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1. Intro duction

1.1. Historical Background

In the recen yeas quantum celular automata (QCA) have attr acted much att ertion
from the scierti ¢ community as a new model for quantum computation. QCA arethe
guantum extension to the conceg of classca celular automata (CCA), a model for
parallel computing on a lattice of cels with discrete states,which was introducedin the
ealy 195G by John von Neumann and Stanislav Ulam [20] and became widely known
with the invertion of the\ Game of Life" (a 2state, 2-dimensional celular automaton)
by John Conway in the 197G. In 1983 Stephen Wolfram started to systematicaly
investigate classcad celular automata [22], [9], [23] (to mertion only a few publications.
For a more complete listing seet) and it soon becane clear that same of them (among
others the Game of Life) can ermulate a universd Turing machine.

With this in mind, it seens very promising to extend the principles of CCA into the
guantum regme. An initial approach to thistask was rst proposedin 1982by Richard
Feynmann [5] and today there exists a wide range of di er et QCA models [21], [19],
[3], [8], [11], [7], [12], sane of them capable of universd quantum computing.

1.2. Motivation

Most reseach on QCA that has beendone sofar, has mainly beenfocusedon quantum
information processng aspects. Howeer, it can be very interesting to lodk at problens
of quantum information processng from the view of quantum thermodynamics[6]. The
purpose of this work will be to addresssame thermodynamic aspects of two di er ent
models of QCA, the LQCA [8] and the MQCA [7]. In particular, it will be investgated,
how the statesof small subsystens of the automaton (consisting of a small number of
cels) will dewelop in time. Doesone obsewve sane kind of thermodynamic behaviour
emerging from the dynamicsthat resut from the application of the update rule of the
automaton? Can one expect a relaxation of the locd subsystems into same loca equi-
librium state? And if sg under what conditions? Can one give a classi cation of the
QCA with respect to this behaviour?

Another interesing question, when it comesto quantum computing, is the control of
the natural relaxation of coupled quantum systems [15]. It is therefare an interesting

Lhtt p://www. stephenwolfram.com/publications/articles/ca/



1. Introduction

gueston, to what extend this relaxation could be controlled by applying QCA update
ruleson the system

Classca Cellular Automaton (CCA)
Quantum Cellular Automaton (QCA)
Linea Quantum Cellular Automaton (LQCA)

Margdus Quantum Cellular Automaton (MQCA)
Colored Quantum Cellular Automaton  (CQCA)

Table 1.1.: List of abbrewviations usedin this work for di er ent Models of Cellular Au-
tomata (CA). Thesemodels will be presenedin short in the next chapter.



2. Basic Concepts

2.1. Quantum M echanics

2.1.1. Postulates and mathematical formalism

The quantum medanica desciption of physica systems can be basedon 6 postulates
which will be presemed here in short, mainly following [2].

1%t postula te : The state of a physial systemis descibed by a state vector j i of unit
norm, belongingto a Hilbert space H, whichis a complex,linear, unitary, se@rableand
completevector space.

2" postulate : For evely obsewable A there exists a linear, hemitian operator A
acting in H. The eigenvetors of A form a completeorthonormal basis of H

3'd postula te : The only possibleoutoomesof a measurement of A are given by the
eigenvaluesa, of the correspnding operator A.

4" postula te : The outcome of the measurementis completelyrandomwith the propa-
bility of obtaining the eigenvalueay given by

Wk .
wia) = jhal’j ij? (2.1)

i=1
wheee g¢ denotesthe degenercy of ax and mS)j denotesthe eigenvetors asseiated with
a.. The expectation value of A is given by
X

hi=  aw(a)=hjAj i (2.2)
k

5" postula te : After the measurementof A, j i collapsesinto the projection onto the
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subspce asseiated to the eigenvalueay, that hasbeen obseved:

it Puj | (2.3)
h P i
oo

Pe= jaihal’j (2.4)

i=1
As one can see from (2.3), the measurementsof two obsewablesA and B will mutually
disturb each other as long as their correspnding operators dorit havethe same set of
eigenvetors (they commute). This e ect ist descibed by the generlized Heisenlerg
uncertainity relation:

AB i iABl i (25)

6" postula te : The time evolution of the state vector j i is given by

i~gj i = A@)j i; (2.6)

whee H (t) denotesthe Hamilton operator correspnding to the total enemgy of the sys-
tem. (2.6) is also known as the (time dependent)\Schredinger Equatior'.

2.1.2. 2-level systems

A 2-level system is the simplest example for a quantum system, its Hilbertspace being
only of dimension 2. Thus the state of the system can be descibed by a state vector
j 1=c¢jli + ¢j0i wherejli and jOi arethe eigenvectors of a 2-dimensional hemmitian
operator A with the eigenvaluesa; and ag. It is convenert to choosethe eigernvectors
of one of the Pauli-matrices

01 0 i 1 0
/\X: 10 /\y= | 0 /\Z= 0 1 (27)

(usually ) as a basis. For A27, it is

jli 2 0 joi 2 (1) (2.8)
a;=1 = 1 (2.9)

The propability p; of nding the systemin the statejli is given by
pr=jhl ij2=h jPij i = jcij? P1 = jlihij (2.10)
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2.1.3. Unitary operators

An operator U is unitary, by de nition, if its adjoint 0Y is equal to its inverse 1
0v0=00"=1 (2.12)

Unitary operators consene the scdarproduct betweentwo arbitrary vectorsj' i,j i (and
therefare alsothe norm of a vector):

' j0 i=hHjOY0] i=Hj i (2.12)

An example of a 2-dimensional unitary operator istherotation matrix in the state space
of a spin-1 particle:

e’ Jcos; e * )sing
1; . 1
ez *Jsin; e 2 Jcos;

R(; ;)= (2.13)

Unitary operators can be constructed by using hemitian operators: ¥ = d4 is unitary,
if A is a hemitian operator (AY = A), because

O = e Adh=gihdh=1 (2.14)
00y = dhe A = dheg 1A= 1 (2.15

The group of all N n unitary matriceswith the group operation being the maitrix
multiplication is called the unitary group of degreen, U(n).

The subgroup of U(n) consisting of all N n unitary matriceswith deteminant 1 is
cdled the special unitary group of degreen, SU(n).

2.1.4. Composed systems

A physica system (3) may be composedof two separate systems (1) and (2). In this case
the Hilbert space of the total systemis given by the tensa product of the two partial
systems:

H® =HO HO (2.16)

and is spanned by the tensa product of the basis vectors ' i(l)i and j' j(z)i of H® and
H®:

.'3._.' . .|2.__.' .12'.

PPi=r P e P (2.17)
Only in specil cases(eg. if the two systems have not interacted), the total state vector
can be written as a tensa product of a vector j Wi out of HY and a vector j @i out
of H® (product state):
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otherwiseit must be writtenin the general form (entangled state):
X
R R (219
i
An operator A® acting only in (1) is writtenin the basis of (3) as

A® = LO 1@ (2.20)

2.1.5. Density operator

Often the system under consideration is only part of a composedlarger system. Thus,
the locd state of the systemis not perfectly well known but rather one hasto ded with a
statistica mixture of statesj i ;] »i;:::with propabllltlesplpoz, iltis |mportant to
note that t his di er s from the system belng inthestatej i =" pyj 11 + pzj o + 10
as thiswould descibe a coherernt state. To get a general desciption which can descibe
both casesone has to introduce the density operator

X - - -
A= Pej kih «j (2.21)
K

The density operator is a hermitian operator (Y = ~) with Tr["] = 1, represetedin an
arbitrary basis fj gig by a square matrix whose elemerts are given by

= tej%jgi: (2.22
The expectation value for an obsewable A is given by
hAi = Tr (AN): (2.23
An important quantity of ~isthe purity
P = Tr["]; (2.24)

which takes on its maximum value (P 1) for pure states and its minimum value
L) of dimension d. P is invariant under

(P = 2) for a totally mixed state ( j = %
unitary transfarmations that act only on the loca system descrbed by *

Parti al trace operation

To obtain the reduced density operator A for a system (1) which is part of a gobal
system (1) + (2) with the density operator *, one hasto perform a partial trace operation
on system (2):
X X
Al — = Tr, A= H (1) ! (2)J /\J- |(l)’l (2)| ]' I(1) h' (1)J (2_25)
ok
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As an example from quantum thermodynamics, consider a system in thermodynamic
equilibrium in contact with a resewoir of inversetemperature . The density matrix in
the energy eigerbasis fj nig of the system (E, = H jni) has the following form [6]:

1 X
n= - e En jnihnj (2.26)
n
with the partition sum X
Z= e En (2.27)

2.1.6. Networks of two-level systems

All systems that will be dedt with in this work are composed systems, consisting of a
nite number N of two-level systems (in the following oftento be re eredto as\ cels").
The Hilbert space for each single two-lewvel system will be spanned by the eigerbasis of
the ~,-operator (fj 1i ;jOig). The statej i of the total system is assuned to be pure
(=] ih j) and will bewrittenas

X
j I = Cs(l);:::;s(N)js(l)i JS(Z)I JS(N)I ’ S(I) 2 fl, Og, i 2 fl;:::;Ng
s(1);::8(N)

(2.29)

or in its short form:

1}(1:::1
ji= Csjsi (2.29
s=0:::000

where s represemis a N-digit binary number. Thepropability p,(i) of nd ingthetwo-lewel
system at position i in the excited state (j1i) is given by

p(i) = h jPYj i (2.30)

with P; as de nedin eq (2.10). Numbersin brackets (i; j ; :::) at t he upper right of an
operator indicate that t he operator isto be applied on the loca subsytem consisting of
the two-lewvel system(s) located at t he position(s) indicated by i; j;:::

In analog, the reduced density matrix for a subsystem consisting o the two-level sys-
tem(s) at position(s) (i;j;:::) will be denoted by A+ and is obtained by tracing out
all other two-level systems.

An interesting quantity that measuresthe overall ertanglemen of all two-level systems
with each other isthe multi particle entanglement measure de nedin [10], which can be

writtenin the form:
1 X .
Q= 2 Tri("")?) (2.31)
i=1
Q can be seenas a normalized measure of the sum of all purities. Q takeson its min-
imum (Q=0), if all locd statesare completely pure (Tr[(~"?)?] = 1) and its maximum
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(Q=1), if all locd statesare totally mixed (Tr[(""))?] = ).

2.1.7. Calculating the time evolution

To cdculate the time ewlution of the state j i, one has to sdve the time deperdert
Schredinger Equation. In the following, sane methods to do this will be sketched.

Exact solution

In the caseof a timeindeperdent Hamilton operator, the Schredinger Equation has the
following sdution:

i ©i=0@®j (t=0i (2.32)

with the time ewolution operator
Ot) = e 17 (2.33

Thus, for not t oobig systems,j (t)i can becaculatedby diagmalizing ¥ and calculating
the exponertial operator O(t).

Iterati ve approximation procedures

For bigger systems or systens with time deperdernt Hamiltonian exact diagmalization
works only in very few special cases. Thus one needs approximation procedures. There
are seweral methods to integate the di er ential equation for j i numericadly, like the
Runge-Kutta o the Fehlberg agorithm, which are more or lessstandard procedures.
In the following will be presemed another method, which was used for most of the
cdculations done in this work.

Suzuki-Trotter Decompaosition

The Suzuki-Trott er decanposition [17] is usefd if exact diagmalization of the Hamilton
operator M isnot possble, but B can besplit upinto = A+ Hg, where 4 and Hg
can be diagmalized seprately. The time ewolution operator can then be approximated

by

lim exp] t_i:(lqA +Be)]

N1

exp[ tj__(ﬁA + Hg)]

lim exp[ ti:FIA] exp[ ti:IQB] "

N1

exp| tjthA] exp[ ti:IQB] N, t= (2.34)

t
N
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with an overall error of order 1-N. This can be improved by symmetrizing the incre-
mental propagaor

expl L (An+Ao)l expl o Aol expl o LA expl 5 As] (239

which resudts in an overall error of order 1N 2. One of the advantagesof the Suzuki-
Trott er method is that it consewvesthe norm (symplectic integator).

2.2. Classical Cellular Autom ata

In the following, a de nition of classca celular automata will be given, accading to
various de nitions found in literature:

De nition: A classi@l cellular automaton (CCA) consists of an (usually in nite) d-
dimensionallattice of cells indexal by * 2 Z9, a nite neighlorhoodschemen;g Z9 a
local updaterule f and a set of discrete cell states . Each cell posesses state S, 2
Time evolvesin discrete timesteps. At each discrete timestep the state of each cell is
updated aacording to Sc(t + 1) = f (Sc(t); f Sx+ 5, (t)g) Which givesthe new state of a cell
as a function of its own state and the state of all cells in its neightwrhood de ned by
fRg.

Usually, instead of using an in nite grid of cels, periodic boundary conditions are ap-
plied. In this work, the grid will always be limited to a xed size with periodic or
non-periodic boundaries.

To illustrate this rather mathematical de nition, an example of a one-dmensional CCA
will be given:

Example: Considera one-dmensional CCA with possble cel statesO (white/inactive)
and 1 (black/a ctive) and a neighborhood scheme that consists only of the nearest neigh-
bors. Thus 256di er ent loca update rulescan be implemerted. One possble rule could
look like this:

Sy 1,5 Sw1 | 111]110[101]100]01L[ 010 001|000
f(S:Sc.Sw)| 1] 00| 1]0]1]1]o0

This rule would be numbered as rule 150 acading to Wolfram, reading the secamd line
as a binary number. By running the automaton with this rule on an initial state where
all celsexcept for one cel arein state O, one obtains the patt em displayedin gure 2.1.
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B = active
O =inactive

Figure 2.1.: Classcad celular automaton with rule 150

2.3. Quantum Cellular Autom ata

An intuitive way of introducing a quantum celular automaton would be to idertify
the lattice of cels with an array of qubits and the locd update rule with a unitary
transfamation on each qubit deperding on the state of the qubits in its neigborhood.
But when extending the concept of the classca celular automaton into the quantum
regme, one has to ded with the problem that a classcal CA need to memorize its
currert state during the caculation of the subseqient state becausethe next value of a
cel deperds on the valuesof the surounding cels which will change their state during
the caculation, that means one has to make a copy of the currert state. This howewer
is not possble for a quantum medanical state due to the non-cloning theaem.

As there exist seweral ways to circumvert t his problem by introducing a partitioning
scheme, many di er ent models of QCA have beenproposed like the Watr ous-Van-Dam
QCA [21], [19], [3], the Linea QCA [8], the Colored QCA [11], the Margdous QCA [7]
or the Loca Unitary QCA [12]. Some of themwill be descrbedin the following secions.

2.3.1. Linear QCA

This model was rst proposedin 1993by S. Lloyd [8] and is often refered to as Spin
Chain QCA. It consists of a one-dmensional chain of two-lewvel systems (cels) with
neaest neighbor interactions, partitioned into threedi er ert species,i.e. ABCABC:::
with di er ernt energy splittings for each species. The energy lewels of each cel are shifted
as a function of the energy lewels of its neighbors. This resuts in di er ent resamant
frequencies! 5,;! &1 ! 1o;! 4y for A deperding on whether C and B arein the state 0 and
0,0and 1, 1and 0 or 1 and 1. By applying the adequate sequence of pulses,all cels of

10



2.3. Quantum Cellular Automata

a gven speciesare updated in parallel with the loca unitary update rule

oc = jOiN0]  Ogo  jOIhOj +
joihoj O,  jlihij+
jlihyj Oy jOih0j+
jlihyj 05  jlihij

(2.36)

which appliesthe unitary Ooo; Oo1; O10; 011 on a spin, depertding on the state of its left

and right neighbors (see gure 2.2).

If one allowsfor di er ert coupling strengths of the cel with itsright and itsleft neigh-
bor, respectively a partitioning into 2 di er ent speciesi.e. ABAB :::issu cient. The
ewolution of such an automaton with an even number of N cels and an initial statej oi

can than be descibed as foll ows:

Let Opg be the unitary, that updatesall cels of the type A or B deperding on the

state of their neighbors:
—_ N(1:2;3) ) (3;4:5) (N ZN 1I;N)
OA - L/)Ioc 0Ioc 0Ioc

OB — 0(2:3;4)0(4;5;6) O(N 1;N;1)

loc loc loc

thenthe state of the automaton after 2t stepsis given by:

j i=(0:0n)' o

Figure 2.3 illustratesthe functioning of such a two-specieslinea QCA.

(2.37)
(2.39)

(2.39)

s Al B [elC (2| A |2l B [¢C (¢ A [©| B
_____ | @ | | @ |
sl Alel B [elC (el A el B [¢lC [¢| A [¢| B |#
Ale|B |s|€°| A |¢| B |¢|C|°| A|¢|B |
_____________ C o 1 o T

awiy,

Figure 2.2.: Function of a 3-specieslinea QCA

11
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“AlelB el Al B |® Al®B [® A |[® B
----- O —(t— o — O}
az%za::=A®B®A®B®A®B®A®Biff:%:é_g
oo T T JC o
2l A 12l B |l Al®| B [ A2 B [® A [® B |#
_____ T e i i | e

Figure 2.3.: Function of a two-specieslinea QCA

2.3.2. Colored QCA

A gereralization of Lloyd's stheme for a partitioning into an arbitrary number 2 of
species(here: colors) for dimensions 1 hasbeenintr oducedin [11] and iscaled Colored
QCA (CQCA). In a CQCA, eeh cel isassgned a cdor in a chekerboard fashion such
that no two neighbors have the same cdor. At each time step only the cels of a certain
cdor are updated with a unitary deperding on their neighbor's values. Neighbors of the
same cdor are not distinguishable in this context.

2.3.3. Margolus QCA

a)
— Y ———— ——

b)

- A A~

Figure 2.4.: Partitioning for an MQCA, as introduced by Margdus (a) and an example
for a more genreral partitioning, following the de nition by Schumacher and
Wemer (b).

A Margdus QCA (MQCA) as rst introduced by N. Margdus [7] consists of a one-
dimensional lattice of cels. In the rst step all even ordered sitesare grouped together

12



2.3. Quantum Cellular Automata

with their right neighbors and a unitary transfamation is performed on each of these
pairs. Then the cels are regouped, sothat the even ordered sites are now grouped
together with their left neighbors and a unitary transfamation is performed on these
pairs (see gure 2.4Q).

Schumacher and Wemer extended this concept to a more gereral form [13]. In their

version, a Margadus scheme consists of 2 partitionings. Each partitioning dividiesthe
lattice into nite, disjoint and uniformly arranged blocks, such that each block of one
partitioning overlaps with at least 2 blocks from the other partitioning.

It can be shown that for every automata of the Margdus type there exists an automaton

of the cdored type that has exactly the same dynamicsand vice versa[11]].

13
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3. Relaxation of MQCA with 2-qubit
block partitioning

M odel

The model under consideration will be a Margdus celular automaton where each cel
consists of a 2-lewvel system. The partitioning consists of blocks containing 2 qubits as
depicted in gure 2.4a The MQCA will have a nite number of cels N and periodic
or non-periodic boundary conditions. As loca update rule, one can therefare choosean
arbitrary two-bit quantum gate represeted by the unitary O,oc 2 SU(4). An arbitrary
unitary transfarmation out of SU(4) can begivenby a4 4 matrix

. RS
Oioc = €¢ G= i (3.1

where ; are 15red valued parameters and ; are the Gell-Mann matrices(seeA.1).

Questions

The main questions, that will be investgated in this secion are:

Doesthere exist somekind of stationary state, into which the automaton tendsto relax
(regadlessof the initial state)?
And if so, whatdcesit look like?

General remarks

It isclea that a stationary state in the sersethat t he state vector of the total automa-
tonj i remains constant after same steps cannot exist due to the unitarity of the global
ewlution. Howewer if one looks at smaller subsystens, it is very likely that t he system
ewlvesinto same dominant regon in Hilbert space, where the reduced density matrices
of thesesubsystems remain approximately constant, what will be caled in the following
a local stationary state.

Of caurse,due to the unitarity of the global ewlution, the automaton has to return to

15



3. Relaxation of MQCA with 2-qubit block partitioning

its original state at same point in time, but as the dimension of the Hilbert space grows
exponertially with the size of the automaton, this will usually happen on a timescae
that is signi cantly longer than any obsewer could wait.

Theloca updaterule and theinitial state of the automaton will determine the accesdile
subspace to which the ewolution of the global state vector is constrained. As it turns
out, the shape of this subspace strongly aect s the relaxation of the automaton. Due
to this, a classi cation of the local update rules depending on the accessiblesubspce is
feasible.

3.1. Trivial rules
Any loca update rule Oy, that can be writt en as
Ooc= 01 0= (0, 1)1, 0y 01,0, 2 SU(2) (32

will only resut in arotation of the state of each cel regardlessof the neighboring cels.
Thus, no complex dynamics of the automaton are to be expected.

3.2. Ruleswith Oy :fj 01 ;j10g ! fj 01 ;j1dg
(excitati on number conserving rules)

The excitation number of an arbitrary statej i will be de ned as

X .
n= h Pl Biny? jlihdj: (3.3)
i=1

The subspace spanned by all basis states
is()i JS(N)i, s(1);:::;s(N) 2 f1;09 (3.4)
with the same excitation number
n= s(i):1 (3.5)
i=1
will be cadled\ n-excitation subspace”. Its dimension is given by

_ N |
= (3.6)

16



3.2. Ruleswith U, : fj 01i ;j10ig ! fj 01 ;j10ig (excitation number consewing rules)

All loca update rules which only transfam between states belonging to the same n-
excitation subspacewill be caled\ excitation number consewing”. Thoserulesare given

by:

. 1
0 g u 0 0 0
0 ezl Jcos. el * gins 0
O = % | 2 _ > 37
loc 0 e 2i( + )sin, e 2i( Jcos, O (37)
0 0 0 g o

and tr ansfarm only betweenthe loca statesjOli and j10 (excep for a phaseshift of j11i
and jOO). One can easily verify that t he commutator betweenthe operator for the total
excitation number and O, applied on an arbitrary pair of cels (i; j) is aways ecual to
0:
[ Py 0d1=0 (38)
k=1

Therefare, rulesof this type consewe the total excitation number for any given state.

To gvea rst overview of the dynamics obtained by theserules, gures3.1-3.5 show
the time ewolution of the occupation propabilities Hﬁj(l'i)hlji of periodic and nonperiodic
MQCA with a xedsizeof 20 cels and two di er ernt excitation number consewing rules
for di er ert initial states.
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3. Relaxation of MQCA with 2-qubit block partitioning
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Figure 3.1.: Periodic MQCA with fixed size of N = 20 cells and a update rule given by
(3.7), where ¢go = ¢17 = @ = 3 = 0,7 = . The brightness is proportional
to the propability of finding the corresponding qubit in the state |1} (active)

18 or [0) (inactive); n denotes the number of active cells in the initial state.















3.2. Ruleswith U, : fj 01i ;j10ig ! fj 01 ;j10ig (excitation number consewing rules)

Obviously, there seens to exist a locd stationary state, that the MQCA tends to
reach, where not only the state of each cel remains approximately constant but also
homogeneaus along the array. As one can see,the strength of the relaxation is not t he
same for all rulesof thistype, but deperds alsoon the boundary conditions, the initial
state and on the phasefactors o and 15 .

Dependence on the initial state

As one can seefrom the examples,the strength of the relaxation deperds strongly on the
theinitial state of theautomaton. Thisisdueto thefact that t heinitial state determines
the dimension of the subspace which will be accesdile for the global state vector during
the ewolution of the automaton. For the n-excitation subspace, this dimension is given

by the binomial coe ciernt E . The higher now the dimension, the more coe cierts

Cs(1):::s(N) Of the state vector change their valuesamong each other during the evolution
and thus the more di er et frequernciesare contained in the time ewolution of each of
thesecoe cierts. Dueto this, one should expect that t he expectation value of a cel for

being in the excited state,

k) - . _ . .2
Iﬁj(lﬂ)]ljj = JCs(1):s(NY)™ s(k);1 (3.9
s(1);::5:8(N)

will get more and more constant, the higher the dimension of the subspace.

Properties of the local stati onary state

If one additionally assumesthat the time average in the loca stationary state is the
same for all coe ciernts cy)....5n), ON€ can deduce sane more properties for smaller
subsystems of size 1in thelocd stationary state:

Consider a small subsystem of the MQCA in the loca stationary state, consisting of M
cels at positionspg (k2 f1;:::;MQ).

Thediagmal elementsof the rchced density matrix descrbing this subsystemare given
by

= h P i = e, MiP P iri = il swo=ico (310
s;r=0::0 s=0::0 k=1
where | denotesan arbltrary M -bit string where the bltsat posnlons(pl; i 'pM) have
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3. Relaxation of MQCA with 2-qubit block partitioning

subspace and under the assunptions made above, this can be writt en as:

N M
=09 seosi T g M= oo (3.11)
S k=1 k=1
n

Thus the propability of nd ing the subsystemin any state, where m of the M cels are
in the excited state, is given by the hypergeametric distribution

M N M
m n m
P(m) = N (3.12)
n

which can be approximated by the binomial distribution if M << N:

LI

Pm=" 1 { N

Mom (3.13

Thusfor M << N, the diaganal elemerts j; can be rewritten as

Lo 1. N nw
ez Z N ’
The od iagmal elemerts of the reduced density matrix are carelation functions of the

form

= log ™ (3.14)

X::l X::l \M

_ (P13 ) i — (p1;ocs M )i —
i = h PR = CsG, hejP P ) = CsC s(P)= 1 (K) ()= (k)

s;r=0::0 s;r=0::0 k=1
(3.195
over the coe cients ¢ and ¢.. The smaller a subsystem is chosen the larger is the
number of coe cients participating in this sum and thus, the smaller the value for j; .

Thus, one would expect the reduced density matrix of a su ciently small partial
system to be a diaganal matrix with a canonica distribution of the diagmal elemens,
givenby (3.14). Figure 3.6 illustratesthis for a MQCA with 20 cels and an initial state
of n = 8 active cels. They show the diagmal elemerts of the reduced density matrices
for partial systems of di er ert sizes.
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3.2. Ruleswith U, : fj 01i ;j10ig ! fj 01 ;j10ig (excitation number consewing rules)
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Figure 3.6.: Diagmal elements of the reduced density matrix for a partial system of
cels at positions (8,9), (8,9,10) and (8,9,10,11) after 800 steps of a MQCA
with an initial state of n = 8 active ells. Update rule given by (3.7) with

0= 11=5 =-=0 =s3. -



3. Relaxation of MQCA with 2-qubit block partitioning
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Figure 3.7.: Deweloping o the occupation propabilitiesof cel 1 and 15 for being in the
excited state for the rst 150steps of the automaton from gure 3.6. As one
can see,the relaxation of a single subsystem s quite goad.

Entanglement in the local stati onary state

Accarding to the precedng considerations, one can expect the reduced density matrix
of any single cel to be given by:

& 0
AK) — l\cl) Lo (3.16)
In this case,the multi-particle entanglement Q is given by
n n?
Qmax = 4(W N2 (3.17)

One can esasily see,that this is the highest possble value for Q for a gven excitation
number n, if one maximizesQ for same general density matricesgiven by:

Ak = S b
h 1 a (3.18
under the constraints »
a =n (3.19
k=1

which gives(3.16) as sdution. Toillustrate this, gures3.8-3.11 show the deweloping of
the multi particle entanglement Q for the examplesshown in  gures3.1-3.5.
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3.2. Ruleswith U, : fj 01i ;j10ig ! fj 01 ;j10ig (excitation number consewing rules)

Figure 3.8.:

Figure 3.9.:

0 20 40 60 80 100

Evolution of the multi particle entanglement Q of the periodic MQCA
showedin g 31( g0 = 11 = = = 0, = 3). The dashed lines
show the maximum possble value for Q for a gven excitation number n.
The entanglemen always tends to reach its maximum possble value, which
deperds on the number of excited celsin theinitial state.
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0 20 40 60 80 100
Steps s

Evolution of the multi particle entanglement Q of the periodic MQCA
showedin g 32 (o0 = 11 = 5 = = 0, = 3). The dashed
linesshow the maximum possble value for Q for a gven excitation number
n. The better quality of the relaxation for phase factors other than 0 can
be seen The entanglemert gets much closerto its maximum possble value.
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3. Relaxation of MQCA with 2-qubit block partitioning
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Figure 3.10.: Evolution of the multi particle entanglement Q of the nonpernodic MQCA
showedin 9. 33( o= 1= = =0, = 3). Onecan seethat the
boundary conditions do not have a grea in u enceon the deweloping of the

ertanglemert.
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Figure 3.11: Evolution of the multi particle entanglement Q of the nonperiodic MQCA
showedin g. 34( o= 11=5 = =0; = 3). Again, thedierent
phasefactorsresut in amuch betterrelaxation than in the precedng gure.
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3.3. Ruleswith O, : fj 00 ;j1lig ! fj 00 :j1lig

Dependence on the phase factors oo and 13

If one comparesthe resuts shown in gure 3.1 and 3.2, one can seethat t he relaxation
of the MQCA is much better if the phasefactors oo and 1; are unequal to 0. As can
be seenin the following sectons, the in u ence of such phase factors on the quality of
the relaxation is not resticted to only this type of loca update rules. Unfortunately
the reasm for this could not be discavered in this thess. Howewer it seens that it has
samething to dowith the\ scdt ering” of excitationsamongst each other. Thisassumption
is basedon the obsewation from the numerics, that for a non-periodic MQCA with a
excitation consewing rule with oo = 13 = 0 and an initial state with n excited cels,
the propagaion of each single excitation can be caculated seperately from the others.
But unfortunately, this could not yet be proven analyticaly.

3.3. Ruleswith O :fj 00 ;j1lig ! fj0d ;j1lg

Theserulesare given by

0 . 1
ezl ) cos; 0 0 ez'(+>sm—

0 g 0
Oloc: %) 0 0 e| o1 § (320)

g 2i( + )sing 0 0 e 3 )cos§

In this case 0. transfarms betweenbasis statesthat di er in their excitation number
by multiples of two. But for a gven excitation number, not all possble states with
the same excitation number can be reached. Thus by applying rules of this type, the
ewlution of the global state vector is agan restricted to a subspace of the total Hilbert
space. But t his time, the shape and dimension of this subspace cannot be esasily given
in an analytical way. To gve an impresson of the basis states spanning the accesdile
subspace for a speci c initial state, gure 3.12 shows an example of a MQCA with 8
cels, together with the basis statesfor a loca update rule given by

0 gl

2

0
"Bo 10 0
0 0 &&

2
Figure 3.13 shows the dimension of the accesdile subspace compared to the dimension
of thetotal Hilbert spacedeperding on the sizeof a MQCA feauring such alocd update
rule. From this, one can see,that t he subspace dimension alsoscdesexponertially with
the size of the system.
Figures 3.14 and 3.15 show same examples of MQCA with a rule given by (3.20) and
di er ent sets of parameters. One can seethat t hisrule resudts in relaxational behaviour
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3.4. Ruleswith O, : fj 00 ;j1lig ! fj 0Gi :j1lig;fj 0% ;j10Gg ! fj 01 ;j10ig
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Figure 3.16.: Multi particle entanglement of the rst two examplesshown in gure 3.14
a) and b). One can seethat the ertanglemen gets much closer to its
maximum possble value for phasefactors ¢1; 106 O.

3.4. Rules with Oy : fj 00 ;j1lig !
fj 00 :j11ig;fj 01 ;j10g ! fj Ol ;j1dg

Theserulesare given by

e’ 1 1* ) cost 0 0 er!( 1+ 1+ I gin L
0. = % 0 ei'(ll2 2) cos3 eil'_( 2* 2 sin -2 0
0 e zi( 2* 2sin2 e 2!l 2 2)cos2 0

e 21+ 1+ )gin 2 0 0 e z/(+ 1*)cost

(322

and can be seenas a combination of the rulesfrom the precedng two sectons. In this
case,the subspaceto which the evolution of the global state vector isrestictedto can be
easily descibed Duetothe part t hat tr ansfams betweenjo0i and j11i, Oy, transfarms
betweensame basis statesthat di er in their excitation number by multiplesof two. In
addition, due to the part t hat tr ansforms betweenjoli and j10i, Oy transforms now
alsobetweenall possble basis statesthat belong to the same excitation number. Thus,
one can seethat O, can be split up in two parts, where the one part acts only in the
subspace spanned by all basis stateswith an even excitation number and the other part
acts only in the subspace caresmpnding to an odd excitation number.

Figure 3.17 shows examplesof an MQCA feauring such a rule for di er et parameter
sefs and initial states.
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3.5. Total mixing rules
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Figure 3.18.: Multi particle ertanglement of the two rst examplesshown in gure 3.17
b) and c)

The rst threeexamplesare a strong indicator, that t here have to exist further sym-
metries,that could not be found yet. As could already be seenin the previous secions,
the phasefactor seensto play an important role here, too.

3.5. Total mixing rules

All rulesthat do not fall under one of the casesalready presemed wil act in the total
Hilbert spaceof dimensiond = 2V (evertually without t he ground/all-excited state, thus
d=2V 1.
In this case,one would expect the strength of the relaxation to be more or lessindepen
dert of theinitial state and stronger than in the precedng cases.
If, in analogto the assumptions madein the previous secion, the coe cientsof the state
vector in the loca equilibrium state would get totally \ mixed', one should expect the
density matrix of a (not too small) partial system of dimension d thento be given by
0 . 1
3 0
%ﬁ E (3.23
0 3
and the maximum value for the multi particle entanglement Q should be givenby Q = 1.

Howewer, asit t urnsout, thisisnot always exactly full lledfor all rulesand initial states.
Figures3.19 and 3.22 show examplesof MQCA for di er ernt initial statesand 2 di er ent
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Figure 3.20.: Multi particle ertanglemen for the automaton showedin g. 3.19. Dashed
line: initial state with 1 excited cel. Solid line: initial state with 5 excited
cels. In both cases,the entanglemen r eachesthe maximum possble value
of Q = 1 which means a perfectly mixed state.
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Figure 3.21.: Megn value of the occupation propabilities for the excited state
(& LBl = &) for the automaton showed in g. 3.19. One can
seethat t here exists a slight deperdence on the initial state which indi-
catesthat t he assumption of a total mixing of the coe cierts cannot be

completely carect.
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Figure 3.23.: Multi particle entanglement for t he automaton showedin g. 3.22 Dashed
line: initial state with 1 excited cel. Salid line: initial state with 5 excited

cels.
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Figure 3.24.. Megn value of the occupation propabilities for the excited state
(# LBl = &) for the automaton showed in g. 3.22 Here the
deperdenceon theinitial state is even stronger than in the previous exam-

ple.
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4. Relaxation of a two species LQCA

M odel

The model under consideration will bea Linear QCA with two di er ert erergy splittings
and di er ent coupling strengths to the left and right neighbors. The LQCA will have a

n itenumber N of celsand periodic or non-periodic boundary conditions. At t hispoint,
it is assuned, that all statesof the spin chain are long lived states, thus the\intrinsic"
dynamicsof the dain are slow comparedto thetime scde at which QCA dynamicstake
place. The loca update rule of the QCA will be given by (2.36), with

Qoo = I:‘é( 00 005 00)

001: FQ( 01, 01, o1)

010: FQ( 10, 105 10)

011: F‘é( 11, 115 11) (4.1)
where R denotesa general rotation in the state space of a spin-% system and will be
denoted by the setf oo::: 110

The main questions, that will be investgated are the same as in the previous chapter.
Again, it isadvantageausto de necettain classesof update ruleswith special properties.

4.1. Trivial rules
Any loca update rule 0o that has
Ooo = Uo1 = 010 = 01,2¥ (4.2)

can be written as
0Ioc =1, \7 1, (43)

and will only resut in a rotation of the state of each cel regardlessof the neighboring
cels. Thus, no complex dynamics of the automaton are to be expected in this case.
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4.2. Non-propagaing rules

Dimension of the accessible subspace

To get an impresson, of how the accesdile subspace may look like in casea), consider
an initial state, where all cels are inactive, excegt for the dain of cels betweenand
including the positions a and b

Nifora k b

j ol =js(0)i js(N)i sK)= 5 gherwise

(4.7)
By applying U,oc at an arbitrary 3-spin block one can creae all kinds of statesconsisting
of basisstateswhere one or more cels betweena and b are ipped, but not on adjacert
sites.

Thesebasis statesspan the accesdile subspacein this case. To cdculate its dimension
d, one therefae hasto count all binary numbersof lengghn=b a 1that don't have
two or more adjacert digits setto\0". One can show [4] that t his number is given by

d=F(n+ 2); (4.8)
where F (n) denotesthe Fibonacci selies,which is given by
Fn+2)=F(n)+F(n+1),n l1adn(@)=n2)=1 (4.9
and can be alsobe writtenin a closedform [1]

1 h1+'O€3in+h1 5in

F=pg 5 (4.10)

Therefae, it should be possble for the automaton to ewlve into aloca stationary
state, if there exists a big enough area of the type descibed above, and therefae a
higher number of coe cienstakespart in the ewlution. One can seethis behaviour in
the example shown in gure 4.2. For this type of rulesof caurse,the loca equilibrium
state cannot be homogenious acrossthe lattice.
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4.2. Non-propagaing rules
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Figure 4.3.: Multi particle entanglement for the LQCA shown in gure 4.2.
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Figure 4.4.: Reduced density matrix of a partial subsystem consisting of cels 14-17 of
the automaton shown in gure 4.2. Statesof the subsystem that have two
or more adjacert inactive cels cannot be found.
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4. Relaxation of a two specesLQCA

4.3. Rules with 1= 10=0, 0060 1,60

In this case,excitation propagaion isno longer restricted to special areas. Howeer, the
subspace S of all global statesthat can be reached during the evolution of the automaton
for a gveninitial state is alsoa smaller part of the total Hilbert space, but not as easy
to descibe asin the precedng case. Consider an initial product state where all cels are
inactive, excep for the dhain of cels betweenand including the positionsj and | (I j):

n .
i oizisol isni Sc= T goc:t‘hewvljse ! (4.11)
Becauseit is o1 = 10 = 0, onecan only alter the state by applying Ojoc 0N a block of 3
celswhoseouter left and outer right celslie both inside the dain of active celsor both
outside. By this, one creaesstatesthat are constituted of basisvectors with one cel
inverted, that liesinside or outside the diain but not at the borders(at j  1;j;I;1+ 1)
except for chains of length 1. By repeaing theseconsiderations for the obtained basis
vectors, one can nd all statesthat span the subspacefor a gveninitial state:
If theinitial stateis a product state consisting of n chains of active cels, thentheseare
given by all product states,where one or more of the n chains are extended or tr uncated
by multiplesof two cels and/or have a cel inverted as descibed above.
To illustrate this, gure 4.5 shows an example of a LQCA and the basis vectors that
span the accesdile subspace for the given initial state. The rule of the automaton is
given by

001 = 010 =1,
1 1 1
000 = 011 = p_z 1 1 (4'12)

Figure 4.6 shows the dimension of the accesdile subspace compared to the dimension
of the total Hilbert space deperding on the size of the LQCA feauring such a loca
update rule. As one can see,the dimension grows exponertially with the size of the
automaton. One therefare should expect that t he automaton tends to relax into aloca
stationary stateif it issu ciertly large. Figure 4.7 shows an example of a larger LQCA
that con rms this expectation.
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4. Relaxation of a two specesLQCA

o

1
Steps 100
b) P

0 Steps 100

B = active [ =inactive

Figure 4.7.: Two examplesof a LQCA with arulegivenby (4.12) and non-periodic (a) or
periodic (b) boundary conditions. One can seethat t he boundary conditions
only aect therelaxation of same few cels at t he boundaries.
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Figure 4.9.: Multi particle entanglement for the LQCA shown in gure 4.8. Here one
can also see,that t he automaton doesnot reach any stationary state but
rather shows same periodic behaviour.

Properties of the accessible subspace

Consider a LQCA with periodic boundary conditions, a left propagaing rule and an
initial product state where all cels are inactive except for the cels at positionsj and |
which shall be separated by at least 1 cel (jI jj> 1):

Jj ol =]sol s Si= it o jhji>1 (4.16)

Becauseit is 11 = 10 = 0,0necan easily see,that the celsat positionsj + 1 and |+ 1
always stay in the inactive state. From that followswith oo = 10 = 0, that t he cels at
positions j and | always stay in the active state. This means that one always stays in
the subspace S of all states,where the cels at positions (j;j + 1) and (k;k + 1) arein
the state j1i jOi. In this case,the part O(S) of the global unitary O that actsin S can
be split up into two parts

O(S)(l ..... N) — Ol(s)(j+1 ..... I)OZ(S)(I+1;:::;N;l;:::;j) (417)

Now the ewlution of the periodic automaton can be descibed by the ewolution of two
seprate non-periodic automata of sizeN; =1 j 1andN,= N N; and with initial
states where all cels are inactive exceg the cel at position 1. In analog, for initial
product stateswith a higher number of excited cels, the automaton can be split up into
a higher number of non-periodic automata. One can easily see,that all statesthat can
be reached during the ewolution of such a non-periodic automata of size N, belong to
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4.5. left and right propagding rules

the N, -dimensional subspace spanned by the basis-vectors

_Mafori k

ki = jsqi i i k=1::::N 1 P = . 418
JKE= 151015 ! oo S 0 otherwise (4.18

Thus, thedynamicsof a LQCA with aleft or right propagaing rule take placein se\eral
disjoint subspacesof maximum dimension d = N 1. Due to this, one should expect
the relaxation into aloca stationary state to be very weé.

4.5. left and right propagating rules

All rulesthat have
o= 11=0 (4.19

and
01860 and 106 0 (420)

will be called left and right propagaing rules. Figure 4.11 and 4.10 show examples of
LQCA with a left and right propagaing rule given by

Owo = Oy = ]I-z

001 = 010 = (421)

T._\N-\ﬁ_‘
NN

N

for periodic and non-periodic boundary conditions and two di er ernt initial states. Fig-
ure 4.12 shows the caresponding multi-particle entanglemert.

As one can seefrom thesetwo examples, the automaton tends to relax into a local
stationary state. One can also see,that t he relaxation deperds on the initial state and
on the boundary conditions. Again, this can be explained, if onelodks at t he underlying
subspace structure.

Properties of the accessible subspace

Consider a LQCA of length N with non-periodic boundary conditions, a left and right
propagaing rule and ainitial state drawn from the subspace spanned by all basis states
given by
Nifora k<b

ja;bi = js(0)i  js(N)i SK) = thewise

l1<a<b N

By applying Oioc at an arbitrary block of 3 cels, one can only creae statesthat are
constituted of the old state and a basis state where one cel is ipped at t he position a,
a 1,borb+ 1. Therefare one can easily con rm, that all statesthat can be reached

(4.22)
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4. Relaxation of a two specesLQCA

remain within this subspace. To gereralizethis, let S, denote the subspace spanned by
all basis statesgiven by

Nifork2[agb 1] [ [an; b

jag by iiiian b = js(0)i js(N)i s(k) = 0 otherwise
(4.23
l<ay<bh< <a,<hb, N
Then the global unitary O can be split up into
0=0)+0(S)+ + 0(Sy= 1) (4.24)

where each U(S)) acts only in the subspace S,.
To caculate the dimension d(S,,) of the subspace S, one hasto count all possble combi-

N 1 with exactly 2n bits set to \1". Thus, the dimension of the subspace in the
non-periodic caseis given by

dsy= ", (4.29

For a periodic LQCA, the condition 1< a< b N for eq (4.22 hasto be cdhangedto
bel a<b N andonehasto dlow for rotations of thesestatesalong the dain:

Ni1fora k+r<b

ja;b;ri = js(0)i  js(N)i s(k) = 0 otherwise

(4.26)

1 a<b N

Wherek + r indicatesperiodicity (k+r2 (k+r 1)mod N + 1).

From this, one might guess,that t he subspace dimension in the caseof n = 1 would be
givenby d(S;) = N N2
the form (4.26), the same basis vector may be descibed by multiple di er ent parameter
setsfa;b;rg.

By taking thisinto accaunt, one nd s the correct subspace dimension to be given by

. But in fact thisis not t he case, as for a parametrization of

. N
d(s;) =2 5
and in the general caseby
_ N
d(S,) =2 on (4.27)
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4.5. left and right propagding rules

) 20 40 60 80 100

) 20 40 60 80 100

b) Steps

Figure 4.12.: Multi particle ertanglement for the LQCA shownin gure4.11(a) and 4.10
(b). Solid Line: Initial state 1. Dashedline: Initial state 2. The relaxation
in the periodic caseis much better than in the nonperiodic case. This can
be explained by the obsewation that in the periodic caseafter same steps,
all cels have the same occupation propabilitiesof 13 00 % while in
the nonperiodic case not. In addition, the number of participating basis
vectors is higher as in the nonperiodic case.
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60 80 100
Steps

Figure 4.14.. Multi particle entanglement for the LQCA shown in gure 4.13

4.6.1. MQCA equivalent rules

A subclassof the total mixing rulesare the MQCA ecquivalert rules. Any loca update
rule Uoc that has
000 = 001ﬂ00 and 010 = Ollﬁ\/}]_ (431)

can be written as
Ooc= jOih0j Yo+ jlihy ¥ 1, (4.32)

This carespmpnds to a MQCA with the total mixing local update rule given by jOi hQj
o+ jlihl] V. The same appliesfor ruleswith Uy = 0102 Wo, 0oy = 012 W;, which
can be written as

Ooc=1, Wy joihoj+ W, jlihij (4.33)

4.7. Summary and Comparison of Chapter 3 and 4

It has beenshown for quantum celular automata of the margdus and the linea type
that nealy all loca update ruleslead to arelaxation into loca stationary states.

The strength of this relaxation deperds strongly on the dimension of the subspace
which is accesdile to the global state vector of the automaton during the ewolution.
Therefare, in sane casesthe strength of the relaxation deperds alsoon the initial state
of the automaton.
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4. Relaxation of a two specesLQCA

The quality of the relaxation in the caseof a MQCA has beenfound to be deperdert

on same relative phasefactors of the loca update rule. In the caseof a LQCA, such a
deperdence could not yet be found.

All examples have shown that t he relaxation leads to an asymptotic increase of the
multi-particle entanglement Q towards same maximum value which is never exceeckd

during the ewolution. This means that the n al state is a maximally mixed state with
respect to the accesdile subspace.
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5. Relaxation control with a LQCA

The model under consideration here will be a Linea QCA like in chapter 4 with a
n ite number of cels N and non-periodic boundary conditions. But this time it will
be assuned that t he dynamics due to the coupling betweenthe spins are on the same
timescae as the distance between the periodicaly interrupting control pulsesof the
LQCA. The coupling shall be a Ferster type caupling and the total Hamiltonian of the
chain shall be of the following form:

(Ny a)=2 (N a)=2
B = Ea ARK 1) 4 _Es A(2K)
z z
k=1 2 k=1
(Ny a)=2 (N+Ha)=2 1
+ B (Ax AL+ Ay Ay)(2k 1L,2k) 4 BA (/\X A+ Ay Ay)(2k;2k+1)
k=1 k=1

(5.1)
_ Nofor N even
~ 1for N odd

where E,; Eg denote the two di erent spitting energiesand g ; sa denote the
two di er ent caupling constants to the left and right neighbors.
The total ewlution of the LQCA is now given by the\free" ewlution of the diain,
interrupted by periodic control pulsesof the LQCA. According to [6], one can expect
that t he free ewvolution will lead to a relaxation of smaller loca subsystens into same
local equilibrium state, and thus by applying the additional LQCA pulses,one can expect
much more complex dynamicsthan in the caseof a static spin chain.
Howewer, considering the resuts shown sofar, one would expect that in most cases,the
system will tend to reach same kind of loca equilibrium state, anyway.
If one wantsto construct a guantum computer, an important question is, how one could
get rid of the unwanted free ewvolution resudting from the inewvitable intemal coupling
betweentheindividual qubits. It was shown by M. Stollsteimer and G.Mahlerin [15], [16]
how this can be done by applying speci ¢ pulse sequences acting either globally on all
spins or sekctively on same spins, deperding on the type of interaction that one hasto
ded with. Especilly for the caseof only nearest neighbor coupling of the form
H'(k;k+1) = J, )((k) )((k+1) + Jy )(/k) >(/k+1) +J, gk) §k+1); (5.2)

int

they intr oduced a method which usespulsesthat altemately act on all even numbered
and thenon all odd numbered qubits.
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5. Relaxation control with a LQCA

In this chapter will be given sane numerica examples of how the free ewolution can
be altered or supressedin the formalism of a Linea QCA. This allows for example to
supressthe free ewolution for same initial states of the automaton, while other states
will be not aected

It seensthat t hereexistsa eld for investgations about t he e ect of all thinkable update
ruleson the natural relaxation behaviour of a spin-% chain which could not be covered
completely in thisthess. So in this chapter can just be given same intriguing examples
for LQCA with di er ent update ruleswithout t he intention of a complete classi cation.

5.0.1. Example 1

An interestng type of rulesare rulesthat have
0= o01= 100= 11=0 (5.3

and weretermedtrivial in the caseof slow intrinsic dynamics. But now the freedynamics
of the spin chain already inducesa propagaion of excitations along the dain and these
rules can have a grea e ect on how this happens, while leaving the total excitation
number of the state unchanged.

This example shows, how rulesof the form (5.3) can be usedto control the strength and
speedof the relaxation of a spin-% chain. The loca update rule shall have the following
form:

01= 105 1= 01~ 105 1= 3 (5.4)

2
all others = 0:

This rule means a phaserotation of each spin, if its left and/or its right neighbor isin
the excited state.

Figure 5.1 showsthe dynamicsof the occupation propabilitiesof such a LQCA and gure
5.2 shows the correspnding multi particle entanglemert. One can seethat for the same
rule, one can either accekrate or decekrate the relaxation deperding on the distance
betweenthe QCA pulses,while in both cases,after sane time the system seens to be
closerto aloca equilibrium state than in the caseof freedynamics.

5.0.2. Example 2

We evertually consider another example of a rule of the form (5.3). Thistime, the loca
update rule shall have the following form:

(5.5)

01~ 10~ 01~ 0= 5

al others = 0
One can seefrom gure 5.3 that this leads to di er ent speed of relaxation depending
on theinitial state.
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0'30 T T T T T T T T T T T T T T T T
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0.10- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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fi
t [E]

Figure 5.2.: Multi particle entanglemert for the LQCA shown in gure 5.1. From this,
one can seethat t he system with applied QCA pulsesseens to be closerto
a loca equilibrium state than in the caseof freedynamics.

62






5. Relaxation control with a LQCA

64



6. Simulating spin chain dynamics
through QCA dynamics

One of the possble applications where a quantum computer can outperform a classcal
computer is the factoring of large numbers or the seach in large databases. In 2001
an example for an experimertal NMR implemertation of a quantum computer factoring
the number 15 by using the Shor-Algorithm [14] was given in [19]. This task required
the useof 7 qubits. One can expect that building a quantum computer that can factor
numbers that cannot be factorizedby classca computation will require the control over
thousands of qubits. Howewer, in 1981 R. Feynman sketched the possbility of using a
guantum computer to simulate another quantum medanica system|[5]. Such aquantum
simulator consisting only of a few tens of qubits may be usedfor simulations of quantum
systems that would already be impossble to simulate using a classcad computer. This
is,why it is oftenclaimed, that such a quantumsimulator will beimplementedfar befae
any usefd implementation of a quantum computer of the Shor-class.

In the following will be shown, how QCA of the Margdus type can be usedto simulate
the time-deperdent behaviour of spin chains.

6.1. Simulation of spin chains by MQCA

In the following will be shown that any spin chain with only nearest neighbor couplings
can be simulated using a Margdus QCA. The Hamiltonian of such a spin chain shall be
of the following form:

X Y&
A=" AW+ Q). (6.1)

k=1 k=1

where R{ corresponds to the splitting energy of the spin at position k and K"

caresmnds to the caupling energy of the spins located at k,k+ 1.
In order to cdculate the time ewolution of the dhain using the Suzuki-Trott er method,

65



6. Simulating spin chain dynamicsthrough QCA dynamics

one can split up the total Hamiltonian into # = K + g with
=2

- 2k 1 2k 2k 1;2k
Aa= A4 RE0L ek 120

2 1
qu — ﬁéZk;2k+1) (62)
k=1

Now the time ewolution can be caculated by

i (0= (t= 0)expl t-(Aa+ Ha)] (63)
= (t=0)i lim  exp[ ti:AA]exp[ ti:ﬁB] K (6.4)
=j (t=0)i lim Oa( 00( v (65

Becauseboth Oa( t) = exp[ tiHa]land Og( t) = exp[ tiHg] respectively are
only composedof operators acting on disjoint blocks of 2 spins, they can be written as

N=2
Oa( t)y= O a5 (6.6)

k=1

Ng2 1
Os( )= O( pZa? (6.7)

k=1

where

0( t)l(glé;Al;Zk) - exp[ t.l_, |4§2k 1) 4 |4§2k) + ﬁéZk 1;2k) ] (6.9)
0( tieea™? = expl  t= R ] (69)

are the unitariesacting on blocks of two spins at positions 2k 1; 2k and 2k; 2k + 1.
This carespnds to a MQCA as depicted in Fig. 2.4awith the loca update rule

0|0c;A = eXp[ tjt IqS 1 + 1 qu + ﬁc ] (6.10)
appliedto al blocks starting a odd positions and the loca update rule
i
0Ioc;A = exp[ tzlqc] (6.11)

applied to al blocks starting a even positions.
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/. Summary and outl ook

7.1. Summary

In this thess the conditions, under which the cels of a Quantum Cellular Automaton
relax into loca stationary states,due to the dynamics causedby the application of dif-
ferent locad update rules have beeninvestgated for two di er et models of Quantum
Cellular Automata, namely for the Margdus Quantum Celular Automaton (MQCA)
and the Linear Quantum Cellular Automaton (LQCA).

It has beenshown, that t he cels of the two investigated models of Quantum Cellular
Automata will relax into locd stationary states for most of the possble loca update
rulesif the size of the automaton issu ciertly large. It turned out, that t he relaxation
strongly depertds on the subspace that is accesdle for the global state vector of the
automaton during its ewvolution. This subspace deperds on the speci ¢ update rule that
has beenchosen aswell as (for most of the loca update rules)on theinitial state of the
automaton. Therefare a classi cation of the di er ent local update rulesin terms of the
subspace structure that arisesout of thoseruleshas beengiven.

Furthermore there has beenshown by two examples, that t he natural relaxation of
a Ferster coupled spin-% chain into equilibrium can to same extend be controlled by
applying LQCA update rules. In doing sg one can either slow down or accekrate the
relaxation indeperdertly of the initial state or sekctively slow down the relaxation for
speci cinitial states,while other initial stateswill relax more quickly.

In a short digresson, there has also beenshown the connection betweena Margadus
QCA and the simulation of spin chains via the Suzuki-Trott er Decanposition.

7.2. Outlook

A rst steptowards a classi cation of loca update rulesof two di er et QCA with re-
spectto their ability to producerelaxation into local stationary stateshas beenmade in
this thess. However there remain many open questons, as for example same subspace
structures are still 1acking an analytica desciption. Another example would be the
guestion whether the classi cation can be further extended with respect to ather not
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7. Summary and outlook

yet discovered symmetries(one example would be the strong deperdenceon therelative
phasesof same rules)

Another eld where there is much space for investgations is the control of relaxation
using LQCA rules. It seensthat t here existsa eld for investigations about t he e ect of
all concevable update ruleson the natural relaxation behaviour of aspin-% chain, which
could not be covered completely in this thess, as there was unfortunately not enough
time left to systematicaly investigate this topic.

One could also think about extending dl theseinvestgations into 2 a 3 dimensions,
although the computational facilitiesfor numerica simulations of such models will prob-

ably very quickly reach their limits.
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A. Appendix

A.1l. Generators of SU(4)

Any unitary O drawn from the special unitary group SU(4) can be writt en as

)45
Ozeié‘ G= i
i=1
where ; are 15red valued parametersand ; denotesthe Gell-Mann matricesgiven by
01001 Oo|oo1 ooool 0oooo1
‘%&00§‘i00§‘%801$‘%80i3§
1= 00 2~ 0 0 3= 10 4= i 0
0000 0 0 00O 0000 00 0 O
0 1 0 1 0 1 0 1
0000 000 O 0010 00 i O
_OOO§_OOOi§ _%ooo&_%ooo&
5~ 01 6~ 0O0i 0OA 77@ 00 8T @ 0 o0
0000 000 O 0000 00 0 O
0 1 0 1 0 1 0 1
0000 000 O 0001 000 i
_ooo&_ooo@_ooo& _%8000§
o 00 10~ 00 0OA U~ 00 12~ 00 O
0100 0i 0 O 1000 i 00 O
0 1 0 1 0 1
1 0 00 00 0 O 000 O
_010§_010$_0000§
= 0 0 14 0 1 5= 01 0
0 0 0O 00 0 O 000 1

A.2. A note on the numerics

All numericd simulations in this work have been performed using the library \ libgn"
which providesfunctions for simulating quantum regsters consisting of two-level systems
by taking only the a ect ed basis statesinto accaunt. The library was writtenin C code
by the author during the making of this thess and can be linked into Mathematica via
the MathLink interface. The time ewlution of the spin-% chains was caculated using
the Suzuki-Trott er Decanposition.
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