expands and transfers
an amount of work AW to the piston.

2. Adiabatic expansion: The working gas is decoupled from the hot bath and under-
goes an isentropic expansion until its temperature equals that of the cold bath, 7.
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A further amount of work AW is transferred to the piston.

3. Isothermal compression: The working gas gets coupled to the cold bath into which
it ejects a heat quantity AQ). while receiving the work AWj3 from the piston.

4. Adiabatic compression: After having been decoupled from the cold bath, the work-
ing gas undergoes an isentropic compression during which it receives the work AW,
from the piston, until it reaches again the temperature 7}, in order to return to its
initial state.

The Gibbs relation for one completed cycle reads
AU =AW +AQ =0, (2.4)

corresponding to a closed path in phase space. The entire amount of work exchange
between the working gas and the piston then is

AW = AQy + AQ, = AS(Ty — To) (2.5)

which can be calculated with the help of the ST-diagram. Hereof the efficiency of the
Carnot engine follows, indicating the minimum heat quantity to be taken from the hot
bath in order to exert a given amount of work:

Carnot — — _ & 26
nen AQ Th ( )

In analogy to this, the Carnot heat pump efficiency is defined as

nCarnot — AQ — 1
P AW 1 —

- — 1/7]Carnot (27)

en Y
T

indicating the minimum amount of work to be carried out in order to pump a certain
heat quantity from the cold to the hot bath. According to the second law the entropy
balance reads

Qh Qc
— 2 =8 .4>0 2.8
Th + TC prod — ( )
where Sp,q denotes the entropy production per cycle [22]. For the ideal (reversible)
Carnot cycle equality holds. For this reason 5™ is the fundamental limit of a ther-

modynamic engine efficiency which cannot be exceeded.
In practice, thermodynamic cycles neither run quasistatically nor ideally why, after
(2.8) entropy is produced due to dissipation. This results in the engine efficiency

Carnot __ TCSPFOd

0= N 0 (2.9)
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Carnot Engine Efficiency at Maximum Power QOutput

The ideal Carnot machine runs infinitesimally slow and therefore has zero power output.
In [23] the efficiency for a heat engine with maximum power output running on finite

timescales was derived,

T.
NPmax = 11— ? . (210)

Since the bath contact times during the isothermal steps are limited, a finite heat con-
ductance within the supplies between the working gas and the baths is assumed. This
leads to entropy production, causing the cycle to be irreversible. The working gas itself
still performs an ideal Carnot cycle but only “sees” effective bath temperatures.

2.1.4. Otto Cycle

The Otto cycle consists of two adiabatic and two isochoric steps. On the isochores the
position of the piston, i. e. the volume of the ideal working gas remains constant whereas
its temperature changes. Thus, work is carried out only on the adiabats. The efficiency

of the Otto cycle is given as
v\ (1)
note — 1 — (—2) (2.11)

where V5 < V) denote the volumes the working gas takes up on the isochores, and ¢,
and ¢, are the specific heats at constant pressure and volume, respectively.

At the beginning of an isochoric step there is a finite temperature gradient between the
working gas and the respective bath it is exchanging heat with. Since reversible operation
requires a quasi-statical heat flux between the gas and the reservoir, an ideal isochore
cannot simply be equivalent to one single bath contact but rather to a series of contacts
with multiple baths at different temperatures. For this reason the maximally achievable
classical Otto cycle efficiency is always smaller than the Carnot efficiency, n©t° < pCarnot
since, in order to achieve maximum efficiency, a reversible machine process must not run
between more than two reservoirs at given temperatures. This, in turn, is exactly the
case for the Carnot cycle. See also [24, 20).

2.1.5. Serial Circuits of Thermodynamic Machines

In order to obtain an expression for the efficiency of a serial circuit of thermodynamic
machines, we consider a chain of N coupled machines of same type, say Carnot or Otto
machines, between two heat baths without any additional infinite heat sinks or sources
in between. Each subunit may either run as heat engine or heat pump. If the entire
circuit works as heat engine, its total efficiency 1" can then be calculated out of the

en

local subunit efficiencies n, = W;/Q; with the following expression [25]:

N

T]mt:ii\f:Wi:LNX_:lQi—QHl:1—%:1_1—[(1—771') (2.12)
en Qh — Qh — Qh o en
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Hot bath Subunit ¢ Cold bath

Figure 2.1.: Illustration of a serial thermodynamic circuit

where @y, Q); and @)y stand for the amounts of heat taken from the hot bath, flowing into
subsystem ¢ and ejected into the cold bath, respectively. This is illustrated in Fig. 2.1.
Each subunit carries out or consumes an amount of work W, with W = va W; < 0.
The local efficiencies 7; of the subunits can be positive or negative, depending on the
local mode of operation. If W > 0, the entire system works as heat pump with a total
efficiency ni*" = 1/

In general, for one subunit the local mode of operation as heat pump or engine is
determined by those of the adjacent ones. If Carnot machine units are connected in
series, the local modes of operation must be chosen such that the working gases of
adjacent subunits exhibit identical temperatures if being in contact. Contrarily, in the
case of a chain of mutually coupled Otto machines the strokes of subsequent machine
units have to match.

2.2. Basic principles of quantum mechanics

2.2.1. Schrodinger Equation

The dynamic evolution of a quantum mechanical system in a time-dependent state [(t))
is governed by the Schrodinger equation

(1) (1)) = 5 (1) (2.13)

where H(t) denotes the system Hamiltonian and |¢)(¢)) the system state at time ¢. The
latter is a vector in a N-dimensional Hilbert space H and can be developed into a
complete orthonormal basis |n) spanning H:

N

W) =S ca®ln)  with 3 [n)(n| = 1 (2.14)

n=1

where ¢, (t) = (n|(t)) are time-dependent coefficients. Following the statistical inter-
pretation of quantum mechanics, a state has the meaning of a probability amplitude,
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thus its absolute square represents a probability density. For normalized states |¢)) with
W) =D ey (min) =Y crcubp, = Y leal® =1 (2.15)
the coefficient squares |c,|? denote the probabilities to find the system in the respective
states |n). In this basis the Hamiltonian can be written as a matrix with the elements
Hpp = (m| H |n) . (2.16)
For a time-independent Hamiltonian H(t) = H the formal solution of (2.13) is
() = e MR (t0)) = Ut to) [1(t)) - (2.17)
Here U(t,t,) is the unitary time-evolution operator with
Ul =00t =1. (2.18)

According to the Ehrenfest theorem, the projector P = [n)(n| to an energy eigenstate
|n) of H obeys the relation

(P =0 = (P) = {In)nl) = (ln) (nle) = |e|* = const (2.19)

why the energy distribution is conserved.

2.2.2. Density Operator

A quantum mechanical state can most generally expressed by the density operator o.
Some elementary properties of ¢ are:

e Normalization:
Tr{o} =1 (2.20)

where Tr{...} is the trace operator.
e Hermiticity: 9 = o
e The expectation value of an arbitrary operator Bis

(B) = Tr{@B}. (2.21)

e Purity: P =Tr{p*} <1

Here the equal sign only holds for a pure state ¢ = |¢)(x| which is exactly known.
Otherwise the state is called non-pure or mixed, that is, maximal information about it
is not available. In the case of a discrete spectrum the spectral representation of a mixed

state reads
o= pilvi) (il . (2.22)
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Due to the conditions given above, ¢ is positively definite. The eigenvalues p; are real
positive numbers and their sum equals unity:

sz‘zl pz:p;k 0<p <1. (2-23)

They can thus be interpreted as probabilities of the system to be in one certain state
out of the mixture of pure states |1;).

2.2.3. von-Neumann equation

For the density operator, the equivalent to the Schréodinger equation (2.13) is the von-
Neumann equation

olt) = —1 [0 a(0)] = £(2(0) (2.24)

which describes the system evolution under Schrodinger dynamics. The super-operator
L is defined in Liouville space and acts on the density operator ¢ defined in Hilbert
space. In general, a Liouville super-operator transforms one Hilbert space operator into
another.

Interaction Picture

If the system Hamiltonian is given as the sum of a constant and a time-dependent part,
H(t)=Hy+V(1), (2.25)

the von-Neumann equation can be written as

Corlt) = — [Va(0), o1 (1) (2.26)
with A A
01(t) = eflolt=to)/h 5y o=iHolt=to)/h = [T (¢ 40) 6(£) Uy (t, to) (2.27)
and
Vi(t) = U(t, 1)V () Uy (t, to) (2.28)

with the unitary time evolution operator Uf(¢,ty) (see e. g. [26]). Passing to the inter-
action picture, the time dependence of the density matrix is partially transferred to the
Hilbert space H. The case of V(t) = 0 marks the Heisenberg picture, if Hy = 0 we are
again in the Schrodinger picture.

2.2.4. Von-Neumann Entropy

For a state ¢ the von-Neumann entropy S(9) is defined as

S(9) = —kg Tr{oln o} (2.29)
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where kg is the Boltzmann factor. The von-Neumann entropy is invariant under unitary
evolution,

S (07t t0)a(t0) Ut 0) ) = S(elt) (2:30)

Likewise the purity defined above, the entropy is a measure for the pureness of states.
A pure state has zero entropy, a maximally mixed state with g;; = %52-]- has maximal
entropy Smax = kg Inn and minimal purity P, = 1/n, where n is the dimension of the
Hilbert space H. See also |27, 2|.

2.2.5. Composite Quantum Systems

A Hilbert space H consisting of two or more subspaces Hy, Ho, ..., Hy can be written
as the tensor product of these subspaces. For a bipartite system, e. g.,

H="H ®H,. (2.31)
The dimension n of H is a product of the subspace dimensions n;, here
n=mnns. (2.32)
In general, the Theorem of Araki and Lieb applies for the local and global entropy:
15(01) — S(02) < 5(0) < [5(01) + S(22)] - (2.33)

The right equality sign only holds if the subsystems are uncorrelated. In this case the
local entropies S(g1) and S(g2) add up to the global entropy S(0), and the entire state
0(t) can be written as a product state out of its substates [2|. Otherwise, if the product
form is non-applicable, this is due to correlations between both partial states (see below).

If one is interested in only one partial subspace, e. g. Hj, the respective state g;(t)
can be obtained by tracing out the degrees of freedom of the other subspace,

61(t) = Traf{o(t)} (2.34)

where Tr;{...} denotes the partial trace over subspace H; [27].

2.2.6. Entropy, Correlations and Entanglement

If a composite system state is non-separable, i. e. cannot be written as a tensor product
out of its partial states, this is caused by correlations such as entanglement originating
from the interaction between different subsystems. Non-separability of partial states also
reflects in that the respective local entropies are non-additive (see Eq. (2.33)). Thus,
entropy gives an appropriate measure of correlations.

Tracing out a substate after Eq. (2.34) leads to a loss of information about correlations
between partial states, and due to (2.33) local entropies generally increase in time during
the system evolution. This also applies for the case a small quantum system interacts
with an environment [28]. In contrast, global entropy is constant in time due to (2.30).

10
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An adequate distance measure for two states ¢ and ¢’ is given by the Bures metric |2|,
D, =Tr{(6—0)*}. (2.35)

If ¢ is the actual composite state and ¢’ some product form, Dgé, can be used as a
measure for correlations.

Entanglement is a purely quantum mechanical phenomena. A standard example for
a maximally entangled quantum state is the Einstein-Podolsky-Rosen (EPR) state [29]

1
¥) = 7 (11)[0) =10} [1)) (2.36)

describing two interacting spins, where |0) and |1) stand for “spin up” and “spin down”,
respectively. If, in a measurement, the first spin is found to be in “up” state, the second
spin will automatically be in “down” state. This holds without the need for a further
measurement, even if both spins are outside the range of interaction. Hence the en-
tangled state only contains collective information on both subsystems. This principal
non-locality is an essential ingredient of entanglement. See also [30].

2.3. Open Quantum Systems and Master Equation

2.3.1. Derivation of the Quantum Master Equation

A convenient method to describe the interaction of a small quantum system with a large
environment (heat bath) is by means of a quantum master equation (QME). Since usually
the degrees of freedom of the environment are too numerous for further investigation,
they are traced out and disregarded ab initio. This leads to an effective equation of
motion for the dissipative dynamics the reduced density matrix g5 of the considered
open quantum system is subject to.

Several different approaches to open quantum systems exist, see e. g. |26, 31, 32|.
The master equation used in this work is described in [17]. A recent description and
comparison to other models can be found in [18] and also in [16] in the context of
quantum thermodynamic machines.

The compound of the system of interest S and its environmental bath B is described
by the Hamiltonian R R R R

H = Hg+ Hp + Hiy (2.37)

where the bath is modeled by an infinite number of uncoupled harmonic oscillators
Hp=> wblb, (2.38)
k=1

with the bosonic creation and annihilation operators ZAJL and by. The interaction Hamil-
tonian H;,; is specified as

Hy=>» A, ®B, (2.39)

11
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where Ak and Bk, respectively, are hermitian system and bath operators to be ascertained
below. The time evolution of the whole system’s density operator ¢ is governed by the
von-Neumann Eq. (2.24), written in the interaction picture (h = 1):

do(t T R
90— (o). 1)) (2.40)
The formal solution hereof is

t

o(t) = 0(0) — i/ |:I:Iint(5), @(5)] ds (2.41)

0

The density operator of the subsystem of interest is then obtained by
os =Trp{o(t)} . (2.42)

Inserting (2.41) into (2.40) and applying (2.42) yields

t

) [t [H(0). [Fin(s).265)]]} (2.43)

0

where it is assumed that R
TTB{ |:Hint7 @(0)} } =0 (2.44)

Now one performs the Born approximation, claiming the coupling between system and
bath to be weak enough so that the back-action of the system on the bath is negligible.
Hence the state of the entire system may be approximated by a tensor product:

o(t) ~ 0s(t) ® 0 - (2.45)
The bath state is assumed to be canonical,

Tra (o975} (2.46)

op =
with # = 1/T being the inverse temperature and kg = 1.

A further simplification is introduced by the Markov approximation, assuming coarse
grained time scales. This means the excitations in the baths are not resolved as they
happen on much smaller time scales 75 than those on which the system evolves (7g).
Furthermore, the same is assumed to apply for the decay of the bath correlation functions
or memory effects. Thus, in Eq. (2.45) we replace g(s) by 0(t), and s is substituted by
t — s while the upper bound of the integral is set to ¢ — oo. This makes the integrand
vanish rapidly enough for s > 75. Then,

L [ asren{ [F(o). [ - 9. 00) © 03]} (2.47)

0

12
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Skipping some lengthy calculations, the QME becomes, again in the Schrodinger picture,

e} e}

dA t N A~ iws
th( ) :—I[Hs,QS(t)} —/ds / dwe™® x
0 —00 (248)
> (Tan (@) [ A4 (=9)25(8), Aa] + Ta(=w) | Aa, A (~5)25(0)) )
o,y
with R o
A, (—s) = e Hs5 A eltlss (2.49)
Here the bath correlation functions
Lar(5,8) = (Bal)B,(0)) | = Tr{ Bu(s)B,(0)ds } (2.50)

with gp given by (2.46) have been introduced. Their Fourier transformations, represent-
ing transition rates, lead to the bath correlation tensor

(e e}

Foy(w,B) = /dseiws Laq(s,5). (2.51)

For terms of I'(—w) the Kubo-Martin-Schwinger (KMS) condition gives
Lo (w) = e T, (~w). (2.52)

The first term of Eq. (2.48) describes the coherent unitary dynamics of the system
while the second term, the dissipator T)(@S(t)), defined in Liouville space, represents the
decohering and damping environmental influence. The Liouville-von Neumann equation
describing the reduced dynamics of the system is thus rewritten as

dos(t)
dt

= —i[ s, 5(0)] + Dlas(t) = L(es() (253)

where £ is the corresponding Liouville super-operator acting on dg(t).

Now, in the frame of this thesis only local coupling of a spin chain to a heat bath
via the outermost spin will be considered. Hence the system part of the interaction
Hamiltonian (2.39) is chosen as:

A =6Vei®Pg.. . .0iM, (2.54)

and there remains but one pair of interaction operators (o = v = 1), therefore these
indices are omitted in the following.
The bath operator B is set to be linear in the oscillator amplitudes (cf. (2.38)),

B= Z bl + b, (2.55)
I=1

13
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where the ¢ are coupling constants. Inserting (2.55) into (2.50) and applying the Fourier
transformation (2.51), the bath correlation tensor can be written in terms of the spectral
density J(w),

J(w) = J(=w)
INw,B) =~k )

introducing the system-bath coupling parameter . A usual form of J(w) is that of an
Ohmic bath,

(2.56)

J(w) = wO(w), (2.57)
where O(w) is the Heaviside step function,
1 w>0
Ow) — 2.58
) {0 w<0. (2:58)

The expression for the dissipator D(g(t)) derived so far is not yet convenient for nu-
merical purpose. Therefore D(g5(t)) is now expressed in terms of the energy eigenstates
of the system via the projectors |i). As an example this is done here for the first term
of (2.48):

(k| D(os(1)) In) = Z/dS/dweM w) (kI A(=s) 1) (1] &s(t) [m){m| A|n) +

bmo oo ()

(2.59)
The term labeled (%) becomes

(k| A(=s) 1) = (k] —lsHSAe“HS|l> (k| e B Acre 1)

: X (2.60)
= e BB (Bl A1) = e (K| A|l) .

where E; are system eigenvalues belonging to the eigenstates |i) of HS, and wy = Ex—Ej.
The integrals can then be dissolved with the help of the formula

[e.e]

/dse“’ wk1)$ =0(w—wn)+P

0

2.61
" (2.61)

neglecting the Cauchy principal value P. Now the traceless transition operator R is
introduced whose matrix elements are

(1] B m) = (1| A|m) T (wim) (2.62)

where, by insertion of (2.56)-(2.58), and with regard to (2.52) the bath correlation tensor

writes Onn) o) 5
Wim Wil evml
Iwim) =T(E — Ep) =K (ewzmﬁ —1 + po— ) : (2.63)

with F(w” = O) = 0.

14
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The transition rates introduced in (2.51) obviously depend on both the temperature
T = 1/ and the system-environment coupling strength x, which must be small to justify
the Born approximation (2.45). Finally the dissipator is compactly written as

D(as(t)) = [A, Ros(t)] + [4, Ros ()] (2.64)
It is easily shown that the stationary solution of (2.53), és(t) = 0, is the canonical
equilibrium state with the Boltzmann distribution
tat e~0Hs ( )
og " = ———— 2.65
% T Trgfephis)

being the eigenstate of the Liouvillian L to the eigenvalue zero. Independently on initial
conditions, a system locally coupled to only one heat reservoir is expected to end up in
a state of canonical equilibrium due to the decohering bath influence represented by the
transition operator R.

2.3.2. Open Quantum Systems in Thermal Non-Equilibrium

As in the further proceeding a non-equilibrium scenario of a spin chain between two
heat baths will be investigated, a second dissipator representing the additional reservoir
is added to (2.53),

dos(t)
dt

~

- —i[ﬁg, ég(t)] + Di(05(t)) + De(05(t))

L(ps(t)) (2.66)

where h and ¢ denote the hot and cold heat reservoir, respectively. The stationary
solution of Eq. (2.66) is a non-equilibrium state since, in the eigenrepresentation of
the system Hamiltonian [:15', it exhibits non-vanishing off-diagonal elements describing
correlations between the different system eigenstates.

At the same time a finite stationary heat current through the system emerges, running
from the hot to the cold reservoir (see Sec. 2.5.2) and obviously linked to the remaining
correlations in the system |33].

Although there is no global equilibrium established, single subunits of the system may
nevertheless be found in a local equilibrium state (cf. Sec. 2.4.1) since it turns out that,
locally, correlations are damped out by the baths.

15
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2.4. Thermal Properties of Spin Systems

2.4.1. Two-Level Systems in Thermal Equilibrium

In Pauli 6,-representation, the Hamiltonian of a two-level system (TLS) such as a spin-
1/2 particle ("spin") reads

- 1

where AF is the local energy splitting. The ground and excited states are —% AFE and
+% AF, located symmetrically around the zero energy level. If the TLS density matrix

is diagonal in this basis, i. e.
A o0 0O
= 2.68
¢ ( 0 011) ( )

with pgo and 011 being the occupation probabilities of the lower and upper energy state,
respectively, the TLS is always in a canonical equilibrium state 34|,

A e_ﬁf{TLS
Ocq = ——————. (2.69)
Tr{e 5HTLS}
The von-Neumann entropy of the same system,
S =—Tr{oln o} = —(000 In goo + 011 In 011) (2.70)

can then be interpreted as the thermal entropy |2].
For a TLS or spin in a canonical state it is also possible to define a local temperature
T=1/p (ks =1),
Gl _ oBAL (2.71)
Qoo
The spin energy expectation value (F), considered as intrinsic energy U of the TLS,
writes [2]

e AE AFE AFE
U= <E> = TI'{QHTLs} = _—(QOO - Qn) = ———tanh | — (272)

2 2 2T
Recalling the standard thermodynamic temperature definition 7' = g—g one finds, in

agreement with (2.71),
AFE
T=—-— - (2.73)
In(o11/000)

Generalizations to multi-level systems are possible, see [5, 35, 36].

2.4.2. Global versus Local Temperature

In general, it is a possible condition for the existence of temperature on nanoscales that
the corresponding system has to be in a canonical state. In [36, 5, 37| it was shown

16
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that this holds for a subgroup of spins or a single spin within a coupled spin system if
correlations between the respective subgroups are small.

This was validated in [38, 35] by means of a Heisenberg spin chain of a few subunits
which, in terms of (2.54), is locally coupled to a bath modeled after (2.64). The chain
as a whole is found to relax into a stationary canonical state, exhibiting the same global
temperature as the bath, independently of the internal spin-spin coupling strength .
However the local spin temperatures do depend on A and are only descriptive if the
internal coupling strength is weak enough compared to the local spin energy splittings
AFE;. In this case, as a good approximation, the system energy is extensive in the number
of spins and temperature is intensive since global and local temperatures coincide.

Otherwise correlations between single spins and spin groups and thus the local entropy
increase, making local temperatures deviate more and more from the global one with
increasing A. In this case the system energy is not extensive in the number of spins any
longer since energy is increasingly stored in the interaction between single units.

2.5. Heat Transport in Spin Chains

This section shall give a brief overview of the theoretical framework of heat conduction
in spin chains, according to [34, 38| and also to [39, 40].

2.5.1. Heisenberg Spin Chain

The Hamiltonian of a chain consisting of N spins with a nearest neighbor interaction
reads

N N-1
H = Z Hloc(:u) + )‘ Z Hint(,u> 1% + 1) (274)
p=1 p=1

The local Hamiltonian Hio.(s1) of spin j is given by (2.67), A denotes the site-independent

A

pair coupling strength and Hj,; is the interaction Hamiltonian. In this work only the
anti-ferromagnetic Heisenberg spin chain is used where A > 0 and

Hi(pop+1) = > 6i(p) @ 6:(n+1) (2.75)

1=T,Y,2

with a non-resonant coupling part ¢, ® ¢,. The operators ¢; are the Pauli matrices.

2.5.2. Heat Current

An analytical expression for the heat current through a system of several subunits, e. g.
a spin chain, can be obtained after [34, 26]. Starting from the Liouville-von Neumann
Eq. (2.53) for the reduced system dynamics

bs(t) = —i[ f1s, 05(1)] + D(as (1)) (2.76)

17
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multiplying this with the system Hamiltonian Hg and applying the trace yields

Tr{ﬁfsg*s} - —i% Tr{ﬁlsgs} - Tr{HST)(@S)} (2.77)

where the trace over the system contribution [Hg, [Hg, ds]] vanishes. The left-hand side
of this expression denotes for the total change of energy in the system,

d d

T (E) = T Tr{Hsos}

and therefore may be identified with a heat current J between the system and the heat
bath modeled by the dissipator D,

With regard to the the stationary solution gg = 0 of Eq. (2.66) in the non-equilibrium
scenario described in Sec. 2.3.2, the overall energy change in the system must be equal
to zero due to energy conservation. Thus, with (2.78),

d AA S A A !
—(E) = Tr{HSDh(QS)} + Tr{HsDc(gs)} = Ju+J.20. (2.79)
Hence a stationary leakage current J, = —J,. through the system emerges, running from

the hot (h) to the cold (¢) reservoir. By convention a heat current floating into the
system is signed positive.

2.5.3. Fourier's Law in Open Quantum Systems

A common way to describe heat transport through a material is a characteristic differen-
tial equation widely known as Fourier’s law, linking the heat current J and an external
temperature gradient VT'(r,t) via the conductivity K,

J = —KVT(r,t) (2.80)

Fourier’s law in an open quantum system can be investigated by realizing a stationary
setup of a homogeneously split spin chain with a weak nearest neighbor Heisenberg
interaction (see (2.75)) locally coupled to two heat baths via the outermost spins of the
chain, accordingly to (2.66). This is possible since, after |34, 39|, the heat current in a
Heisenberg spin chain is not a conserved quantity, leading to a finite conductivity and
therefore allowing for regular heat transport.

As mentioned in Sec. 2.3.2, the system as a whole is in a stationary thermal non-
equilibrium state. However, the single spins may still be found in local equilibrium
states due to the bath-induced damping and therefore exhibit local temperatures (see
(2.73)) under the constraints noted in Sec. 2.4.2.

It turns out that the spin chain exhibits a linear temperature gradient AT with respect
to the single units in the chain. This comes along with a stationary heat current running

18
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through the system (cf. Sec. 2.5.2) and linearly depending on the temperature gradient
AT imposed by the baths. Thus, Fourier’s law is fulfilled for this kind of quantum
systems, cf. [34, 38, 40].

Ref. [16] mentions the strong dependence of the heat currents .J, . on the local energy
splittings. The currents are maximal at overall resonance, i. e. for a homogeneously
split chain, and decrease to zero the more the energy splittings are detuned. This is
equivalent to a decrease in heat conductivity and thus to an increase of the spin chain
resistance [41].

It is therefore possible to decouple a part of the spin chain from one or both baths
factually by simply detuning the local energy gaps of adjacent spins. As it will be
discussed below, this aspect is fundamental for the concept of a quantum thermodynamic
machine realized by an inhomogeneously split spin chain between two heat baths.
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3. Quantum Thermodynamic
Machines

3.1. Quantum Thermodynamic Variables

A description of thermodynamic processes requires adequate definitions of the variables
heat and work. For a quantum system H with a discrete spectrum, being in a state
described by the density operator g, we start from the energy expectation value

U=(E)= Tr{ﬁ@} =Y nE (3.1)

where p; are the occupation probabilities of the energetic levels belonging to the eigen-
values E;. The total differential of Eq. (3.1) becomes

1
5 2 Edpy+p (3.2)
v dQ aw

Identifying this with the Gibbs relation (2.1), the heat @) and the work W are associated

with the change of occupation probabilities and the spectral deformation, respectively.

In analogy to classical thermodynamics, the spectrum is thus interpreted as a "volume"

since an amount of mechanical work AW is always related to a change of volume AV'.
A cyclic process requires, following (2.30),

AU=AQ+AW =0 or AW =-AQ. (3.3)

The work is calculated by integrating over the ST-diagram which is closed for a cyclic
process:

AW = — f TdS. (3.4)

The heat AQ results from integrating the respective heat currents J, obtained with
(2.78) over one period 7 = 27 /w if the system is connected with the bath «,

T

AQ, = / Jadt, (3.5)

0

For a cyclic machine process where two heat baths are present, we arrive at

AQ = AQ, + AQ.. (3.6)
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3. Quantum Thermodynamic Machines

where ARy, and AQ), denote the heat transferred between the system and the hot (o = h)
and cold bath (a = ¢). From Eqns. (3.4) and (3.5) the efficiencies for the heat engine
(en) and heat pump (p) result as

MNen = AW/AQh 7’]p = AQh/AW . (37)

For a TLS in a canonical state the further needed thermodynamic variables entropy and
temperature are given by Eqns. (2.70) and (2.73).

3.2. Quantum Otto Cycle

3.2.1. The Three-Spin Quantum Machine

The elementary quantum thermodynamic machine model underlying all further models
to be investigated in this thesis is depicted in figure 3.1 and has been widely discussed
and treated numerically in [15, 16]. It consists of an inhomogeneously split chain of
three spins locally coupled to a hot (h) and cold (¢) heat bath via the outermost spins.
The interaction between nearest neighbors is of Heisenberg type, cf. (2.75). The system
Hamiltonian reads, in analogy to (2.74),

(1

H= Z (5 AE 6+ X Y 6@ &;‘“) (3.8)

/J' 1 Z:x7y7z

where AE, is the local energy splitting of spin p and &}" are the Pauli matrices. The
bath contact spins 1 and 3 exhibit different constant local energy splittings, imposing
an energy gradient on the system and thus spatial asymmetry. Following the Curie
principle [6] this is one elementary requirement for any machine function. Furthermore,
the presence of two heat baths satisfies the claim for thermal non-equilibrium, being the
condition for any conversion of heat out of a thermal bath into work after the second
law. In the approach of this work external control on the system is implemented via
a semiclassical ¢,-driver which only acts on spin 2 by periodically modulating its local
energy gap AF,. From a classical point of view the driven spin takes the role of a
“working gas” running a cyclic process while the external driver may be interpreted as a
"piston", controlling the work in the system.

In a possible experimental scenario the &.-driver might be realized via an external
magnetic field. However, this is not suitable as work reservoir since, lack of any retro-
action on the driver, the work released by the driven spin cannot be picked off. For this
reason the chosen driver is rather classical than quantum mechanical. Nevertheless this
problem may be circumvented by coupling the gas spin to an autonomous driver such
as a harmonic oscillator. This was investigated e. g. in [14].

At the same time the driver is also enabled to control heat transfer between the system
and the reservoirs. This is accomplished by the resonance effect cited in Sec. 2.5.3,
provided spin 2 is alternately driven into resonance with both bath contact spins. For

22



3.2. Quantum Otto Cycle
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Figure 3.1.: Elementary quantum machine model of a three-spin chain between two heat
baths. T} and T, are the bath temperatures, A and x are coupling constants
and AFE,, are the local energy gaps of spins pn = 1,2,3. AE, depends on
time since the middle spin is driven.

this the resonance conditions
AFE; > AFEy(t) > AE; (3.9)

must be fulfilled. Heat currents between the system and the baths only occur if the
energy splitting of spin 2 equals one of the constant bounds, i. e. AE; = AFE; or
AFE3 = AFE5. In between, heat currents are negligible so that the occupation probabilities
of spin 2 remain constant while its energy splitting is modulated.

Following Eq. (3.2), the first case is related to heat transport at constant spectrum
whereas the second case is related to work at constant entropy. Since in Sec. 3.1 it was
argued that a spectral deformation corresponds to a volume deformation in classical
terms, this quantum thermodynamic cycle can be identified as the quantum analog to
the classical Otto cycle, featuring isochoric steps with constant spectrum and adiabatic
steps with constant entropy. Therefore it is referred to as the Quantum Otto cycle. With
regard to the cycle steps, this analogy will be demonstrated in detail in the following
section.

3.2.2. Cycle Steps

Similarly to a classical thermodynamic Otto cycle, the quantum Otto cycle runs in four
steps.

1. Isochoric step: Spin 2 is in resonance with spin 3 and therefore coupled to the
cold reservoir at temperature 7T,. The heat current J. between this bath and the
system gets large, while J, remains negligibly small. The occupation probabilities
and thus the local temperatures of spins 2 and 3 approach as both evolve towards
contact equilibrium.

2. Adiabatic step: Spin 2 is driven out of resonance with spin 3, leading to a decrease
of J.. The occupation probabilities, i. e. entropy remains almost unchanged,
whereas work is applied or released due to the spectral deformation.
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3. Quantum Thermodynamic Machines

3. Isochoric step: Spin 2 is in resonance with spin 1. The heat current J;, gets large
while J. is negligible. As both spins equilibrate, local temperatures approach each
other.

4. Adiabatic step: contrarily analog to step 2.

There are two possible working modes: either the system runs as heat engine, trans-
porting heat from the hot to the cold bath and releasing work, or it runs as heat pump,
acting the other way round and consuming work.

3.2.3. Numerical Implementation

In order to calculate the time-dependent system state gs, the master equation (2.66)
is solved numerically since the super-operator £ is too high-dimensional for a closed
analytical solution to be available. Independently of its initial state g5(0) the system is
found to reach a stable time-dependent attractor state. This also applies for all numerical
simulations presented further on and therefore will not be mentioned explicitly any more.
For more details on numerical methods used in this work it is referred to Sec. A in the
appendix.

Since numerical reasons require a smooth modulation function for AFEs(t), sinusoidal
driving is considered in the frame of this work,

AE,y(t) = AE) + asinwt (3.10)

where the offset AEY = 1 (AE; + AF3) and the detuning parameter a = 1 (AE; — AE3)
are chosen to agree with condition (3.9).

The driving frequency w and the bath temperatures 7}, > T, are given in units of the
local spin energy splittings AFE;. The same holds for the coupling parameters A and
which, due to the Born approximation and Sec. 2.4.2, must stay in the weak coupling
limit,

Kk, K AE; (3.11)
The Markov assumption enters by claiming the driving frequency w to be small enough
in order to sufficiently damp the system:

w < AE, (3.12)

Otherwise, energy transfer between the system and the heat reservoirs via spin resonance
would not be possible any more, causing the machine function to break down. On the
other hand, choosing a too small driving frequency, i. e. w < k would make the system
run in the quasi-stationary limit where only leakage currents remain and the useful
system work turns to zero [16].

This marks an essential difference to conventional classical thermodynamic machine
cycles which are normally considered in the quasistatic limit, running infinitesimally
slowly but producing a finite amount of work per cycle. In contrast, the Quantum Otto
cycle described above must be run in finite time in order to yield a finite work output
for the chosen manner of driving.
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3.3. The Ideal Quantum Otto Cycle

3.3. The Ideal Quantum Otto Cycle

For any kind of machine functionality crucially depends on the achievable degree of
external control on the cycle steps. Obviously this control is limited in the case of time-
dependent driving as discussed in the previous section, which will also be shown later
on by means of numerical investigations.

In general, one is interested in idealized, fully manageable cycle steps in order to
obtain an upper bound for the characteristics of arbitrary machine processes. Regarding
the Quantum Otto cycle, a corresponding model shall be briefly reviewed, following
[42, 11, 16|. Here, the spectrum and the occupation probabilities within the driven
quantum system underlie total control, and so do the cycle steps described in Sec. 3.2.2.
Consequently, in this ideal machine process heat is only exchanged during bath contacts
and work is only performed on the adiabats. Furthermore, any kinds of losses are ruled
out and perfect contact equilibrium is assumed between two spins coming into resonance.

It is now possible to obtain analytical expressions for the work, heat and efficiencies
by simply taking into account the energy expectation values of the driven spin before
and after each step.

After the driven spin has been in contact with contact spin at the cold bath, it is in
the same canonical state:

) 1 [eAEs/2T 0
02 = ? ( 0 e—AE3/2Tc (313)
where the partition function reads
AE
7 = eBls/2Te 4 o= ABs/2Te — ogh ( 2T3) . (3.14)

After the following adiabatic step it is AFy = AE; while g5 remains unchanged. The
work is given by the energetic difference before and after the step (see (2.72)):

1 AFE.
Wiy = 5 (AE; — AB,) tanh sz . (3.15)
Together with the contracting adiabatic step the total work becomes
1 AFE, AFE;
AWt = = (AE; — AE h — tanh . 1
Wit 5 (AE; 3) (tan o7, tan o7, ) (3.16)
In analogy to this the heat transferred between spins 1 and 2 is
1 AFE; AFs
AQp = = AFE; | tanh — tanh . 3.17
Qn=5AE < anh 7= — tanh - ) (3.17)

which corresponds to an entire swap of the states of both spins. Calculating (). analo-
gously, the Gibbs relation (2.4) is easily verified. With (3.16) and (3.17) the heat engine
and heat pump efficiencies for the ideal Quantum Otto cycle result as
Otto __ AQn _ AE, Otto __ AW —1_ AEs
BT AW AE-AEB ™ TAQ. AR
These expressions remind of the classical Otto efficiency (2.11) as they only depend on
the spectrum (the “volume”) but not on the bath temperatures.

(3.18)
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Figure 3.2.: Three-spin machine with decoupling: Efficiencies 7, of the heat pump and
Nen heat engine and corresponding Carnot efficiencies ngla/rp as functions of
AT. Note the different scaling with regard to pump and engine efficiencies.

3.3.1. Three-Spin Machine with Artificial Decoupling

For numerical verification of the ideal Quantum Otto cycle introduced in Sec. 3.3 and
particularly of Eq. (3.18), the present author performed numerical simulations of a dy-
namically driven three-spin machine including an artificial decoupling between adjacent
spins in order to impose a high degree of control on the cycle steps and, in particular, to
eliminate leakage currents being omnipresent for a permanent coupling (cf. Sec. 4.2). In
practice, the Heisenberg couplings are “switched on” only within a given interval during
which the driven spin and the respective bath spin are in resonance and set to zero else.

Although one may question whether this procedure is practicable in physical regard,
it turns out to be an effective numerical tool to check the plausibility of (3.18) by
simulating its premises.

The coupling parameter between the spin pair 1 and 2 is chosen as periodically con-
tinued smooth piecewise function A(t) which, over one period 7 = 27 /w, is defined as

Asin? [aw (£ - bZ) | bZ <t < (b4 1)z
Aty =40 aw(t-b3)| bE<t<G+05 (3.192)
0 else
Similarly, the coupling parameter for the second spin pair 2 and 3 gets
Asin? [aw (= eZ) | ez <t< (e D)z
Aos (1) :{ sin Jaw (1 —cG) | ef<t<(e+2)f (3.19b)
else

Here A = 0.01 denotes the spin-spin coupling constant and w = 27/128 = 804.25 is
the driving frequency. The parameters a,b,c have to be selected appropriately such
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Figure 3.3.: Three-spin machine with decoupling: Work AW and heat AQ,, AQ. as
functions of AT. The critical temperature gradient is AT'4 = 0.714.

crit

that interaction times between resonant spins are sufficiently long and, on the other
hand, leakage currents are suppressed. An adequate set of parameters is a = 2.5, b =
g(l—%) = 0.37 and ¢ = 1+b = 1.37. The local energy splittings are AE; = 2.25, AFE, =
2.0 4+ 0.25sinwt and AFE3 = 1.75. The cold bath temperature T, = 1/5. = 2.5 is kept
constant while that of the hot bath, T}, is varied. Since the additional deformation of
the spectrum due to the time-dependent coupling A(f) is only of magnitude 1072 [AE]
it may be neglected.

Further information on numerical treatment are found in Sec. 3.2.3 and Sec. A in the

appendix.

Efficiencies, Heat and Work

For the three-spin quantum machine with artificial decoupling, the heat pump and heat
engine efficiencies 7, and 7, are obtained via (3.7) and plotted in Fig. 3.2 as functions of
the temperature gradient AT = Tj, — T, together with the respective Carnot efficiencies
nd* and nG* (cf. (2.6) and (2.7)). Indeed the results agree with the predictions from
Sec. 3.3. In particular, the efficiencies ne,/, coincide perfectly with the Quantum Otto
efficiencies for the given local energy splittings. According to Eq. (3.18), these take the
values 7" = 4.5 for the heat pump and 7™ = 0.22 for the heat engine. They are
independent of AT except at a critical external temperature gradient AT'S. where they
reach their respective Carnot equivalents. This is however not a violation of the second
law of thermodynamics. Fig. 3.3 shows the transferred heat AQj, and AQ. between
the system and the hot and cold reservoir obtained with (3.5) as well as the work AW,

27



3. Quantum Thermodynamic Machines

J[10_4] ! JRTN T
| @ ® ;7 ® " @]
0 I et W T
1 - " ]
0,7 T/2

Figure 3.4.: Heat currents J. and J,, over one period 7 for the Quantum Otto machine
with artificial decoupling, working as heat pump (AT = 0.13).

calculated via (3.4), both as functions of AT It follows that at AT, no work is carried

out or exhausted, i. e. AW = 0. On both sides the work as well as the heat functions
change sign.

As a consequence, the mode of operation of the Quantum Otto machine switches be-
tween a heat pump and a heat engine at this point. This can be easily understood by
comparing the canonical distributions of the bath spins which the driven spin exhibits
alternately. In an ideal Quantum Otto cycle no heat should be transported if the canon-
ical distributions of both bath spins are identical, so the work is also expected to vanish.
By condition,

Q_i(l) — Q_é(l) . o ABTh _ ABs/T: (3.20)

01 03
or AE1/AEs = Ty, /T.. Inserting this into (3.18) immediately leads to equality of the
Quantum Otto and Carnot efficiencies at AT'4. | in accordance with the numerics. Oth-
erwise, 7 in agreement with the second law. If the “<” sign holds in (3.20)
the system transports heat from the cold to the hot reservoir against the internal energy
gradient. During the increase of its local energy gap AF, the driven spin carries the
distribution e=2F3/T and work is released since the energy of the higher occupied lower
level is decreased. On the other hand, work has to be inserted to reduce AFE; when
spin 2 carries the distribution e=2F1/T after heat transfer between the system and the
hot bath, since now the energy of the lower level is increased again. Altogether a net
amount of work AW > 0 has to be inserted if the system runs as heat pump.

Otto < nCar

In the case the “>" sign holds in (3.20) the system works as heat engine why a net
amount of work AW < 0 is released.
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Figure 3.5.: Quantum Otto machine with artificial decoupling: S7T-diagram run by the
driven spin in heat pump mode, (left), cf. a classical Otto cycle, and if
approaching AT, (right), cf. Carnot cycle.

crit

The critical temperature gradient is obtained from (3.20), too:

id 1
AT =T, [ == — 21
crit c ( 2 E3 1) (3 )

For the given parameters it follows that AT!4. = 0.714 as approved in Figs. 3.2 and 3.3.

For differently chosen energy gaps of the bath contact spins the Quantum Otto heat
pump efficiency would be found at ﬁ;d and thus the critical temperature gradient would

decrease to AT, (see also [16]).

crit

Heat Currents and ST-Cycles

For the Quantum Otto heat pump with artificial decoupling the heat currents J, < 0
from the system into the hot bath and J. > 0 from the cold bath into the system
are calculated with the help of (2.78) and displayed in Fig. 3.4, both over one period
T = 27 /w. Since we deal with a non-equilibrium scenario here, J, # —J., contrary to
the stationary case. For a heat engine the signs of both curves would simply change.

The numbers 1 to 4 refer to the cycle steps described in Sec. 3.2.2. If the driven
spin becomes resonant to one of the the bath contact spins, the corresponding spin-spin
coupling is “switched on”. In succession both spins immediately swap due to the big
mutual temperature difference and since the spin-spin interaction is much stronger here
than the one between the system and the baths, i. e. A > k. As a consequence, the
heat currents between the system and the baths increase considerably.

After the coupling has been “switched off” again, any back-float of heat is suppressed.
Thus, the respective bath spin exponentially relaxes back into its canonical equilibrium
state due to the decohering bath influence, cf. |26].

In the left part of Fig. 3.5 the ST-diagram of the ideal Quantum Otto cycle running
as heat pump is illustrated. Again the numbers 1 to 4 refer to the cycle steps from
Sec. 3.2.2. Spin 2 runs two adiabats (2,4) where its entropy S, remains constant, and
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two isochores (1,3) where both entropy and temperature 7, change with zero work
performance. Hereby the entropy and temperature of the gas spin 2 result from (2.70)
and (2.73), respectively.

The engine scenario qualitatively would yield the same course in opposite direction.
Towards the critical temperature gradient AT!4 | the ST-diagram takes more and more
a rectangle shape like in a Carnot cycle as illustrated in the right part of Fig. 3.5, since
also the Quantum Otto efficiency approaches the Carnot efficiency. At the same time
the shape of the ST-diagram and thus the work decrease to zero (note the difference in
the scaling of the Sy axes).

Summarizing, this numerical model is able to simulate adequately a three-spin system
running an ideal Quantum Otto cycle under nearly perfectly controlled cycle steps.
Discussion and analysis of the dynamically driven three-spin machine at permanent

coupling can be found in [15, 16].
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Figure 4.1.: Model of the parallel quantum machine circuit. AF, are local spin energy
gaps. Big circles stand for Heisenberg spin coupling (A) and small ones for
system-bath interaction (k). The coupling A; is optional.

After it has been shown in the previous chapter and in [16, 15| that a Heisenberg chain
of three spins between to heat reservoirs may be enabled to run a Quantum Otto cycle,
it is now of interest in how far this concept is extendable to more complex quantum
machine networks such as parallel and serial circuits of quantum machines. In this
case also the question for common characteristics and differences between the different
models arises. To give an answer, this chapter deals at first with a model of a quantum
machine circuit where two gas spins are coupled in parallel. Serial machine circuits will
be investigated in Ch. 5.

The parallel quantum machine circuit is depicted in Fig. 4.1. Here spins 2a and 2b are
driven and therefore take the role of the working gas. Both are coupled in parallel to the
bath spins 1 and 3 where again the interaction is of Heisenberg type. The Hamiltonian
for this model is obtained via Eq. (3.8),

N AE, "% — A
H = Z T”UZ—I-M Z M6 @ 62

n=1,2a,2b,3 I=T,Y,2
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In the course of this chapter several dynamical driving scenarios are considered. The
gas spins may either be driven in-phase (see Sec. 4.2) or with a relative phase shift
(Sec. 4.3). In both cases they are mutually uncoupled by default (A; = 0).

The effects of a strong coupling between the gas spins (A; # 0) are investigated in
Sec. 4.2.2. Finally, the dependence of the process characteristics on the driving frequency
w is discussed in Sec. 4.2.1.

4.1. Static Heat Current Scenario

Before investigating the mentioned dynamic quantum machine scenarios, the static heat
current behavior in the parallel four-spin circuit has to be analyzed in order to verify
whether the statements cited in Sec. 2.5.3 also hold in this case, even if a a different
behavior compared to a linear spin chain setup is not expected. In particular, the
dependence of the heat currents on the local energy gaps in terms of spin chain resonance
is of interest. In the following, corresponding numerical examinations are performed
qualitatively by means of concrete examples.

First, the local energy gaps of the bath contact spins are chosen AFE;, = AFE5; = 1.0,
and the bath temperatures are Tj, = 2.63 and T, = 2.5, whereas the splittings of the
middle spins, AFEs, and AFy, are simultaneously varied.

The resulting stationary heat currents J; from the hot bath into the system and J?
from the system into the cold bath are calculated with the help of (2.78) and depicted
in Fig. 4.2. Both approach zero for a strong detuning and reach their respective maxima
at overall resonance where AF,, = AFy, = 1.0, in analogy to the explanations given in
Sec. 2.5.3. As expected, the relation J, = —J, is fulfilled anytime.

For reasons of comparison, Fig. 4.2 also shows the developing of the corresponding
heat currents J; and J? in a three-spin chain in dependence of the detuning of the middle
spin, cf. [16].

In a first order approximation both systems obviously exhibit the same stationary
heat current characteristics. Hence one may conclude that the bath contact spins 1 and
3 act as filters only allowing for a limited heat throughput which does not predominantly
depend on the internal configuration of the spin system, the more so as the system-bath
coupling strength remains unchanged. Since there are no heat sinks or sources within the
system, the heat current is conserved. Thus, depending on the spin chain resistance in
terms of the detuning of AFEjs, 9, the heat current J, splits up into two partial currents
running through the "branch" spins 2a and 2b [41].

At this point analogies to electric current and the Kirchhoff node rule for electric
circuits can be deduced, comparing the former to heat current and the spins in a spin
chain to resistances in a parallel electric circuit, the more so as electrical current is
conserved as well and would thus split up into partial currents at a branching point,
depending on the strength of the resistances in the branches.

The small but not negligible discrepancies between both curves in Fig. 4.2 result from
the different forming of correlations, comparing the simpler geometry of a three-spin
chain to the more complex one in a paralleled spin chain. Correlations such as entangle-
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AE,/ AE5q 9

Figure 4.2.: Static heat currents J,‘;c through the parallel four-spin circuit as functions
of the variation of AFE,, and AFEy, compared to the currents Jf;c through
a 3-spin chain as function of the energy splitting AF5 of the middle spin.

ment typically arise in anti-ferromagnetic Heisenberg chains at low temperatures. Their
magnitude crucially depends on temperature as well as on the local magnetic fields. This
is shown e. g. in [35] with the help of the Bures distance measure given in (2.35).

A concrete example for the relationship between the heat current and correlations
in the parallel four-spin circuit is shown in Fig. 4.3. Here only AF,, is varied while
AFEs, = 1.0 remains constant and AF; = AFE3 = 1.0 as above. Over a wide range of
detuning the stationary heat current J?* takes the maximal resonance value of J;} found
for the three-spin chain, whereas for AEy, = 1.0 = AFEy, the maximum current of J;!
found in the four-spin circuit for overall resonance is achieved, cf. Fig. 4.2. The analog
holds for J2* = —J? omitted here.

Obviously, in the case only one of the middle spins is strongly detuned, all heat
transport would obviously happen via the other one being in resonance with the bath
spins, since the total current approximately equals that through a three-spin chain, cf.
Fig. 4.2. Once again this resembles very much the behavior of electrical current in a
parallel circuit with two branches, say. If one branch featured a high resistance while
the resistance of the other branch was low, the major amount of electrical current would
run through the latter.

Comparing J?* to the Bures distance measure for the parallel four-spin circuit (cf. (2.35)),

D? =Te{(6s — (61 ® 6 ® 03 ® 04))°}
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Figure 4.3.: Static heat current J2* through the parallel four-spin circuit (upper part)
and Bures distance D? (lower part, see text), both as functions of the vari-
ation of the energy gap AFE,, of spin 2a only
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yields that both qualitatively exhibit the same characteristics. Thus, Fig. 4.3 reveals
again that the difference in heat conductivity between the three-spin chain and the
four-spin circuit is associated with the differing forming of correlations in both systems.

It must be noted that at present neither the effects of classical nor quantum corre-
lations on the treated non-equilibrium scenarios are included in the model description
on a quantitative level yet. A promising ansatz for this purpose is given in |43, linking
heat currents in a spin chain to entanglement, which in turn is a function of the global
temperature gradient and the local spin energy splittings.

In analogy to Sec. 2.5.3 all spins in the parallel circuit are always found in local
equilibrium states and thus exhibit local temperatures. The validity of Fourier’s law
for the present scenario is again verified qualitatively by exemplarily choosing the bath
temperatures as T, = 3.3 and T, = 2.5, the local energy gaps of the bath spins as
AFE; = AFE3; = 1.0 and the coupling parameters as A = 0.01 and x = 0.001. Fig. 4.4
shows that an internal linear temperature gradient is found in the system, depending on
the detuning of AFEy, 9. In all cases The temperatures of spins 2a and 2b are both found
at about the same value and close to the average temperature T5, o, ~ 2.9 = % (Th+T.).

A stronger detuning of both spins, e. g. AFEs, = AFEy, = 1.3 compensates the internal
coupling strength in the spin chain. The bath contact spins 1 and 3 thus approach the
respective bath temperatures 7}, . but are shifted to slightly higher values (dashed line).
The external and internal temperature gradients approximately coincide as it would be
the case for a weaker internal coupling strength, e. g. A = 0.001. Following Fig. 4.2 the
corresponding stationary heat current is very small. Reference is made here to [35].

On the other hand, if all spins are resonantly split, AFEsy, = AFE5, = 1.0 the internal
temperature gradient is flatter (solid line) due to the stronger internal coupling, coming
along with strong heat currents.

Allin all, it has become evident that, as general property of spin chain systems between
two heat baths, the bath contact spins act as filters limiting the heat current through
the chain. In a first order approximation the heat currents do not depend on the internal
configuration of the spin system. This limitation will come up again in the following
sections, presenting numerical results of the dynamically driven parallel four-spin circuit.

4.2. Dynamically Driven Parallel Four-Spin Circuit

This section deals with the scenario of driving the four-spin circuit depicted in Fig. 4.1
dynamically by modulating the middle spins 2a and 2b periodically in time. The moti-
vation hereof is to demonstrate that both driven spins run a Quantum Otto cycle each,
corresponding to the cycle steps listed in Sec. 3.2.2, and to draw comparisons to the
three-spin machine cycle.

In the following, spins 2a and 2b are sinusoidally modulated with a frequency w =
1/128 and zero relative phase (¢ = 0). Initially they are uncoupled (A; = 0). Again the
cold reservoir temperature is set constant, 7, = 1/. = 2.5 while T}, is varied. The local
spin energy gaps are chosen as AFE; = 2.25, AFy,(t) = AEy(t) = 2.0 + 0.25sinwt and
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AEl (hot bath) AEg (cold bath) w Th TC )\ K
2.25 1.75 1/128 2.5-5.0 2.5 0.01 0.001

Table 4.1.: Standard parameters for the quantum machine setups in the present work,
given in units of local energy splittings AFE

AFE5 = 1.75, fulfilling the resonance condition
AE; > AFEy,9(t) > AE;.

It becomes clear that both spins indeed perform Quantum Otto cycles with consecutive
isochoric and adiabatic steps, see Sec. 3.2.1 and Sec. 3.2.2. During the isochores the
driven spins simultaneously come into resonance with the same bath spin, resulting in a
heat flux between the system and the respective bath. In between, during the adiabats,
the local energy gaps of the gas spins are modulated and thus brought out of resonance
with the bath spins why heat currents are negligibly small. In the following this behavior
will be substantiated by numerical simulations.

Table 4.1 lists some standard parameters which from now on will be used for the
various models treated this work if not mentioned otherwise.

Fig. 4.5 shows the heat currents J, < 0 and J. > 0, obtained via (2.78) for the case
the dynamically driven parallel circuit works as heat pump. The numbers 1 to 4 denote
the four cycle steps, cf. Sec. 3.2.2. Heat transfer between the system and the hot and
cold bath occurs during the isochoric steps 1 and 3, respectively, while steps 2 and 4 are
adiabats.

A major difference to the idealized scenario with artificial decoupling described in
Sec. 3.3.1 arises in the symmetric shape of the currents. The reason hereof is a leakage
current J, floating from the hot to the cold bath. Due to the permanent coupling between
the driven and bath spins a uncontrollable back-flow of heat current within the spin chain
occurs during the isochoric steps, causing a leakage heat transfer of () = fOT Jrdt per
cycle. In all models treated in this work we consider a net current balance, i. e. Jp is
always included in the total heat currents.

As a consequence, the net heat currents are smaller in magnitude and decay to zero
much faster than seen in Fig. 3.4 for the artificial decoupling scenario since a considerable
amount of heat floats back into the direction of the internal temperature gradient in an
uncontrolled manner whereas, in the case of a heat pump, heat is to be transported into
the opposite direction.

On the one hand, leakage is responsible for reduced heat transport which also means
less work to be applied or released. For this reason, the absolute values and therewith
the inclinations of the heat and work functions depending on the global temperature
gradient are decreased as seen later on. On the other hand, additional work has to be
applied to the driven spins in order to compensate losses. Since this work is effectively
dissipated, the dynamically driven Quantum Otto cycle is an irreversible process lack of
full check on the cycle steps.
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4.2. Dynamically Driven Parallel Four-Spin Circuit

In particular, the presence of losses is indicated by the dips observed in the S7T-
diagrams of the driven spins 2a and 20. These are depicted in Fig. 4.6 for the cases the
circuit runs as heat pump and heat engine, respectively, where the temperatures 75, and
Ty, are obtained with (2.73) and the entropies Sy, and Sy, with (2.70). At the end of
the isochoric steps, heat evidently flows into the direction of the temperature gradient
in the system. Thus, losses are especially profound in the case of a heat pump since,
based on the dip size, more work performance is lost.

In Fig. 4.6 only one corresponding ST-diagram is shown for both gas spins. Since the
modulation is symmetrical, it is found that both run the same thermodynamic cycle,
that is, they both receive and deliver one half of the total of heat current and thus exert
or consume the same amount of work AW,, = AWy, adding up to the total system
work AW.o. This is indicated in Figs. 4.9 and 4.10.

As a consequence, the efficiencies of the entire circuit and those of the single driven
units are all identical, 75! - = fr;gfl‘/p = nsr'f/p.

Another interesting aspect arises from the filtering nature of the bath spins, mentioned
in Sec. 4.1, and from the description of the ideal Quantum Otto cycle in Sec. 3.3. Hence
the characteristic system properties such as critical temperature gradient, heat, work
and efficiencies should basically be governed by the bath temperatures and the local
energy gaps of the bath spin splittings and not predominantly depend on the internal
spin chain configuration. In particular, the ideal Quantum Otto efficiencies given by
Eq. (3.18) take the same values for the parallel four-spin circuit as for a linear chain.

The heat pump and heat engine efficiencies of the dynamically driven parallel four-
spin circuit are obtained via Eq. (3.7) and depicted in Fig. 4.7 as functions of the
temperature gradient AT = Ty — T,, together with the Carnot efficiencies. Fig. 4.9
shows the related heat AQ) and AQ., obtained by (3.5), the local work AW, and
AWy, of the single driven units 2a and 2b, obtained via (3.4) and, finally, the total
circuit work AW;o: = AWs, + AWy, Fig. 4.10 is a zoom into the same.

The critical temperature gradient lies at AT = 0.63, being smaller than the ideal
value of AT}4. = 0.714 obtained with (3.21). Here the machine is idle, AW, = AWy, =
AWy, = 0 and likewise the stationary case only a leakage current J;, and thus a sta-
tionary heat transport AQ; = AQ, = —AQ. remain. Moreover, the engine and pump
efficiencies are always inferior to the respective Carnot bounds and decay to zero on
approach to ATg. For AT — 0 the heat pump efficiency n, does not diverge since
asymmetry within the system persists, introduced by the inhomogeneous spin chain
splitting.

Following Fig. 4.10, AQ. changes sign before AQ); does, which is due to leakage.
In the region where AQ; and AW,y are both positive, all work input is dissipated to
compensate losses.

In Fig. 4.8 the efficiencies of the dynamically driven circuit are compared to those of an
ideal Quantum Otto cycle which after (3.18) take the values 7" = 4.5 and ng** = 0.222
for the bath spin energy splittings being AF; = 2.25 and AFE3; = 1.75. Although the
latter are supposed to be upper bounds, the dynamical heat pump efficiency 7, may
obviously exceed 778“0 for small AT. Apparently the attribute ‘ideal’ must be handled
carefully with regard to the Quantum Otto cycle.
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Figure 4.5.: Heat currents over one period 7 if the entire parallel four-spin circuit works
as heat pump (AT = 0.13) without relative driving phase between the gas

spins.
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Figure 4.6.: ST-diagrams if the entire parallel four-spin circuit is driven in-phase and
works as heat pump (left diagram) or as heat engine (right diagram). Only
one ST-diagram for both driven spin is displayed.
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Figure 4.7.: Parallel four-spin circuit driven in-phase (¢ = 0): Efficiencies of the heat

engine 7, and heat pump, 1, and Carnot bounds ngla/rp as functions of AT
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Figure 4.8.: Parallel circuit driven in-phase: FEfficiencies of the heat engine and heat
pump, 7en/p and corresponding Quantum Otto efficiencies nJ'° as functions

en/p
of AT.
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Figure 4.9.: Parallel circuit driven in-phase: Heat AQ);, and AQ)., work of the entire
circuit AW, and work of the single gas spins AW,, AW, as functions of
AT.
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Figure 4.10.: Zoom into Fig. 4.9: At AT, = 0.63 the circuit is idle, AW;,; = 0. Only
the leakage () remains.
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4.2. Dynamically Driven Parallel Four-Spin Circuit

The losses underlying the described deviations from the behavior originally expected
for a Quantum Otto cycle may be introduced from a phenomenological point of view [16].
Here the gas spins are assumed to approach a thermal state which is not in accordance
with the respective bath temperatures. By consequence AQ);, and AQ. are decreased.
On the other hand also less work is done, which explains the possibility that ni™ may
exceed nOf°. In general, these losses are asymmetric since they are always directed
towards the temperature gradient in the system. This feature finally makes the heat
pump and engine efficiencies vanish on approaching AT, which usually is inferior to
AT™ . Thus, effectively, the emergence of the engine function is favored.

Comparing the numerically found properties of the parallel four-spin circuit to those
of the linear three-spin machine [15, 16|, one finds good accordance. Thus, in first order
approximation it is feasible to map both models on each other in that both systems run
equivalent Quantum Otto cycles and exhibit the same characteristics provided the bath
temperatures and the energy gaps of the bath spins are identically chosen.

Though, discrepancies between the different systems remain which are unexplained
yet. In order to obtain a more convenient theoretical description it will become necessary
to include the effects of correlations on the heat currents cf. [43].

In particular, it is presumably inappropriate to assume ideal heat exchange under per-
fect contact equilibrium if two spins are coupled in parallel to a third one. As mentioned
already in Sec. 4.1, in the case of a spin "ladder" correlations will form in a different
manner than in a simple spin chain. Nevertheless, contact equilibrium does develop up
to a certain degree, that is why the machine finally works.

4.2.1. Impact of the Driving Frequency

As sketched in Sec. 3.2.3, our quantum machine circuits run on finite time scales. In
contrast to an ideal classical process the work turns zero in the quasi-static limit (w — 0),
corresponding to the stationary scenario described in Sec. 4.1. On the other hand,
following condition (3.12) a too fast driving speed (w — oo) would also lead to a break-
down since the dynamical timescale of the system would then approach that of the baths,
inhibiting sufficient damping.

In the following the dependence of some heat pump and the heat engine characteristics
on the driving frequency w are discussed by means of the parallel four-spin circuit with
the gas spins driven in-phase. We choose the temperature gradients as AT = 0.13 and
AT = 1.5, respectively, and leave all other parameters as listed in table 4.1.

Fig. 4.11 shows the work AW*®" released by the engine and the heat AQ}, transported
to the hot reservoir by the pump. Both absolute values cease for slow and very fast
driving frequencies and show a relative maximum around w ~ 1/2000. It remains yet
unclear down to what speed the machine can be run before the quasi-static limit is
reached. A corresponding long enough periodic time 7 = 27 /w has not even been
reached for a lower-dimensional three-spin machine [41], consuming by far less numerical
runtime.

In Fig. 4.12 the efficiencies of the heat engine and heat pump are depicted as func-
tions of w. While 7., decays quasi-monotonically with decreasing w, 7, exhibits a max-
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Figure 4.11.: Work AW*® < 0 released by the heat engine and heat AQ} < 0 transported
by the heat pump per cycle, both as functions of the driving frequency w
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Figure 4.12.: Efficiency n, = —AW/AQ)}, of the heat pump (left scale) and 7, =
AQS™ /AW of the heat engine (right scale) as functions of w
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1 10 100 1/w 1000 10000

Figure 4.13.: Power output of the heat engine, P, = —wAW*®" and heat pump, p, =
—wAQ)} as functions of w

imum plateau starting at w ~ 10~2 where also work and heat are still sufficiently large
(cf. Fig. 4.11). This justifies the choice of w = 1/128 as driving frequency if the other
system parameters are comparably selected.

The power characteristics is given in Fig. 4.13. For the engine, power is defined as
Py = —AW*®w, for the heat pump p, = —AQ)w. In both cases the power decreases
monotonically with w. From an economic point of view a higher driving frequency in
agreement with (3.12) is thus favorable for the engine, whereas the heat pump should
be operated at lower speed to reduce work input, cf. Fig. 4.12.

Beyond this qualitative analysis it would be favorable to know the efficiency of the
endoreversible Quantum Otto cycle at maximum power output rather than trying all
possible sets of parameters. In other words, we are looking for an expression analog
to the Curzon-Ahlborn efficiency (2.1.3) in the case of a Carnot cycle. Although a
corresponding relationship is not yet available, it supposedly would have to depend from
the bath contact energy splittings as well as from the bath temperatures.

4.2.2. Driven Spin Pair with Mutual Coupling

In this section we discuss the impacts of coupling the driven spins in the parallel four-
spin circuit by means of a coupling constant A\;. Otherwise the circuit is equivalent to
that of Sec. 4.2, using the standard parameters from Tab. 4.1. The gas spins are driven
in-phase, i. e. ¢ = 0.

As a consequence, heat is now transported by a pair of spins labeled 2ab which, due to
the mutual coupling, is found in a canonical state as a whole and can thus be assigned a
local spin group temperature To,, to be calculated by the fitting routine TempFit [44]
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Figure 4.14.: Work and heat per period with strong mutual coupling of the gas spins.
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Figure 4.15.: Local temperatures over one period 7: The local spin temperatures Ts,, T5,
are increased due to correlations, while the temperature 15, of the spin

pair is rather descriptive here.
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Figure 4.16.: ST-diagrams of the driven spin pair 2ab working as heat pump (left) and
heat engine (right)

out of the energy eigenvalues of the spin group Hamiltonian,
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and the reduced state 0o4p.

It turns out that, for rather weak coupling (A\; = A = 0.01) the canonical temperature
Toqp is equivalent to the local spin temperatures Ty, and Ty, obtained via (2.73).

Setting A\; = 0.1 changes the situation drastically, though. Now, the local tempera-
tures of the single spins are higher than the spin pair temperature, i. e. Ty, = T, > Tou,
to be observed in Fig. 4.15. This behavior is plausible due to the explanations in 2.4.2,
according to which the local temperature of a spin or group of spins is descriptive only
in the case of weak interaction with neighbored groups, say A = 0.01. Else correlations
make local entropies increase, why local temperatures are no longer intensive.

Fig. 4.16 shows the ST-diagrams of the spin pair 2ab running its own thermodynamic
cycle as heat pump or heat engine, where Ty, is obtained as described above and Spg
results from (2.29). At the same time the single spins 2a and 2b still run their individual
cycles, cf. Sec. 4.2. The dependencies of heat, work and efficiencies on AT turn out to
be the same as for the uncoupled case where \; = 0. Despite of the presence of strong
correlations between the driven spins, it is found that the work performed by the single
gas spins simply adds up to that of the spin pair, AWs, + AWy, ~ AWy, as shown in
Fig. 4.14. Hence the increase in local temperatures and entropies caused by correlations
only leads to an approximately constant offset in the ST-diagrams which rules out on
integration.

Summarizing, this scenario is rather equivalent to the uncoupled case and obviously
does not furnish any improvement, which one could have assumed because of the internal
symmetry.
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4.3. Driving with Relative Phase Shift

In Sec. 4.2 it was discussed that driving the gas spins in the parallel four-spin circuit
with zero relative phase would yield the same result as for a comparable three-spin
machine, i. e. no improvement could be achieved by an additional spin due to the
filtering function of the bath spins determining the system. It shows, however, that this
can be circumvented by introducing a relative phase shift ¢ # 0 into the modulation of
the gas spin energy gaps.

In this section the implications hereof are investigated by means of a relative phase
¢ = m. The modulation functions of the energy gaps become AFs,(t) = 2.0+ 0.25 coswt
and AFEg,(t) = 2.0—0.25 coswt. Hence both driven spins alternately come into resonance
with the bath spins and therefore receive the "full" heat quantity per period as it would
also be the case for a three-spin machine. For that reason the model can be interpreted
as combination of two independent three-spin machines rather than as parallel circuit.

In the following this feature and its consequences are demonstrated numerically.
Fig. 4.19 displays the heat currents for the case the entire system works as heat pump.
Since heat is transferred between the system and each heat bath twice per period, both
current curves now exhibit two peaks, each with about the same magnitude as if the
gas spins were driven in-phase. In accordance, both ST-diagrams given in Fig. 4.17
approximately comprehend twice the shape compared to Fig. 4.6. Hence each driven
spin transports about the double heat quantity and also performs the double of work per
period since the modulation is still uniform. The oscillations observed in both diagrams
result from transitions in the spin system induced by the baths during the adiabats due
to the permanent system-bath coupling.

Correspondingly, one would expect the total work and heat per period to scale by
about factor two, compared to the three-spin machine and the four-spin circuit driven
in-phase. This behavior is indeed confirmed by Fig. 4.21 and Fig. 4.22. Each of the spins
coupled in parallel now transports about the same amount of heat and exerts or consumes
the same work per period than the single driven spin in a three-spin machine would do.
Thus, the heat engine power output P = AW/7 = AWw/2r is also doubled, making
the parallel four-spin circuit with phase-shifted modulation about twice as good as a
three-spin machine. However, in a possible experimental setup this would inevitably
combined with higher effort as two external modulation fields within a narrow range
would be needed.

As a further consequence, Fig. 4.20 shows that the engine and heat pump efficiencies
for phase-shifted driving qualitatively show the same characteristics compared to in-
phase driving, except the critical temperature gradient is marginally shifted to AT, =
0.675.

It must be noted that the found scaling behavior of heat and work by factor two is
not exact. The deviations hereof may again be traced back to correlations. In Sec. 4.1 it
was shown that the stationary heat currents decrease for a spin "ladder" configuration
at overall resonance, compared to the case where only one spin is detuned. Although
this behavior cannot be simply mapped one-to-one to the present dynamical scenario,
analogies do exist.
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Figure 4.17.: Parallel four-spin circuit driven with phase shift o = n: ST-diagrams
(identical for both gas spins 2a, 2b) if the circuit works as heat pump (left)
or heat engine (right).
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Figure 4.18.: Parallel four-spin circuit working as heat pump (AT = 0.13): Bures mea-
sure over one period 7 if driven in-phase (¢ = 0, upper part) and with
phase shift (¢ = 7, lower part), where correlations are higher. Compare
the related heat currents displayed in Fig. 4.5 and Fig. 4.19.
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Parallel four-spin circuit driven with phase shift ¢ = m and working as heat

pump (AT = 0.13): Heat currents J, and J., each exhibiting two peaks
since the system interacts twice with each bath per period 7.
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Figure 4.21.: Parallel four-spin circuit driven with phase shift ¢ = m: Work AW, (entire
system), AWy, o5, (single gas spins), and heat AQ, . as functions of AT
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Figure 4.22.: Zoom into Fig. 4.21. At AT, AW = 0 and only the leakage heat AQy,
remains.
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If the gas spins are driven with relative phase-shift and alternately exchange heat
with the reservoirs, the heat current flux through the system and thus heat and work
are more than only doubled, compared to the case where both gas spins are driven in-
phase. This can be interpreted as a consequence from the static scenario and is confirmed
by comparing the respective heat currents for the cases the gas spins are either driven
in-phase (Fig. 4.5) or with relative phase shift (Fig. 4.19).

Moreover, the respective Bures measures for both cases plotted in Fig. 4.18 over one
period yield the double amount of correlations for driving with phase-shift. They also
trace the oscillations resulting from bath-induced transitions and being more distinctive
for phase-shifted driving.

At this point a clear relationship between heat currents on the one hand and the
spin chain geometry and correlations on the other hand appears, where, in comparison,
the latter are linked to different conductivities for both driving scenarios. So far an
analytical description hereof is not available, but a promising ansatz is provided by [43].
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In this chapter the interest is pointed at serial quantum machine circuits, that is, several
machine units such as discussed in Sec. 3.2.1 shall be connected in series in order to obtain
a linear machine chain with more than one driven spin. For computational reasons we
restrict ourselves to compounds of two serially connected units. As displayed in Fig. 5.1
our model consists of a chain of five Heisenberg-coupled, inhomogeneously split spins
between two heat baths, two of which are driven. The system Hamiltonian is that of
the Heisenberg spin chain, given by extending (3.8) to five spins.

Based on numerical simulations it shall be pointed out that each of the subunits A
and B and thus the circuit as a whole run a Quantum Otto cycle for given resonance
conditions between adjacent spins. Similarly the other models investigated so far, the
cycle characteristics such as work, heat etc. mainly depend on the local energy gaps and
temperatures of the outermost spins in the chain locally coupled to the baths. Depending
on their respective canonical distributions, the entire circuit either works as heat engine
or as heat pump. As it will turn out, the local working mode of units A and B are
globally determined as well.

5.1. Circuit of Oppositely Directed Quantum
Machines

We consider first the spin chain setup depicted in Fig. 5.1. Due to the particular internal
energetic geometry of this model, spins A and B are expected to run oppositely directed
cycles, i. e. one works as heat pump while the other runs as heat engine. In this context
a particular role devolves to spin 3 in the middle. Imagine that, if the local energy gaps
of spins 2 and 4 are decreased during an adiabatic step, their temperatures Ty and T}
are lowered also unless they arrive in resonance with spin 3. With regard to a system
attractor state it is therefore plausible that spin 3 is found at a lower temperature than
the baths, i. e. T3 < T, < T},. Provided that both units run ideal Quantum Otto cycles,
the temperature T3 corresponds to the average canonical distribution out of those of
the bath spins. These exhibit the same temperatures as the baths they are coupled to,
respectively.

For this reason it is justified to consider spin 3 as a finite effective cold bath via which
units A and B exchange heat. Although it certainly has nothing in common with an
infinite heat reservoir, i. e. is not a heat source or sink, spin 3 nevertheless acts as
environment, shielding the hot reservoir from unit B and the cold reservoir from unit A.
Due to the tapered internal temperature gradients resulting hereof, the cycles performed
by the gas spins 2 and 4 are indeed of opposite direction.
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Figure 5.1.: Serial circuit of two quantum machine units A and B between two heat
baths, working as heat pump and heat engine, respectively. Symbol nota-
tions are same as above.

Because of energy conservation, the heat current entering the effective bath from one
side must re-emerge on the other side. In particular, the Gibbs relation for the entire
circuit, AQp+AQ.+Wa+Wpg is always fulfilled, where W is the work done or consumed
by unit i.

The bath contact spins 1 and 5 and the central spin 3 feature constant energy split-
tings, here chosen as AE; = 2.25, AE3 = 1.25 and AFE; = 1.75 while spins 2 and 4 are
both sinusoidally driven with w = 1/128. All other parameters are as listed in Tab. 4.1.
The resonance conditions for the driven spins are fulfilled according to

AE; > AEy(t) = 1.75 + 0.5sinwt > AE;  and

For the case the serial circuit works as heat pump and transports heat from the cold
to the hot bath, the Quantum Otto cycle steps shall be recapitulated in analogy to
Sec. 3.2.2:

1. Isochoric step: Spins 2 and 4 are in resonance with spin 3. A heat current flows
from spin 4 to spin 2 until local equilibrium is reached. The work is zero since the
spectrum is not deformed.

2. Adiabatic step: The energy gaps of the driven spins are increased, both carrying the
same average occupation as spin 3. During this step work is released. Heat currents
between the system and the baths as well as inside the system are negligible.

3. Isochoric step: Spins 2 and 4 are in resonant contact with the bath spins 1 and 5,
resulting in heat currents J. > 0 and J, < 0 from the cold bath into the system
and from the system into the hot bath, respectively. Again no work is applied or
released.
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4. Adiabatic step: The local energy gaps of spins 2 and 4 are decreased with constant
occupation probabilities, that is, work has to be applied while heat currents are
suppressed.

5.1.1. Serial Circuit Efficiencies

In the serial Quantum Otto circuit both subunits A, B exhibit local efficiencies as they
effectively transport heat between two heat reservoirs each. Let now the entire circuit
work as heat engine with net transport from the hot to the cold reservoir. Then, during
one period the heat quantity AQ; > 0 flows from the hot reservoir into subunit A,
working as heat engine between the hot reservoir and the cold effective bath spin 3.
Thus, an amount of work AW, < 0 is released and, via the effective bath, the heat
quantity AQ* = AQ;, — AW, reaches subsystem B working as heat pump. Here the
amount of work AWp > 0 has to be reinvested to transport the heat AQ). < 0 to the
cold bath, according to our sign conventions. The local engine efficiencies then yield,
according to (3.7),

ny = —Wa/Qn>0
ng = —Wg/(Qn+Wa) = -Wg/(—Qc+Wg5) <0

Note that, since subsystem B works as heat pump, it is assigned a negative engine
efficiency because we are interested in the engine efficiency of the entire circuit. As
expected, with (2.12) the global engine efficiency becomes

Mot = —(Wa+Wpg)/Qr (> 0)

and, for a heat pump, ni,, = —Qp/(Wa + Wp).

The ideal Quantum Otto efficiency for the serial heat pump/engine circuit is obtained
similarly. If we assume perfectly controlled cycle steps and energy conservation with
regard to heat transport through spin 3, the heat current from spin 2 to spin 4 must
satisfy

Jog = —J34 (5.1)
or, according to Eq. (3.17),
AFE; AE,; AFE; AFE; AFE; AFE;
h —— — tanh = h — tanh : 2
5 (tan o, tan o7, 5 tan o7, tan o7, (5.2)

Compared to (2.72) this leads to a normalized average energy expectation value (E%)
constant in time,

1 AFE; 1 AFE, AFE;
—— (E3) = tanh = — ( tanh tanh 5.3
AR, L) =tanh5r =3 ( anh o, T g (5:3)
and hence to the average temperature
—1
1 AFE AFE
T; = AE5|2arctanh [5 (tanh 2Th1 + tanh 2Tj>} (5.4)
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5. Serial Quantum Machine Circuits

With the help of (5.3) the ideal Quantum Otto efficiencies of the heat engine and heat
pump for units A and B become, in analogy to Sec. 3.3,

AE AE
Otto __ 3 Otto __ 1 _
Tend = 1= R, =044 WA= R - AB 2P (5.5)
5.5
AE AE
Otto 3 Otto 5
=1 = 0.286 3.5
Tlen. AE:

o5 = AE5 — AE3 -

where the values of the AFE; from Sec. 5.1 have been inserted.
The ideal Quantum Otto efficiencies for the entire serial circuit are obtained with
Bq. (2.12),

g — 1 - 22

AE
=45 gt = :

= = ——— =10.22 .
AF; AFE, — AFEj; 0 (5.6)

It is remarkable that these expressions only depend on the energy splittings of the bath
spins but not of AFE3. The same holds for the critical temperature gradient, taking again
the value AT}, = 0.714 after (3.21).

These criteria may be checked for comparing different quantum machine models fea-
turing the same boundary configurations. As it will get clear below, this manner of
description partially fails to describe dynamic scenarios in some serial circuit setups and

has to be improved.

5.1.2. Dynamic engine-pump scenario

Now the serial five-spin circuit presented in the previous two sections shall be run dy-
namically, using the listed parameters. In the following, the results of corresponding
numerical calculations are presented.

For the case the entire system works as heat pump, the heat currents are shown in
Fig. 5.2. Relating to the cycle steps described in Sec. 5.1, the visible current peaks
represent heat transfer between the circuit and the hot and cold reservoir during the
second isochoric step. On the other hand, internal heat transfer is not resolved since
it is not considered in (2.78). The current peaks are not of equal height due to the
asymmetric energetic geometry set by the local energy gaps. Further on they are of
weaker magnitude compared to corresponding three- and four-spin machine cycles. First
of all this is due to the spin chain “resistance” which is expected to increase with each
spin added and the more different frequencies are present in the system [41|. Secondly,
as will be revealed further on, the local energy gap and the temperature of the effective
bath spin 3 are decisive here.

After heat transfer between the system and the reservoirs, oscillations occur which
can again reduced to bath-induced transitions. This effect is also visible on the adiabats
in the ST-diagrams depicted in Fig. 5.4. As anticipated, spins 2 and 4 work as heat
pump and heat engine, respectively, both running Quantum Otto cycles corresponding
to the cycle steps in Sec. 5.1, while the entire circuit pumps heat from the cold to the
hot reservoir. Likewise before, the characteristic dips in the ST-diagrams indicate the
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5.1. Circuit of Oppositely Directed Quantum Machines

emergence of leakage currents. While the large dips represent losses occurring during the
bath contacts, the small ones indicate the presence of internal losses during the driven
spins exchange heat via the effective bath spin.

Fig. 5.3 shows the serial circuit efficiencies 7/, of the heat engine and heat pump as
well as the respective Quantum Otto efficiencies ng]t/tg, both as functions of the global
temperature gradient AT. Like for comparable three- and four-spin machines the corre-
sponding Carnot efficiencies 'r]gf/rp are never exceeded. As expected, the characteristics
of 7en/p are similar as for different models with identical bath spin configurations. Minor
differences arise in that the heat pump efficiency is significantly smaller whereas the
engine efficiency reaches higher values. The reason hereof is found in Fig. 5.5 showing
the heat AQ)}, ., the global circuit work AW, and the local subunit work AW, 5. While
the quantity of work consumed or exhausted per cycle remains in the same range com-
pared to other similar models, the heat transfer between the system and the reservoirs
is substantially smaller here. This goes along with the reduced intensity of the heat
current peaks as shown above.

Fig. 5.6 shows that, unexpectedly, the subunits change their local modes of operation
at different temperature gradients. With increasing AT, first unit B switches from heat
engine to heat pump mode at AT, = 0.71 where AW}y changes sign. Then the signs of
AQ. and AQ), change, and finally AW, = 0 follows at AT = 0.77. As a consequence
hereof the transition of the entire circuit where the total work AW, = AW, + AWp
changes sign is significantly shifted rightwards to AT, = 0.833 > AT4 = 0.714.

crit

For ATZ, < AT < ATA. both units A and B work as heat pumps. Primarily, a work
quantity W4, > 0 has to be inserted per cycle to compensate losses due to leakage
currents in the direction of the internal temperature gradients. Since spin 3 is a finite
heat bath and cannot be cooled down or heated up arbitrarily, it is evidently impossible
that both heat pumps could work against each other in an efficient way. Thus all work
input is dissipated within this range of AT, and the energy of spin 3 remains effectively
unchanged after one performed cycle.

For AT, < AT < AT, both units work as heat engine and heat pump, respectively.
However, a smaller amount of work AW, < 0 is released from unit A than the quantity
AWpg > 0 to be applied to the latter. This is due to dissipation arising from the mutual
influence of both units as explained later on. Hence AW, > 0 and AQ;, > 0 at the same
time, therefore the circuit heat pump efficiency 7, is arbitrarily set to zero in Fig. 5.3.

In Fig. 5.7 the local heat pump (p) and heat engine (en) efficiencies of units A and B

are depicted, defined as

m = —AQu/AWs 1y =—AQ./AWp

P b (5.7)
nen - _AWA/AQh nen - _AWB/AQC .

Again it is visualized that, between the local critical temperature gradients ATZ, and

ATA both units work as heat pumps. Far from these values, however, the local Quantum
Otto efficiencies obtained with (5.5) are approached and may even be exceeded.
Hence both units do behave like three-spin machines, and consequently the entire

circuit does so. At those AT where AWg > 0 and AQ. > 0 in Fig. 5.6 the heat pump
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Figure 5.2.: Serial five-spin circuit working as heat pump (AT = 0.13): Heat currents
Jp over one cycle 7 = 27w /w. Spins 2 and 4 are driven in-phase. Cycle steps:
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Figure 5.4.: Serial circuit working as heat pump (AT = 0.13): ST-diagrams of the driven
spins of units A and B, working as heat pump and heat engine, respectively.

efficiency nf = —AQ./AWpg of unit B would be negative and is set to zero. With regard
to unit A the same holds for those AT where AW, > 0 and AQy, > 0. In these cases
all work input is over-compensated by losses.

The reason why the subunits switch between heat engine and heat pump mode at
different temperature gradients is founded in a slight increase of the otherwise nearly
constant temperature 75 of the effective finite heat bath spin 3. This is illustrated in
Fig. 5.9 by means of the energy expectation values of spins ¢ = 1, 3, 5, all normalized to

AFEs;, <EZ> = igﬁ_’ tanh 2% and plotted as functions of the global temperature gradient

AT, together with the ideally supposed average energy (see (5.3)),
1 ~ ~ AFEj3 AFE; AFE;3 AFE, AFE;
E3) =5 ((B) + (Bs)) = = tanh =2 = tanh tanh (5.8
(Bs) =5 (B (Bs) ) = == tanh 57 = == ( tanh 50" - tanh 577 ) - (5.8)

This holds because, assuming ideal adiabats, the driven spins 2 and 4 carry the same
occupation probabilities as the respective bath spins 1 and 5 just before heat transfer
via spin 3, i. e. (E,) = (E) and (E;) = (Fs). If spin 3 featured the ideal average
energy (E7), the entire circuit as well as both units would simultaneously switch their
respective modes of operation at ATcifi$ where the canonical distributions of both bath

spins are equal. In this case, (E3) = (E,) = (Es).

However, spin 3 is found with an energy (FE3) > (E3). The offset

C' = (E5) — (E7) = 0.0064 [AE]

only marginally depends on AT over a wide range. This considerably changes the
situation.

Following Fig. 5.9, for AT < ATy the entire circuit works as heat pump due to the
energetic order of the involved spins,
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Figure 5.5.: Serial circuit: Heat AQ, and AQ., work Wi, of the entire circuit and work
Wa,p of the local units A and B during one period 7.
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Figure 5.6.: Zoom into Fig. 5.5. The work functions W,,p of units A and B change
sign at different critical gradients ATA = 0.77 > ATZ, = 0.71. The work
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function Wiy of the entire circuit finally changes sign at AT, = 0.83.
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Figure 5.8.: Bures distance measure D? over one period 7. Heat current transfer Ji,, via
spin 3 (internal) and J, . with the reservoirs are marked by peaks.
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Figure 5.9.: Energy expectation values <EZ>, 1 =1,3,5 and <E§> (ideal). Due to the
energetic up-shift C* = 0.0064 [AE] (with (5.10): C' = 0.0205), units A, B
should switch operation modes at ATy = 0.96 and ATg = 0.52, respectively.
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Figure 5.10.: The energy <EE(t)> of spin 3 for AT = 0.4 asymptotically approaches a

stable value <E3>ﬁnal ~ —0.2135[AFE] during the temporal evolution of the
system into its nonequilibrium attractor state.
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At ATy = 0.52 the canonical distributions of spins 3 and 5 are equal, which marks the
expected switch from heat engine to heat pump mode in unit B. For unit A the heat
pump should emerge at AT,y = 0.96 where (E) = (E3).

Comparing Fig. 5.9 and Fig. 5.6 one would expect that AT = ATE. and AT, =
AT4. . Due to the presence of leakage currents, however, both transition points are

crit*

shifted towards lower internal temperature gradients which, for unit B, corresponds to a
higher global temperature gradient. For this reason, Fig. 5.6 shows the actual situation.
In addition, the zero points of AQ)} . are displaced as well. This behavior is the same
as for the three- and four-spin models described above where leakage currents cause
the breakdown of the heat pump and the emergence of the engine function at smaller
critical temperature gradients than ideally expected. Furthermore, since heat and work
functions are proportional to each other, their absolute values and inclinations decrease,
compared to the case of lossless transport in the ideal Quantum Otto cycle.

The energetic increase C’ in spin 3 is of magnitude 102 in units of the local energy
splittings AE . To check whether this can be attributed to the weak but present corre-
lations within the spin chain, the Bures distance measure between the actual state and
the product of the uncorrelated local states (cf. (2.35)),

D? = Tr{(ds — (01 ® 02 ® 03 ® 01 ® 05))° }

is plotted in Fig. 5.8 over one period 7, yielding only a magnitude of 107°[AE]. This
is much too small to explain the mentioned up-shift effect since also the spin-spin in-
teraction has been chosen in the weak coupling limit (A = 0.01). Nevertheless, strong
similarities to the characteristics and magnitude of the heat currents (Fig. 5.2) are ob-
servable, indicating clear mutual dependencies. The smaller peak in Fig. 5.8 represents
the internal heat current Ji,; via the effective bath spin which is invisible in the heat
current characteristics. Only the higher peak can be directly linked to the heat currents
Jh,c between the system and the hot and cold reservoir.

The explanation for the up-shift C’ may finally be founded in that during the evolution
of the system towards its non-equilibrium attractor state some of the heat transported
through the chain effectively remains stuck in the “bottleneck” spin 3 due to internal
leakage currents. As shown in Fig. 5.10, the energy expectation value of spin 3 (Ej(t))
asymptotically approaches the stable average energy <E3)ﬁnal ~ —0.2135[AE] for an
initial energy (F3) ~ —0.22 and AT = 0.4. For better visibility oscillations of (Es(t))
are omitted.

We remark that the driven spins could also be modulated with other relative phases
than done here. The best heat transport through this kind of serial circuit has however
been found for the case that both driven spins simultaneously are in resonant contact
with spin 3, since only in this case the latter features a constant energy and temperature,
allowing for easier investigation. If otherwise the driven spins alternately exchange heat
with the effective bath, its energy and temperature oscillates around an average value.

Finally the setup as in figure 5.1 could be altered such that two identical subunits had
to work against each other. Then AW, = —AWp and, as claimed by the Curie principle
for the absence of any asymmetry, the total work would vanish and solely an effective
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Figure 5.11.: Energy expectation values <EZ> of spin ¢ for AT = 0.13. Losses occur due
to long times of resonant contact between adjacent spins, labeled F, H and
C' (see text). While spins 2,3 and 4 equilibrate (F'), Spin 2 does not reach
the energy level of spin 1 (H).

leakage transport from the hot to the cold bath would remain, effectively reducing the
machine function to a pure transport phenomena.

If, in addition, both reservoirs had the same temperatures, the resulting highly sym-
metrical configuration might be used to cool the middle spin down to a minimal tem-
perature determined by the canonical distributions of the bath spins. The same could
also be achieved with a driven three-spin chain coupled to one heat bath only [41].

5.1.3. Extensions of the Ideal Quantum Otto Cycle

As indicated above, the description of the ideal Quantum Otto cycle does correctly
predict the Quantum Otto efficiencies of the engine-pump circuit with “bottleneck” but
is obviously unable to give an adequate estimate for the global critical temperature
gradient without further modifications.

First of all, the conservation of energy for the heat current running through the ef-
fective bath (5.2) does not seem to work any more for any average temperature other
than T3 from (5.4). However, remedy is found in Fig. 5.11 where the energy expectation
values of all spins are plotted over one period for the case the entire circuit works as heat
pump. During heat transfer via the effective bath spin marked F', spins 2,3 and 4 are
in resonant contact and their energies approximately equal. Thus, even for more than
two spins the intuitive view of contact equilibrium holds at least up to a certain degree,
even in a dynamical scenario. While the energies of spins 4 and 5 approach each other
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as well during heat inflow from the cold bath (labeled C'), the energy of spin 2 does not
fully reach that of spin 1 although both interact (labeled H). It is generally found that,
if unit A works as heat pump and B as engine, spin 2 features a higher temperature
than it would under idealized conditions, i. e. optimal heat transfer. The same happens
to spin 4 in the contrary case. For ATy < AT < AT, where units A and B work as
heat pumps (see Fig. 5.6) both gas spins do not fully equilibrate with the bath spins.
As pointed out in the following, Eq. (5.2) remains valid for T3 # T3 by a phenomeno-
logical modification. Firstly, Eq. (5.3), giving the distribution of spin 3, is rewritten

as
AFE; 1 AFE, AFE;
h = — h h - :
tan o7, 2 (tan o7, + tan o7 C) (5.9)
where
C =4C*/AFE; (5.10)

with C* taken from figure 5.9 and introduced as a phenomenological constant. For the
presently used parameters the value C' = 0.0192 is found. The local critical gradients
ATy and ATy are now given by

AFE AFE AFE -
tanh —+ = tanh —> = AT, = L — T, > AT, |
2T 213 2 arctanh <tanh Az—ff - C)
(5.11)
AFE AFE AFE -
tanh =——> = tanh = = ATp = . — T, < ATH, .
2T 2T 2 arctanh <tanh %fj + C)
(5.12)

These expressions only depend on the initially unknown parameter C' to be obtained
from the numerics and, in general, are supposed to be a function of AFEj3, the driving
frequency w and the other constant model parameters (see table 4.1).

Over a wide range a slight dependence on AT is visible which, however, may be
neglected within the frame of this phenomenological ansatz. If C' = 0 it would be again
ATg = AT!S = AT, = T.(AE,/AE; —1).

On the other hand, the elevated energy that e. g. spin 4 exhibits after having been in res-
onant contact with spin 5 is included by assuming the cold bath at a raised temperature
T*. The altered continuity condition now reads

AE, AE, AE;\  AE AE, AE;
tanh ——1 — tanh - tanh =2 _ tanh 5.13
2 (an o, 2T3) o \MMon T MM (5.13)

leading to the following distribution of spin 4 for AT > AT}y:

AE AE
—2(E?) /AEs = tanh — = tanh —> — C (5.14)

2T 2T,

[
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An analog expression is obtained for spin 2 if AT < ATp:

AFE; AFE;
= tanh
2Ty 2T,

—2(E}) /AE; = tanh -C (5.15)

From a physical point of view, the spin system evolves into a stationary non-equilibrium
state where either spin 2 or 4 do not sufficiently equilibrate with the respective bath
contact spins. Eventually this can be explained as well with the occurrence of leakage
currents. Even if unit A works as engine at AT > AT}, spin 2 transports less heat
due to the raised constant average temperature of spin 3 why, in turn, spin 4 engages
towards a state with increased temperature in order that (5.13) is fulfilled. The analog
inverse holds if the entire circuit works as heat pump for AT < ATg. In between, if
ATp < AT < ATy, both units work as heat pumps and consume work only to com-
pensate losses. Here, both the hot and cold reservoir are assumed to feature elevated
temperatures 7, and 1", respectively. This may be modeled by

AE, AE,
tanh — tanh —(1-a)C 5.16
o T T, (1-a) (5.16)
AE; AE:
_ _ 1
tanh T tanh o7, aC (5.17)

where a for the rest is an unknown function of AT and the other system parameters,
and 0 < a <1 for AT < AT < AT}y.

Finally, the critical temperature gradients for units A and B calculated above lead
to the one for the entire system. Taking into account that W = 0 at ATg, the work
function AWg(AT =T, — T.) of unit B writes

AWgR(AT) = = (AEs; — AEj3) (tanh A _ tanh 5

1 AE;
- 1
1 ST, + C’) (5.18)

(AT +T,)

This function is also assumed to hold for AT > AT}, taking into account the dissipation
originating from the excess work to be applied to system B since here the driven and
bath spin do not fully equilibrate. Otherwise 7. could be replaced by T from Eq. (5.14)
which would give rise again to the ideal critical gradient AT)4

crit*

In analogy to this, the work function AW, (AT') becomes

1 AFE; AFE;
_1 _ Bt S 1
AW (AT) 1 (AE, — AE;) <tanh SAT+T) tanh o7 + C’) (5.19)
and finally, the entire work function gets
AWt (AT) = AW4(AT) + AWp(AT)
1 AFE, AFs C
(5.20)
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Figure 5.12.: Work AW/‘I}% of units A, B and total circuit work AW calculated with

Eqns. (5.18) - (5.20) for AE; = 1.25 and C' = 0.0192. AW changes sign
at AT = 1.45, cf. Eq. (5.21).

crit

The transition point where AW;,; = 0 is obtained as

AEs C(AE; + AE; — 2AE3)> o o)

AE,
AT = =L | arctanh ( tanh _
it = [arc an (an o, AE, — AE;

This expression depends on the internal geometry in terms of AFE3 as well as on the
energetic up-shift in spin 3 read out from Fig. 5.9 with (5.10).

For C' > 0 and AE3 < AE;, AE5 we have AT,;; > AT, . As a result, the mutual in-
fluence between the subunits via the effective bath spin causes the entire circuit to change
its mode of operation at a higher critical temperature gradient than ideally expected.
This is also clarified by considering the energy expectation values (E~,) normalized to
AFs5. Globally seen, work is released only if

(AEy — AEy) ((By) — (Bn)) > (AB; — AEy) ((Bs) - (E5))

Moreover, the factor 1/4 appearing in the expressions derived for AWy, indicates a
general reduction of both work and transported heat due to the presence of spin 3, even if
C' = 0. This also applies to other models containing an effective bath spin (see Sec. 5.2)
and can be linked to the elevated resistance of the five-spin chain. Considering e. g. a
three-spin machine, the factor 1/2 rules instead, cf. (3.4), (3.5).
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All in all, the given ansatz is rather phenomenological but, at least, it can roughly
explain the shift of the global critical temperature gradient in a “bottleneck” model.
Compared to the description of the ideal Quantum Otto cycle, only one additional
extension has been introduced, namely C.

A plot of the work functions for the entire circuit and both subunits, calculated with
(5.18), (5.19) and (5.21), is depicted in Fig. 5.12 for AE; = 1.25 and C' = 0.0192. As
expected, the zero points ATy ,/p coincide with the intersection points from Fig. 5.9.
While, qualitatively, the calculated work functions are quite similar to the numerically
obtained ones displayed in Fig. 5.5 and Fig. 5.6, the obtained critical temperature gra-
dient of the entire circuit, AT = 1.45 is much too large compared to the actual value
of AT, = 0.83.

Hence, the effects of leakage currents must necessarily be taken into account. As men-
tioned, this will induce shifts of the local critical gradients AT, and also a downscaling
of the work functions. Up to now, however, this can only be done with other ad-hoc
approaches, introducing more correction terms such as scaling factors and zero shifts
AT — AT £ A to AW,,p into Eqns. (5.18) - (5.20), likewise the approach in [16].

As it will be shown below, the offset C' changes if AFj3 is altered. This behavior and its
impacts on the global circuit characteristics will now be investigated further by means
of some more examples.

5.1.4. Modified Circuit Configurations — Variation of the
Energetic Geometry

In order to determine the dependence of the circuit characteristics on the local energy
splittings, we examine an additional example where the local energy gap of spin 3 is set
to AE3 = 0.25 and the amplitudes of spins 2 and 4 are adjusted in order to to agree with
the new resonance conditions. This model, referred to as circuit 2, is found to exhibit a
substantially different behavior than the prior one.

For the case the circuit works as heat pump, the ST-diagrams of units A, B are
displayed in Fig. 5.13. Compared to the previously investigated circuit (Fig. 5.4) their
shapes are rather rectified, indicating that leakage currents are considerably suppressed
here. In particular, the small dips related to leakage within the spin chain factually
vanish.

This quasi-rectification follows from the low value of AFEj3, leading to faster “stroke
velocities” of the gas spin energy gaps and thus to shortened resonance times between
neighbored spins. In physical terms the time derivatives of the local Hamiltonian of gas
spins 2 and 4 read

Hyy = LTWAE] , coswt (5.22)

with increased amplitudes AE%4 = %(AELE, — AFEj3). In the following we concentrate
on the influence of variations of AFs3 on the system characteristics whereas the impacts
of different driving frequencies w has not been researched yet.

The reduction of leakage is also apparent from the heat currents depicted in Fig. 5.14,
featuring asymmetric shapes with flat slopes. This is quite similar to the model with
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Figure 5.13.: Circuit 2 (defined on p. 66) working as heat pump (AT = 0.13): ST-
diagrams of the driven spins of units A and B, working as heat pump and
heat engine, respectively.

artificial decoupling discussed in Sec. 3.3.1, cf. Fig. 3.4). After the isochoric step where
heat is exchanged with the reservoirs, the heat currents into and out of the system
may decay slowly since the gas spins are rapidly driven out of resonance and therefore
backflow is inhibited. Nonetheless the driven spins remain coupled to the baths which
is indicated by the ubiquitous oscillations during the adiabats.

The altered system geometry neither leaves the characteristics of the work and heat
functions unchanged. Both are almost doubled as the comparison of figures 5.15 and 5.5
yields. The increase of heat goes in hand with heat current peaks of higher magnitude
than those for the prior model (cf. Fig. 5.2).

In contrast, the efficiencies 1./, of the whole circuit drawn in Fig. 5.17 remain qual-
itatively unaltered in essence. They approach the ideal Quantum Otto efficiencies
Nt = 0.222 and 5" = 4.5 for values of AT afar the critical gradient for the en-
tire circuit, being right-shifted again to AT, = 0.87 where the circuit efficiencies decay
to zero.

The actual difference to the previous model turns out in Fig. 5.20, displaying the local
heat engine and pump efficiencies ni//ﬁ of units A, B together with the corresponding

local Quantum Otto efficiencies. These take the values 75,°" = 0.889 and 70" =

1.125 for unit A and n5;°""* = 0.857 and 7°""° = 1.167 for unit B. Both units switch

en
much more abruptly between heat engine and heat pump mode and their efficiencies
converge faster towards the local ideal Quantum Otto bounds since internal leakage
currents are widely suppressed. Otherwise the slopes of the decaying efficiency functions
would be much flatter, cf. Sec. 4.2 and |[16].
In analogy, Fig. 5.16 shows that for both subunits the work and heat functions equal
zero at the same temperature gradients, i. e. AWp = AQ. = 0 at ATE, = 0.7 and

crit

AW, = AQp, = 0at ATA, = 0.743, revealing again that locally dissipation is minimized.

crit
Globally seen, however, the situation remains unchanged. For ATE, < AT < ATA,

crit
both subsystems again work as heat pumps and consume work only to compensate losses.
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Figure 5.14.: Circuit 2 (p. 66) working as heat pump ( AT = 0.13 ): Heat currents Jj .

between system and baths over one cycle.
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Figure 5.15.: Circuit 2 (p. 66): Heat AQp,, total circuit work AW, and work AWy,

of the subunits per period 7.
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Figure 5.16.: Zoom into Fig. 5.15. One finds AQ, = AWp = 0 at ATZ, = 0.7 and
AQp = AW, =0 at ATA, = 0.743 (see text). The critical gradient for the

crit
entire circuit is ATy, = 0.87, here only the leakage heat AQ)p remains.
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Figure 5.17.: Circuit 2 (p. 66): efficiencies of global engine and pump 7ey,/p, ideal Quan-
tum Otto bounds n°"° and Carnot bounds n% . Now, ATy = 0.87 >

: en/p en/p°
AT = 0.714.
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Figure 5.18.: Energy expectation values for circuit 2 (p. 66): <E~,>, 1=1,3,5 and <E§>
(ideal). Definitions are analogous to p. 57. We find C* = 0.0008 and thus
C = 0.013 after Eq. (5.10).
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Figure 5.19.: Bures distance measure D? over one period 7 for circuit 2 (p. 66). Peaks
mark the presence of internal (J;,) and external heat currents (Jj ), cf.
Fig. 5.14.
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Figure 5.20.: Circuit 2 (p. 66): Local efficiencies of units A, B, n and ideal Quantum
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Figure 5.21.: Circuit 2 (p. 66) working as heat pump ( AT = 0.13): Energy expectation
values <EZ> of spins i. Due to short resonance times between adjacent
spins, labeled F, H and C, internal leakage currents are reduced. Spins 1
and 2 do not equilibrate energetically (— H).
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5. Serial Quantum Machine Circuits

As mentioned, this is necessary to keep the effective bath spin 3 on its constant average
energy.

Likewise, within ATC‘;‘H < AT < AT, subsystem A works as heat engine and B
as pump. Again, AQ, > 0 and AW,y > 0 because of AWg > —AWy,, i. e. unit
B consumes more work than A releases and, effectively, work must be expended to

transport heat from the hot to the cold reservoir.

For the present model the energetic up-shift C* = 0.0009[AE] of spin 3 is found from
in Fig. 5.18, yielding C' = 4C*/AFE3 = 0.014 which is smaller than before. As indicated
above, the reduced value of AEj3 leads to a raised "stroke" velocity and thus to shortened
resonance times since driving is effectively faster. Consequently, internal leakage currents
are more effectively suppressed and the heat quantity stuck in the bottleneck spin is
therefore reduced. As a result, the difference in canonical distributions between the bath
spins on the one hand and spin 3 on the other hand is increased, leading to increased heat
transport through the circuit via spins 2 and 4 which, in relation, release or consume
even more work due to the larger internal energy gradients. At the same time, Fig. 5.17
indicates that more work has to be expended for dissipation balance in unit B since,
for AT > AT, the global engine efficiency 7., undergoes its pendant from the prior
model.

Following Eq. (5.11) and (5.12), the zero points of the local subunit work functions
AW 4, should be shifted to lower local internal temperature gradients for smaller values
of C' as well, which is confirmed by Fig. 5.18. Compared to Fig. 5.16, additional leakage-
induced adjustments in this sense appear also. However these are less distinctive since
leakage currents are reduced. After (5.20) the zero point of the entire circuit work
function AW (AT) is expected at AT, = 2.0, being far too big to match with the
actual value of AT, = 0.87 from Fig. 5.16. Hence, in order to obtain the right zero
positions and slopes of AWy, g and AW, adequate correction factors reflecting losses
are needed once more.

A closer look on the processes during the isochores is furnished in Fig. 5.21 by means
of the energy expectation values (F;) for all spins i plotted over one period 7 = 27 /w.
Compared to Fig. 5.11, resonance times between adjacent spins are shortened here.
During the internal isochoric step with heat transfer via spin 3, labeled F', the energies
of spins 2,3 and 4 approach quite well, indicating sufficient contact equilibrium. However,
like in the previous case, the driven spin 2 does not sufficiently approach the average
energy level (E7) of spin 1 (labeled H) and thus remains at a higher temperature. Since
this is related to dissipation in unit B, the engine function of the entire circuit emerges
at an even more increased gradient AT, where, finally, unit A starts to release more
work than B can consume.

Finally, weak correlations of magnitude and characteristics comparable to the heat
currents (Fig. 5.14) are found in the system, displayed in Fig. 5.19 by means of the
Bures distance measure over one period (see (2.35)). Again the internal heat currents
are made visible by peaks.
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Figure 5.22.: Circuit 3 (p. 75) with AFE3 = 0.75: Energy expectation values <E,> and
(E3) (ideal) ,i = 1,3,5 (cf. p. 57). One finds C* = 0.0028 and thus

C' = 0.015 (see (5.10)). Further, AT4y = 0.836 and AT = 0.577.
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Figure 5.23.: Work and heat for circuit 3 (p. 75). Here AT = 0.747, ATE, = 0.707,
and AT = 0.824
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Figure 5.24.: Circuit 4 (p. 75) with AFE3; = 0.5: Energy expectation values <EZ> and
(E3) (ideal), i = 1,3,5 (cf. p. 57). We find C* = 0.00168 — C = 0.0135
(Eq. (5.10)). Further on, AT = 0.836 and ATp = 0.577.
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Figure 5.25.: Work and heat for circuit 4 (p. 75). Here ATA = 0.743, ATE. = 0.704,
and AT, = 0.836.
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AFE; w C AT, ATZA, ATg ATE, AT, with (5.21)
1.25 1/128 0.02 096 0.771 052 0.708 0.833 1.45

0.75 1/128 0.015 0.88 0.747 0.564 0.707 0.827 1.7

0.50 1/128 0.0135 0.863 0.743 0.577 0.704 0.836 1.8

0.25 1/128 0.013 0.859 0.743 0.581 0.7 087 2.0

Table 5.1.: Serial circuit: Characteristic results for different values of AFEj3

Further Examples: Circuits 3 and 4

In a third example for a bottleneck model, referred to as circuit 3, we choose AFE3; = 0.75
and adjust the amplitudes of the driven spins, whereas all other parameters are left
unchanged, see Tab. 4.1. From Fig. 5.22 one finds the energy up-shift C' = 0.015.
Accordingly, ATy ~ 0.827 and ATp ~ 0.564. Provided that the driving frequency is
unaltered, the stroke velocity decreases because of smaller internal energy gradients.
This leads to longer spin contact times than in circuit 2 (p. 66), why internal leakage
currents are invoked again. As displayed in Fig. 5.23, all heat and work functions equal
zero at different AT and mainly come with absolute values in between those of circuits
1 and 2, according to the intermediate value of C'.

Apparently, the parameter C' crucially influences the heat transport capability in
these systems and therefore is a resistance indicator. C' definitely depends on AFEj3 and,
assumedly, also on w which however is to be verified numerically yet.

Following Fig. 5.23, the actual critical temperature gradients AT, = 0.74 and
ATZE, = 0.71 of the subunits are shifted inbound compared to ATy, p from Fig. 5.22.
The critical gradient of the whole circuit lies at AT, = 0.827.

Example No. 4 comes with AF3; = 0.5 and C' = 0.0135, taken from Fig. 5.24. Its
heat and work functions provided in Fig. 5.25 only yield small discrepancies to those of
circuit 3. Here, the critical gradient is found at AT, = 0.836.

Summary and overview

The stroke velocities, given by the time derivatives of the local Hamiltonians of the driven
spins 2 and 4 in Eq. (5.22) have been found to determine the spin resonance contact times
which are decisive for the performance of heat transfer. Therefore they considerably
affect the internal leakage current behavior and thus the parameter C'. Expectedly, in
addition to AFE3 the impact of the driving frequency w on C' is considerable as well,
which is yet subject to verification. Depending on AFE3 (and w), the heat conductivity
of the circuit is altered by changing the resistance of spin 3 via the parameter C'. On the
other hand, the global circuit efficiencies are comparable for different sets of parameters.

An overview of obtained characteristic values depending on AFEj3 for all presented
examples is given in table 5.1. In first approximation, the actual critical temperature
gradient obtained from the numerics can be considered independent of AFEjs, although
it is explicitly contained in (5.21) as well as via C. This is made plausible in that the
investigated models feature about the same critical gradient AT,;. Solely circuit 2
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5. Serial Quantum Machine Circuits

where AE3; = 0.25 breaks ranks. This, however, seems to be a special case since only
here internal leakage currents are sufficiently suppressed.

For the rest, all other values in table 5.1 monotonously depend on AFj3. It is easily
verified that the ansatz from Sec. 5.1.3 correctly describes the positions of the local criti-
cal gradients ATy g where AW, 5 = 0. It takes into account the dissipation arising due
to the fact that at least one of the driven spins does not equilibrate with the respective
bath spin during heat transfer between the system and the acceptor bath. Additionally,
one can state that, even if for this class of serial quantum machine circuits direct leakage
currents from the hot to the cold bath are not present, the same effects arise as if this
was the case since, in some sense, the circuit subunits work against each other due to
the effective bath function of the “bottleneck” spin.

It must be noted that the right-shift of AT.; cannot be exploited up to the full
range like in models with linear energetic gradients because, within the critical range,
all expended work is needed to balance dissipative losses.

In general, even if adequate fitting parameters for leakage currents can be found, the
actual processes within these rather complex systems are difficult to characterize.

Summarizing, the serial five-spin circuit with a "bottleneck" spin does indeed run a
Quantum Otto cycle, however, a better performance and more efficient heat transport is
possible with a three-spin or four-spin machine, so as with the parallel four-spin circuit
driven with relative phase shift.

5.2. Serial Circuit of Directed Quantum Machines

After having looked at oppositely directed quantum machines in the previous section, we
investigate now a serial circuit with a funnel-shaped global energy gradient as depicted
in Fig. 5.26. Differently to the "bottleneck" model, units A and B are expected to run
Quantum Otto cycles in the same direction and work in unison either as heat engines or
heat pumps due to the directed energetic gradient. This includes a directed temperature
gradient within the circuit as well. The Quantum Otto cycle steps performed analogously
to the description in Sec. 5.1.

Likewise before the circuit is a Heisenberg spin chain whose Hamiltonian is given
by (3.8) extended to five spins. For numerical investigations the spin energy splittings
are chosen as AE, = 3.0, AEy(t) = 2.75 + 0.25coswt, AE3 = 2.5, AE,(t) = 2.25 —
0.25 coswt and AE5; = 2.0, fulfilling the resonance conditions

AE; > AB,y(t) > AF; > AE(t) > AEs
Similarly, for the local temperatures one finds
Ty,=T,>1T5>1T5 =1,

Spins 2 and 4 are driven with a relative phase shift of half a period in order to bring them
into resonance with spin 3 simultaneously, since in this case a considerable reduction of
leakage currents is found and heat transport is improved. The temperature of the cold
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Figure 5.26.: Serial circuit of two quantum heat pumps/engines between two heat baths.

bath is constant, 5. = 1/T. = 0.7 whereas that of the hot bath is varied. This set of
parameters yields the same ideal critical temperature gradient as for all previous models,
i.e. AT =0.714, allowing for comparison. For w and the coupling constants see table
4.1.

In Fig. 5.28 the heat engine and heat pump efficiencies 7, /, for the whole circuit are
drawn as functions of AT. Both rapidly approach their ideal Quantum Otto bounds
Nert® = 0.333 and 79" = 3 and drop down steeply on approaching the critical temper-
ature gradient found at AT, = 0.68, being very close to AT'4 . These results imply
that dissipative losses are small.

On the other hand, leakage currents do occur since the ST-diagrams depicted in
Fig. 5.2 for the case both units work as heat pumps exhibit large typical leakage dips
and strong oscillations on the adiabats, reflecting the bath influence. Furthermore, the
peaks of the heat currents depicted in Fig. 5.30 are of symmetric shape, indicating
internal heat current backflow, and also show the pertinent oscillations.

However, the apparent contradiction is resolved in that, up to a certain degree, the
internal losses of spin 2 in the direction of the global temperature gradient are taken
by spin 4 after internal isochoric heat transfer via spin 3. Since the ST-diagrams of
both driven spins are roughly rotationally-symmetrical, one can conclude that the work
dissipated in unit A due to losses is released again and thus sufficiently compensated in
B, and vice versa. Contrarily, in a simple three-spin machine the leakage heat would
simply vanish into the reservoirs and would therefore be lost.

Again the canonical distribution of spin 3 is about constant in time. In this case it
approximately equals the ideal average of the bath spins (cf. Eq. (5.3)),

AFE; 1 AFE, AFE;5
2 (F3) /AFE5 = tanh = — ([ tanh tanh 5.23
(Ey) [AEs = tanh 57 2(8”1 o, T (5:23)
since there are no prerequisites for a constant energy up-shift such as for a “bottleneck”
spin. (Fj3) is the energy expectation value of spin 3 after 2.72.
Hence spin 3 takes again the role of an effective heat bath with a temperature in
between of those of the baths, shielding both units from each other. However, the

7



5. Serial Quantum Machine Circuits

Sp
[ [ [ [
16 F ]
Ta 15} 1 Tg
14 F ]
| | | | | | | | |
0.42 043 044 045 0.46 0.46 0.47 048 0.49

Figure 5.27.: ST-diagrams of two serially connected machine units A, B, working in
unison as heat pumps here. The diagrams are roughly rotationally-
symmetrical.

shielding capability is considerably reduced here due to the unidirectional temperature
gradient.

In spite of the above said, losses are still present during heat transfer with the reservoirs
as well as internally. This is learned from Fig. 5.29 and Fig. 5.31 where the heat and work
functions AQy, . and AW are displayed. They are of similar magnitude as for comparable
three- and four-spin models and change sign at different gradients AT. However, this
happens on a much smaller scale and much closer to ATi4, than observed before. As
indicated already by the ST-diagrams depicted in Fig. 5.2, units A and B run indeed
the same thermodynamic cycle since the work functions AWy, carry the same sign.
On larger scales it turns out that AW, ~ AWp, whereas the magnification in Fig. 5.31
shows that AW, < AWp because a small amount of work in unit B is expended to
compensate the losses emerging in A. As a consequence, both units change their modes
of operation at slightly different temperature gradients ATA. # ATE. | symmetrically
to AT... For the rest, the Gibbs relation AQ;, + AQ. + AW, + AWpg = 0 is fulfilled.

Since the distribution of spin 3 equals about the ideal one (see (5.23)), it is easy to
show that only half as much heat is exchanged between the system and the baths as it
would be the case for a three-spin machine with the energetic gradient (AFE; — AFEs)
and the same bath spin configurations (AFE; /T},) and (AFE5/T,). For the case the circuit
runs as heat pump, this is now demonstrated by means of the ideal Quantum Otto cycle
discussed in Sec. 3.3.

The heat flux from the cold bath into unit B is calculated as

AFE AFE AE AFE AFE AFE
> <tanh ® _tanh 3) = > (tanh ® _tanh 1) >0

AOQ,_ .5 =
@np 9 oT. 2T, 1 oT. 2T,

The work for the entire circuit becomes

1 AE AE
AVVtot = AWA + AWB = Z (AEl — AE5) (tanh > — tanh 1) >0

2T, 21},
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Figure 5.28.: Directed serial circuit: The efficiencies 7e,/, of the heat engine and heat
pump rapidly approach the ideal Quantum Otto bounds 19" far from

] en/p
AT, = 0.68, close to AT!4 = 0.714. The Carnot efficiencies are ngla/rp.
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Figure 5.29.: Directed serial circuit: Heat AQ)} ., total circuit work AW, and work
AW4 =~ AWpg of units A, B per period.
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Figure 5.30.: Directed serial circuit running as heat pump (AT = 0.13): Heat currents
Jn, J. over one period T.

The heat floating from unit A into the hot bath, AQ 4_ is obtained analogously.

All these function are reduced by a factor 2, compared to (3.17) and (3.16). Appar-
ently, the additional spin in the middle leads to a downgrade in conductivity whereas, of
course, the Quantum Otto efficiency 7" = 3 remains untouched since it only depends
on AF; and AFE5. This limitation of heat throughput can be put on a level with a
resistance to be assigned to spin 3. As discussed above, the same effect analogously
arises in models with a “bottleneck” spin where it is further amplified by the mentioned
energetic up-shift.

In comparison, a three-spin machine with the same canonical bath spin distributions
but a smaller energetic gradient AE} — AEY = x(AE; — AE;5), 0 < < 1 would
transport more heat with the same work to be applied. Therefore, it would exhibit a
higher ideal Quantum Otto efficiency for the heat pump and a lower one for the engine.
Since, however, these efficiencies depend on concrete values of the bath spin splittings,
a detailed comparison is not possible.

Fig. 5.32 shows the local heat engine and heat pump efficiencies "721//5 as well as
the corresponding Quantum Otto efficiencies for units A and B which take the values

Ot = 6.0, Ot = 5.0,75,°"° = 0.167 and 75,°"° = 0.2,

en
Both heat pump efficiencies decease simultaneously to zero, whereas the emergence
of the heat engine function in unit B is slightly shifted compared to that of unit A,
i. e. ATfit > Achr‘it, since, as mentioned, a small work input into system B is required
to compensate the losses in A (cf. Fig. 5.31). Far away from ATC‘;‘i/tB both heat pump
efficiencies rapidly approach their respective Quantum Otto bounds, whereas the en-

gine efficiencies also converge but effectively stay below. Following Fig. 5.28, the same
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Figure 5.31.: Zoom into Fig. 5.29. The subunit work functions AW, AWpg. are mutu-
ally shifted and change sign symmetrically around AT = 0.68 where the
circuit is idle and only the leakage heat AQ; persists.
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Directed serial circuit: Local efficiencies of units A, B, coevally running as
heat pumps, nff/B, or as heat engines, ngfil/B. Operation modes are switched
at ATA ~ ATE. = 0.68. For AT afar hereof the ideal Quantum Otto
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behavior is found for the entire circuit.

From a general point of view, the dependencies between global and local engine
efficiencies are the same as in Sec. 5.1.1. A heat quantity AQ; from the hot bath
floats into unit A where the work AW, < 0 is emitted, leading to the engine effi-
ciency n4 = —AW,4/AQ;. Via spin 3 the remaining heat AQ* = AQ), — AW, is
forwarded to unit B where another amount of work AWpx < 0 is released. This leads to
nB = —AWg/(AQ) + AW,) = —AWg/(AQ. + AWp).

For the entire circuit, the self-consistent relation

neet =i+ 08l —nanl = —(Wa+Wg)/Qn and b, = 1/n

holds by virtue of the Gibbs relation or the continuity condition for the heat flux through
the effective bath, respectively, i. e. AQ, + AW, = —(AQ. + AW3g).

Summarizing, this circuit of two unidirectionally working quantum machine units
comes pretty close to the description of the ideal Quantum Otto cycle since the circuit
efficiencies rapidly approach their Quantum Otto bounds. The critical temperature
gradient neither is too different from the ideal one. In spite of all, a simple three- or
four- spin machine circuit is preferable due to its higher heat transport capability, related
to a lower spin chain resistance.

It must also be remarked that, possibly, the special character of the presented model
is only a consequence of the relative phase the gas spins 2 and 4 are driven with, guar-
anteeing simultaneous resonance to spin 3 and therefore better heat transfer. For other
relative phases a significantly different behavior of the circuit might emerge, concerning
efficiencies, heat transport and leakage currents.
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6. Complex Quantum Machine
Circuits

In this chapter generalized quantum machine circuits shall be investigated with regard
to efficiency and heat transport behavior. This is purely meant to be an extension of
the ideal Quantum Otto cycle discussed in Sec. 3.3, that is, full step control is assumed,
and neither leakage currents nor correlations are taken into account. Two or more
resonant spins are supposed to equilibrate, approaching an average energy. In practice
this is feasible only in a first approximation, as seen in the previous chapters. However,
these simplifying assumptions have to be made for lack of a fully quantum mechanical
description and because numerical calculations have not been available due to insufficient
computing capacities for corresponding high-dimensional systems.

6.1. Efficiencies of Elementary Quantum Machine
Networks

6.1.1. Circuit of Three Machine Units

Unit B

TB — gj
m - —+
= & =
g AEp ® v \® L >

N —_—
X X ®
—_ / AE
7 /® " ARy
=
3 T AEc —X Unit A Ta
¢ Unit C

Figure 6.1.: Quantum machine network with one connector spin. Unit A works as heat
engine, B and C as heat pumps. Symbols for couplings are same as above.

Consider a model of three quantum machine subunits labeled A, B and C' as depicted
in Fig. 6.1. Each unit is coupled to an infinite heat bath with temperature T; (i =
A, B,C) on one side via a bath spin with local energy gap AFE;. All machines are
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6. Complex Quantum Machine Circuits

mutually connected via a connector spin with energy gap AFE,, and temperature 7,,,
interpreted again as effective heat bath. The interaction between two neighbored spins
is of Heisenberg type, staying in the weak coupling limit (cf. Sec. 2.5.1).

System A shall work as heat engine, the others as heat pumps. Therefore the energy
gaps of the bath spins are ordered AE, > AEp, AEc > AEFE,, and, without loss of

generality,
e—AEA/TA > e_AEB/TB > e_AEC/TC (61)

which is also of the order of the respective energy expectation values of the bath spins,
(Eap,c). For further simplification all machines are operated in-phase, i. e. all driven
spins are simultaneously brought into resonant contact with the connector spin. Provided
an ideal Quantum Otto cycle scenario, the latter exhibits the average distribution (cf.
Sec. 5.1.1 and Eq. (2.72))

AE, 1 (tanh AFE, AFEjp AEC) (62

En) JAE,, = tanh == = = tanh tanh
(Em) / T, T3 o, g, T o

In the following the shorthand notation X; = tanh % is used where i = A, B, C refers
to one of the subunits, and ¢ = m labels the connector spin.

In order to determine the heat engine efficiency of the entire circuit related to the
reservoir of unit A, we first make an ansatz for the joint engine efficiency of units B and

C coupled in parallel,

Nen = AEm
where the coefficients b and ¢ describe the amount of heat transferred into the respective

unit. This expression is negative since B and C actually work as heat pumps, however we
are looking for a global heat engine efficiency. Together with the local engine efficiency

<0

of unit A, nd =1 — ﬁ%’z and (2.12) the engine efficiency of the entire circuit reads
bAEB + CAEC
Moot = Tewy + Tlon. = TenTlems. = 1 — : (6.3)
AEy,
The corresponding heat pump efficiency is the inverse hereof, ni** = 1/ni".

Furthermore, with Eqns. (3.16) and (3.17) the work done by each unit and the cor-
responding heat fluxes can be obtained. The heat transport out of unit A through the
connector spin per cycle,

AE,,
AQA—WYL = —(Xm - XA)
is conserved and splits up into
AE,, AE,,
AQA—ﬂn = _(AQmﬁB + AQmﬂC) = T(XB - Xm) + T(XC' - Xm) .

Thus, identify

Xm - XB Xm - XC’

b= ———— = — b =1. 6.4
X1 — X T Xi- X e (6.4)
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6.1. Efficiencies of Elementary Quantum Machine Networks

Special cases

Provided that the bath contact spins of the “receptor” units B,C feature the same

canonical probability distributions, AT—? = AT—L;C. Then b = ¢ = %, and (6.3) simplifies
to
o {_ DB+ AR
Nen = 2AEA
If, on the other hand, AEp = AEc = AFEpe, one obtains (cf. Sec. 2.1.5)
ntot — 1 _ AE
en AEA °

Comparison to a Swap Scenario

In a possible scenario of a network of quantum machines one might desire selective
control on between which subunits heat transport effectively takes place. Hence, instead
of assuming heat transfer via contact equilibrium let us now simulate this control in that
a cyclic swapping of states between the gas spins in Fig. 6.1 is assumed, governed by
some “playing rules” that define the order of swapping. Each time the connector spin
spin is in resonant contact with one of the gas spins of units A, B or C, both shall
exchange their respective state. In succession the involved gas spin shall run a Quantum
Otto cycle, cf. Sec. 3.3. Note that in this case swapping does not require additional
work expense because the energy gaps of the spins to be swapped are equally split |41].

With regard to Fig. 6.1, let the connector spin initially feature the same state as the
gas spin of unit A, or X,, = X4 in shorthand notation. Then it swaps with the gas
spin of unit B, X,, < Xp. This is repeated counter-clockwise until the connector spin
returns to its initial state X 4. Skipping some calculations, the engine efficiency related
to reservoir A becomes for this “protocol”:

_ CAEC + bAEB
en - AEA

swap _ |

with the coefficients ¢ = % and b = %. It is easy to show that this exceeds the
engine efficiency obtained for the case where contact equilibrium was assumed, provided
that the order of the local energy splittings is AE, > AE¢c > AFEg. Similarly, the same
applies to AE4 > AEp > AFE¢ for clockwise operation. The converse holds for the heat
pump efficiencies related to the bath of unit A, respectively.

This simple scenario points at a much more fundamental conclusion, namely, the best
way to transport heat in spin systems can be performed by swapping of states, being
rather a quantum mechanical way of control (cf. [45]). Therefore this may be the

favorable operation method for quantum machine networks.

85



6. Complex Quantum Machine Circuits

(;onnector Unit A

o |

¢ Gas spin I:I Reservoir

@ Bath contact spin

Figure 6.2.: Quantum machine network. The connector spins couples unit A, running
as heat engine, to units By,..., By which are heat pumps.

6.1.2. Circuit of N Machine Units

The three-machine circuit from Sec. 6.1.1 is now extended to N heat pump clients
Bj, 7 =1,...,N as depicted in Fig. 6.2. The order of local energy gaps of bath and
connector spins is chosen as AEy > AFEp, > AE,, for any j. The average distribution

of the connector spin now reads

AE,, 1 (& AEp, AE,
X,, = tanh = h : h : :
m = tan T, T NIl <; tan 2T, + tan 5T, (6.5)

AEp

Using analog shorthand notations (e. g. Xp, = tanh TBJ), the heat transported out of
J

the heat engine unit A through the connector spin and the respective work become

AFE,
Qaom = —5—

while all heat pump clients B; together perform the work

(Xa—X,) and Wy % (AE4— AE,) (X4 — Xyn)

N
1
W=-3 ;AEBj(Xm — Xp,).

The global engine efficiency yields
SN AEg (X — X))

ot — 1 6.6
Especially for equal energy splittings AEp, = AEp, = ... = AEp, = AFE this becomes
ntot — 1 _ AFE
en AEA °
If all bath spins exhibit the same distributions, Xp, = Xp, = ... = Xp,, we would
obtain N
niot =1 — ijl AEBj
o NAE,
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6.2. Generalized quantum machine networks

Finally, for M heat engines Ay, Ay...A); and N heat pump clients By, Bs, ..., By,
Eq. (6.6) is modified to

M
tot __ 1 Zj:l AEp (Xp, — Xin)

en (67)
Zﬁil AEAi(XAi - XM)

For the first special case, AE,, = AE4 and AEp, = AEp, we obtain

o =1 228
’ AEA

For the second special case where all X4, and all Xp, are equal amongst each other,

NY L AEB
MZ?LI AEAi ‘

tot

Nen =1

By simply combining all these expressions it should be able to calculate the efficiencies for
arbitrary complex quantum machine circuits within the frame of the ideal description
of the Quantum Otto cycle. Therefore only some simple elementary cases have been
presented here. In practice, however, it remains yet unclear what would happen in
actual network scenarios under consideration of correlations and leakage currents and,
primarily, an energetic up-shift of the connector spin in analogy to Ch. 5.

6.2. Generalized quantum machine networks

Finally, consider a simple array of four elementary quantum machine circuits as displayed
in Fig. 6.3. They are all driven in-phase and coupled to a heat bath on one side and to
an edge or node spin of a spin network mesh on the other side. All node spins feature
the same local energy splitting AFE,,. The energies of the bath spins are determined
by their local energy gaps AE,, and the respective bath temperatures 7)4,. The energy
expectation values shall be ordered

<EA1> > <EA2> > <EA3> > <EA4>

When the gas spins of all units simultaneously are in resonant contact with the respec-
tive node spins, the latter will adopt the corresponding bath spin distributions after
equilibration, being

AE,, AFEy.
X, = h—— = h——
m; = tan 2T, tan ST

where T,,. are the respective node spin temperatures.

In the following the whole spin mesh is supposed to relax into equilibrium, leading
to an overall average distribution. This is completed by heat currents equalizing the
differences between the distributions X 4, of the node spins. Indeed such a behavior is
found in Heisenberg-coupled spin rings [46].
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Figure 6.3.: Network mesh of four quantum machines A; (i = 1,2,3,4) connected via
node spins m; (see text). The gas, node and bath contact spins are repre-
sented by arrows, small and big dots, respectively.

In analogy to an electric circuit, it is thus manifest to interpret the different dis-
tributions X4, of the node spins as potentials. Then the potential difference U;; =
28n (X4, — X4,) between the nodes of units A; and A; can be considered as a kind of
voltage. It is easily verified that along one mesh all U;;-terms add up to zero,

> Ui;=0.
4,3

This is analog to the Kirchhoff mesh rule for electrical circuits, except that here the
voltage only exists at the beginning but not during the whole cycle because equilibrium
shall be attained within the mesh at the end of each cycle. Nevertheless, according to
Sec. 6.1.1 heat currents emerge due to the potential differences since a heat quantity is
effectively transported per period.

At all edges of the mesh the heat current inflows and outflows add up to zero due to

energy conservation,
AFE,,
ZJZ = TZ(XAz _sz‘) =0,

cf. Sec. 4.1. This can be seen in relation to the Kirchhoff node rule, in turn.

Summarizing, under the simplifying assumptions of the ideal Quantum Otto cycle
model a circuit of quantum thermodynamic machines can be compared to an electric
circuit. Hereof analogs to the Kirchhoff rules arise. These should principally be applica-
ble also for more general suchlike heat pump networks where nodes are not necessarily
coupled to infinite heat reservoirs as indicated in Fig. 6.3, but also to neighbored meshes,
serving as effective heat baths likewise in Ch. 5.
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7. Quantum Machines versus
Brownian Motor

In this thesis, only machine models realized with spin chains have been investigated
so far. Another class of microscopic systems being able to convert heat into work are
Brownian motors. A Brownian motor is generally understood to be based on some
particles in contact with one or several heat baths from which thermal fluctuations arise.
Consequently, the particles are exposed to non-equilibrium. A further typical ingredient
is a spatial ratchet potential which has the function to rectify these fluctuations, resulting
in a net current of particles.

If a load force is added against the direction of this current, mechanical work may
be extracted. This can be interpreted as an energetic transfer from the motor to the
load, or in that the potential energy of the particles raises [22|. A famous example
is the ratchet-and-pawl setup by Feynman [47|, see also [48]. Further applications are
widespread in cell biology and nanotechnology.

A special class of Brownian motors is given by the Sakaguchi model, see e. g. [49]
where the Brownian particle moves in a spatially periodic and asymmetric potential and
alternately interacts with two thermal baths of different temperatures in space. This
ratchet picture in combination with non-equilibrium is allows to break detailed balance,
i. e. different probabilities to cross the potential barriers in either direction are needed
for directed particle flux. In general, the motion of particles is governed by a Langevin
equation

x(t) = —%U’(az,t) — %Fext +/2D(x,t) &(t) (7.1)
relating the particle velocity & to the gradient of the spatial potential U’(z,t), the
external force F.y; and a Gaussian noise £(t) following the auto correlation function
(E()E(t)) = d(t—t'). The viscous drag coefficient v and the diffusion coefficient D(x,t)
obey the dissipation relation yD(x,t) = kgT(x,t) where T denotes the absolute tem-
perature and kg the Boltzmann constant |19].

In the same reference the model depicted in the upper part of figure 7.1 is discussed,
being similar to the Sakaguchi case. The potential U(z) is time-independent but inho-
mogeneous in space. A particle moving in z-direction is mainly in contact with a hot
reservoir at temperature T}, only on small segments it is exposed to a cold reservoir at
temperature T,.. The particle motion is rectified rightwards as the cooling happens on a
descending part of the potential. At the potential barriers the hot reservoir raises the
particle’s energy by AE = AW, whereas the heat AQ is transferred to the cold bath.
If this work is expended against some load, the hot reservoir has to be recharged with
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U
T. T
Th Th
AFE AFE
U L L *
Engine Engine |-
Tthc Th Tthc Th
AQ,AE| |AF AQ,AE| |AF
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Figure 7.1.: Upper part: generalized ratchet picture of a Brownian motor, lower part:
machine chain picture

AW + AQ. On the other hand, in the load-free case where all of the work AE = AW
is dissipated back into the hot reservoir as the particle moves along the down-slides of
length L, only a recharging with A(Q is necessary. As depicted in the lower part of
Fig. 7.1 this scenario can be mapped onto a periodic array of heat engines connected via
the said down-slides at temperature 7j,. Supposed that the heat engines work reversibly
in the load-free case, the heat AQ to recharge the engines is

AQ+AE  AQ T,

— AQ

= AFE
Th Tc Th - Tc

This may be realized by reversibly operating a heat pump between both reservoirs:

AQ  AQ - Ey
T, T.

yielding a minimum energy input per period of Ei, = (T./T,)AE. Otherwise the heat
AQ is simply lost.

With regard to directed heat transport, this model of serially connected heat engines
is very similar to the serial quantum machine circuits from Ch. 5. It may be argued that
a heat engine combined with a down-slide in the Brownian Motor model corresponds to
one pair of a heat engine and a heat pump in the serial circuit model. As depicted in
Fig. 7.2 the latter is arranged as a chain between two heat baths. Spatial asymmetry
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Figure 7.2.: Chain of pairwise arranged quantum heat engines and heat pumps between
two thermal reservoirs. AFg,, AF, are the local energy gaps of the con-
stantly split spinsn=1,..., N.

is arranged for by the constant local energy splittings of spins n = 1, ..., N, which may
only take one of two values, say AEgnuiny < ALyig). For any gas spin i in between
with local energy splitting AF;(t) the resonance condition AEg, < AE;(t) < AEy, must
apply.

While in the ratchet model energy transport happens via a particle moving through
the potential landscape and steadily being in contact with the thermal environments,
the spins transporting heat in the quantum machine model are spatially fixed, and the
whole chain is only locally coupled to infinite heat reservoirs at the end of the chains.
In between, the sole environment to exchange energy with is the external driving source
which acts as working reservoir and enables the heat current to overcome the potential
barriers by modulating the local energy gaps of the gas spins. As discussed in Sec. 3.2.1
a semi-classical driver such as an external magnetic field is inappropriate for this purpose
since the work released by the machine units cannot be extracted. A better option is to
couple the gas spins to harmonic oscillators, cf. [14].

Given a reversible working reservoir, no excess energy is lost if an amount of work AW
is applied to one of the heat pumps in Fig. 7.2. The same work —AW rather is released
again by the heat engines corresponding to the down-slides in the ratchet model. For
reasons of simplicity, this is made plausible here with the model of the ideal Quantum
Otto cycle, neglecting any kind of dissipative effects.

The condition of energy conservation for the heat current through the spin n with
AE, = const reads (cf. (3.17) and (5.2))

Ab, tanh BB tanh Ab, = AL, tanh Ab, tanh BB ,
2 T, o, 2 2T, oy

leading to the distribution

AE, 1 AFE, 4 AE, 1
tanh = — | tanh tanh ————— | .
an ST, 5 (an 5T -+ tan »

This can finally be reduced to an expression only depending on spins 1 and N which,
respectively, exhibit the same temperatures temperatures 7}, and 7, as the baths,
AE, 1 AEN)

AFE;
h = N — h—— -1 h
tan T T N1 (( n) tan o7, + (n—1)tan o7,
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7. Quantum Machines versus Brownian Motor

where AE, = AE, and AENy = AFE;,.

Thus, the canonical distributions of all constantly split spins mark a gradient directed
from the hot to the cold bath which is tantamount to global non-equilibrium. If now the
gas spin between spins n — 1 and n works as heat pump, i. e. AFE,, | = AFE;, < AE, =
AFEy (cf. Fig. 7.2), the work to be applied is

1

AVVn—l,n = m

AE; AEy
(AEsgm — AEY) (tanh o7, tanh o7, ) >0

and, consequently, in the heat engine between spins n and n+1 the same amount of work
AW, ne1 = =AW, 1, < 0 is released. In this most ideal situation the obligatory heat
quantity AAQ = 2@51‘;) tanh AZ%‘“ must be paid only once to the cold bath at the end
of the spin chain. In contrast, for NV potential barriers in the ratchet the heat quantity
NAAQ is lost.

Interpreting both model systems as possibilities for directed heat transport, the quan-
tum machine chain would be favored under ideal conditions, the more so as phase-
coherent driving may be enabled.

The presence of leakage currents would change the situation, however. Losses within
each partial heat pump then do require compensation, to be furnished by the external
driving source. Therefore the said advantage of the spin chain model is likely to be
reduced for dynamical scenarios. On the other hand, losses might be kept small for a
sufficiently large global temperature gradient.

Ref. [19] mentions further that the spatial temperature dependence in the ratchet
model (upper part of Fig. 7.1) may be dissolved by applying the transformation {7, U, 2z} —
{KT, kU, ka} with k = T}, /T, to the segments at temperature 7., changing their height
and length. In the following all potential barriers vanish and all down-slides line up
as one straight slope along which the Brownian particle moves unidirectionally, driven
by alternating segments at temperature 7}, and 7, representing the heat engines in the
lower part of Fig. 7.1.

Similarly, for the sole purpose of directed heat transport, the described scenario of
a chain of quantum machines and heat pumps may likewise be replaced by a simple
homogeneously split spin chain, featuring unidirectional heat transport from the hot to
the cold heat reservoir.

It remains an open question if the considered chain of quantum machines represents
something like the quantum limit of a Brownian motor, i. e. if one can be mapped onto
the other. The similarity of both models nevertheless calls for further research.
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8. Summary and Outlook

How small can quantum systems be in order to work as thermodynamic machines? Down
to what scales is it possible to downscale modern devices for this purpose, and where
does the transition from classical to quantum thermodynamic behavior actually occur?

In this work numerical simulations on several quantum machine models realized with
modulated spin chains have been presented and characterized with regard to efficiency
as well as heat and work characteristics.

All this has been built on a basic approach given in [16, 15|, where it was first shown
that a single spin can run a thermodynamic cycle, more precisely a Quantum Otto cycle.
For further comparison, an idealized description of such a Quantum Otto cycle [11]
was consulted and verified numerically by manipulating the spin-spin coupling strength
within the three-spin machine.

With regard to extended quantum machine circuits, it has been found that, in a first
order approximation, extended models such as paralleled units also run Quantum Otto
cycles, show a similar behavior as the basic three-spin machine model. The same applies
to serial circuits including their subunits. Here the connector spins not only arrange
for lower heat conductivity but also appear as effective finite heat baths, shielding the
subunits from each other and determining their local mode of operation as heat engine
or pump. This influence becomes crucial for models with tapered internal temperature
gradients since, in this case, the effective bath spins are heated up. This eventually leads
to considerable dissipation effects.

The concept of serial and parallel quantum machine networks can be expanded to
more complex arrangements. Some examples hereof have been presented with respect
to the ideal Quantum Otto cycle. It has been shown that the behavior of heat current
in a spin chain can be mapped to that of electrical current in an electric circuit, and
analogs to the Kirchhoff rules apply.

Moreover, comparisons with other models of directed heat transport are feasible, which
has been shown for the ratchet model for a Brownian motor.

All these quantum machine models share the general problem of being high-dimensional,
why analytical quantum mechanical descriptions are hardly available and numerical in-
vestigation could only be carried out so far for dynamic models with no more than
five spins. For these reasons more detailed comprehension of actual processes in these
complex systems is hard to set. Thus, common effects such as leakage currents and dis-
sipation had to be approached via a phenomenological ansatz while correlations could
only be invoked on a qualitative level.

Remedy can possibly be found in a promising recent approach to quantum thermo-
dynamic processes with external control [50] which also may be able to yield analytical
expressions for the efficiency of a quantum machine at maximum power output. A
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8. Summary and Outlook

comparison to the results obtained so far will be subject of future investigation. The
inclusion of quantum effects into the discussed models will be of similar importance. A
potential starting point for this purpose is furnished by [43].

Nevertheless, the presented approaches and underlying concepts are able to deliver at
least qualitative insight into the complicated dynamics of the treated class of thermo-
dynamic machine models from a theoretical viewpoint.

Anyway, it will finally be left to experiment to realize thermodynamic processes in
quantum systems such as spin chains. Not until then will it reveal if the concepts
presented here are really applicable in physical sense.
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A. Appendix: Note on Numerical
Methods

All models treated in the present work have been solved in Mathematica with the help of
a four-step Runge-Kutta algorithm and the notepads Temp-tools [44] and QMDef |51].

As mentioned, closed analytical solutions are impossible to obtain due to the high
dimensionality of the Liouville spaces corresponding to the considered spin systems. For
reasons of insufficient memory and enormous runtime requirements numerical investiga-
tion of these dynamical scenarios had to be limited to five spins up to the present.

In order to solve the master equation for the reduced density matrix o of the spin
system after [17] (see chapter 2.3) the Liouville super-operator £ is calculated for a
given number of sampling points using [44], then interpolated over one period 7 = 27 /w
and periodically continued. This handling is possible because L does not depend on
the actual state of the system but only on the (known) time-dependent eigenvalues
and constant given parameters (temperatures, coupling constants etc.), and provides
an enormous advantage in runtime, compared to the calculation of L four times per
calculation step. Furthermore, the initial system state g;,; is usually chosen a global
thermal state for reasons of simplicity.

The chosen step size is h = 0.2 time steps which is small enough to avoid the trace
or the diagonal elements of ¢ from diverging. At the same time, arriving at the non-
equilibrium attractor state of L requires evaluation over a large enough number of time
steps. For three- and four-spin models a total time of T = 10, 000 time steps is sufficient,
whereas for five-spin models Ty = 30,000 is necessary. In general, a too small value of
Ty will be indicated by non-compliance of the Gibbs relation for the whole system,
AW + AQ # 0. In addition, the relative numerical error herein only remains negligible
(< 1%) for adequately small intervals in terms of the periodic time 7 = 27 /w in which
data points are saved to a file for further evaluation.

Another difficulty arises from the fact that Mathematica, but also other interpreters,
usually sort numerical eigenvalues by order. Whenever energy level crossings occur in
the observed four-and five-spin systems, the order of energy eigenvalues and eigenvectors
is therefore altered. As a consequence, calculating the system state in the system energy
eigenbasis leads to a wrong Liouvillian £ and to meaningless results. This problem can
be circumvented by moving to a product basis, but for the sake of runtime, since then
all matrices to be multiplied contain considerably more non-zero entries.

For evaluation, the density matrix entries are interpolated again over the whole range
of time evolution. The heat currents follow from (2.78) while the local states of the single
spins and spin groups are obtained by the routines RedStateQubit and TraceOutQubit
[51], respectively. The local temperatures are extracted by the function TempSpin [44].
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A. Appendix: Note on Numerical Methods

The Work AW and heat AQ result from integrating the ST-curves and heat currents J
over one period as discussed in Sec. 3.1, using a simple Newton integration algorithm.

This work has been written in I{TEX. All figures were created in Inkscape, diagrams
were plotted with Gnuplot.
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