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1. Intro ducti on

1.1. Historical Background

In the recent years quantum cellular automata (QCA) have attr acted much att ent ion
from the scient i� c community as a new model for quantum computat ion. QCA are the
quantum extension to the concept of classical cellular automata (CCA), a model for
parallel comput ing on a latt iceof cells with discrete states,which was intr oducedin the
early 1950s by John von Neumann and Stanislav Ulam [20] and became widely known
with the invent ion of the \ Game of Life" (a 2-state, 2-dimensional cellular automaton)
by John Conway in the 1970s. In 1983 Stephen Wolfram start ed to systemat ically
investigate classical cellular automata [22], [9], [23] (t o ment ion only a few publicat ions.
For a more complete listing see1) and it soon became clear t hat some of them (among
others the Game of Life) can emulate a universal Turing machine.
Wi th this in mind, it seems very promising to extend the principles of CCA into the
quantum regime. An init ial approach to this task was � rst proposedin 1982by Richard
Feynmann [5] and today there exists a wide range of di�er ent QCA models [21], [18],
[3], [8], [11], [7], [12], some of them capable of universal quantum comput ing.

1.2. M oti vation

Most research on QCA that has beendone so far, has mainly beenfocusedon quantum
informat ion processing aspects. However, it can be very interesting to look at problems
of quantum informat ion processing from the view of quantum thermodynamics [6]. The
purpose of this work will be to addresssome thermodynamic aspects of two di�er ent
models of QCA, the LQCA [8] and the MQCA [7]. In part icular, it will be investigated,
how the statesof small subsystems of the automaton (consisting of a small number of
cells) will develop in t ime. Does one observe some kind of thermodynamic behaviour
emerging from the dynamics that r esult from the applicat ion of the update rule of the
automaton? Can one expect a relaxat ion of the local subsystems into some local equi-
librium state? And if so, under what condit ions? Can one give a classi� cat ion of the
QCA with respect to this behaviour?
Another interesting question, when it comes to quantum comput ing, is the contr ol of
the natural relaxat ion of coupled quantum systems [15]. It is therefore an interesting

1htt p://www. stephenwolfram.com/publications/ar t icles/ca/
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1. Intr oduction

question, to what extend this relaxat ion could be contr olled by applying QCA update
ruleson the system.

Classical Cellular Automaton (CCA)
Quantum Cellular Automaton (QCA)
Linear Quantum Cellular Automaton (LQCA)
Margolus Quantum Cellular Automaton (MQCA)
Colored Quantum Cellular Automaton (CQCA)

Table 1.1.: List of abbreviat ions used in this work for di�er ent Models of Cellular Au-
tomata (CA). Thesemodels will be presented in short in the next chapter.
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2. Basic Concepts

2.1. Quantum M echanics

2.1.1. Postul ates and mathemati cal formalism

The quantum mechanical descript ion of physical systems can be basedon 6 postulates
which will be presented here in short , mainly following [2].

1st postula te : The state of a physical systemis described by a state vector j i of unit
norm, belongingto a Hilbert space H, which is a complex,linear, unitary, separableand
completevector space.

2nd postula te : For every observable A there exists a linear, hermitian operator Â
acting in H . The eigenvectors of Â form a completeorthonormal basis of H

3r d postula te : The only possibleoutcomesof a measurement of A are given by the
eigenvaluesak of the corresponding operator Â.

4th postula te : The outcomeof the measurement is completelyrandomwith the propa-
bility of obtaining the eigenvalueak given by

w(ak) =
gkX

i =1

jha(i )
k j ij 2 (2.1)

where gk denotesthe degeneracy of ak and ha(i )
k j denotesthe eigenvectors associated with

ak . The expectation valueof Â is given by

hÂi =
X

k

akw(ak) = h jÂj i (2.2)

5th postula te : After the measurement of A, j i collapsesinto the projection onto the

3



2. Basic Concepts

subspace associated to the eigenvalueak that hasbeen observed:

j i � !
P̂k j i

q
h jP̂k j i

(2.3)

P̂k =
gkX

i =1

ja(i )
k i ha(i )

k j (2.4)

As one can see from (2.3), the measurementsof two observablesA and B wil l mutually
disturb each other as long as their corresponding operators don't have the sameset of
eigenvectors (they commute). This e�ect ist described by the generalized Heisenberg
uncertainity relation:

� A� B �
1
2

jh j[Â; B̂ ]� j ij (2.5)

6th postula te : The time evolution of the state vector j i is given by

i~
@
@t

j i = Ĥ (t) j i ; (2.6)

where Ĥ (t) denotesthe Hamilton operator corresponding to the total energy of the sys-
tem. (2.6) is also known as the (time dependent)\Schr•odinger Equation".

2.1.2. 2-level systems

A 2-level system is the simplest example for a quantum system, its Hilbertspace being
only of dimension 2. Thus the state of the system can be described by a state vector
j i = c1 j1i + c0 j0i where j1i and j0i are the eigenvectors of a 2-dimensional hermit ian
operator Â with the eigenvaluesa1 and a0. It is convenient t o choose the eigenvectors
of one of the Pauli -matr ices

�̂ x =
�

0 1
1 0

�
�̂ y =

�
0 � i
i 0

�
�̂ z =

�
1 0
0 � 1

�
(2.7)

(usually � z) as a basis. For Â=̂ �̂ z it is

j1i =̂
�

1
0

�
j0i =̂

�
0
1

�
(2.8)

a1 = 1 a0 = � 1 (2.9)

The propabili ty p1 of �nd ing the system in the state j1i is given by

p1 = jh1j ij 2 = h jP̂1j i = jc1j2 P̂1 = j1i h1j (2.10)
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2.1. Quantum Mechanics

2.1.3. Unitary operators

An operator Û is unitary, by de� nit ion, if its adjoint Ûy is equal to its inverseÛ� 1:

ÛyÛ = ÛÛy = 1 (2.11)

Unitary operators conserve the scalarproduct betweentwo arbitr ary vectors j' i ,j i (and
therefore also the norm of a vector):

hÛ' jÛ i = h' jÛyÛj i = h' j i (2.12)

An example of a 2-dimensional unitary operator is the rotat ion matr ix in the state space
of a spin-1

2 part icle:

R̂(� ; � ;  ) =
�

e
1
2 i ( � � � ) cos

2 e
1
2 i ( � + � ) sin 

2

� e� 1
2 i ( � + � ) sin 

2 e� 1
2 i ( � � � ) cos

2

�
(2.13)

Unitary operators can be constructed by using hermit ian operators: V̂ = ei Â is unitary,
if Â is a hermit ian operator (Ây = Â), because

V̂ yV̂ = e� i Â y
ei Â = e� i Â ei Â = 1 (2.14)

V̂ V̂ y = ei Â e� i Â y
= ei Â e� i Â = 1 (2.15)

The group of all n � n unitary matr ices with the group operat ion being the matr ix
mult iplicat ion is called the unitary group of degreen, U(n).
The subgroup of U(n) consisting of all n � n unitary matr iceswith determinant 1 is
called the special unitary group of degreen, SU(n).

2.1.4. Composed systems

A physical system(3) may be composedof two separate systems (1) and (2). In this case
the Hilbert space of the total system is given by the tensor product of the two part ial
systems:

H (3) = H (1) 
 H (2) (2.16)

and is spanned by the tensor product of the basis vectors j' (1)
i i and j' (2)

j i of H (1) and
H (2) :

j' (3)
ij i = j' (1)

i i 
 j' (2)
j i =: j' (1)

i ; ' (2)
j i : (2.17)

Only in special cases(e.g. if the two systems have not interacted), the total state vector
can be writt en as a tensor product of a vector j� (1) i out of H (1) and a vector j� (2) i out
of H (2) (product state):

j (3) i = j� (1) i 
 j� (2) i (2.18)
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2. Basic Concepts

otherwiseit must be writt en in the general form (entangled state):

j (3) i =
X

i;j

cij j' (1)
i i 
 j' (2)

j i (2.19)

An operator Â (1) acting only in (1) is writt en in the basis of (3) as

Â (3) = Â (1) 
 1(2) : (2.20)

2.1.5. Density operator

Often the system under considerat ion is only part of a composedlarger system. Thus,
the local state of the systemis not perfectly well known but r ather one has to deal with a
stat istical mixture of statesj 1i ; j 2i ; : : : with propabili t iesp1; p2; : : : It is import ant t o
note that t his di�er s from the system being in the state j i =

p
p1 j 1i +

p
p2 j 2i + : : :

as this would describe a coherent state. To get a general descript ion which can describe
both casesone has to intr oduce the density operator

�̂ =
X

k

pk j k i h k j (2.21)

The density operator is a hermit ian operator ( �̂ y = �̂ ) with Tr[�̂ ] = 1, represented in an
arbitr ary basis fj ei ig by a square matr ix whoseelements are given by

� ij = hei j �̂ jej i : (2.22)

The expectat ion value for an observable A is given by

hÂi = Tr (Â�̂ ): (2.23)

An import ant quant ity of �̂ is the purity

P = Tr[�̂ 2]; (2.24)

which takes on its maximum value (P = 1) for pure states and its minimum value
(P = 1

d) for a totally mixed state (� ij = 1
d � ij ) of dimension d. P is invariant under

unitary tr ansformat ions that act only on the local system described by �̂ .

Parti al trace operation

To obtain the reduced density operator �̂ (1) for a system (1) which is part of a global
system(1) + (2) with thedensity operator �̂ , onehas to perform a partial trace operat ion
on system (2):

�̂ (1) = Tr2 �̂ =
X

i;i 0

X

k

h' (1)
i ; ' (2)

k j �̂ j' (1)
i 0 ; ' (2)

k i j' (1)
i i h' (1)

i 0 j (2.25)
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2.1. Quantum Mechanics

As an example from quantum thermodynamics, consider a system in thermodynamic
equili brium in contact with a reservoir of inversetemperature � . The density matr ix in
the energy eigenbasis fj nig of the system (En = Ĥ jni ) has the following form [6]:

�̂ =
1
Z

X

n

e� � En jni hnj (2.26)

with the part it ion sum
Z =

X

n

e� � En : (2.27)

2.1.6. Networks of two-level systems

Al l systems that will be dealt with in this work are composedsystems, consisting of a
�n ite number N of two-level systems (in the following often to be re�ered to as\ cells").
The Hilbert space for each single two-level system will be spanned by the eigenbasis of
the �̂ z-operator (fj 1i ; j0ig). The state j i of the total system is assumed to be pure
(�̂ = j i h j) and will be writt en as

j i =
X

s(1) ;:::;s(N )

cs(1) ;:::;s(N ) js(1)i 
 js(2)i 
 � � � 
 js(N )i , s(i ) 2 f 1; 0g, i 2 f 1; : : : ;N g

(2.28)
or in its short form:

j i =
111:::1X

s=0 :::000

cs jsi (2.29)

wheres representsa N-digit binary number. Thepropabili ty p1(i ) of �nd ing thetwo-level
system at posit ion i in the excited state (j1i ) is given by

p1(i ) = h jP̂ (i )
1 j i ; (2.30)

with P̂1 as de� ned in eq. (2.10). Numbers in brackets (i; j ; :::) at t he upper right of an
operator indicate that t he operator is to be applied on the local subsytem consisting of
the two-level system(s) located at t he posit ion(s) indicated by i; j ; : : :
In analog, the reduced density matr ix for a subsystem consisting of the two-level sys-
tem(s) at posit ion(s) (i; j ; : : : ) will be denoted by �̂ (i;j ;:::) and is obtained by tr acing out
all other two-level systems.
An interesting quant ity that measuresthe overall entanglement of all two-level systems
with each other is the mult i part icle entanglement measure de� ned in [10], which can be
writt en in the form:

Q =
1
N

NX

i =1

2(1 � Tr[(�̂ (i ))2]) (2.31)

Q can be seenas a normalized measure of the sum of all purit ies. Q takeson its min-
imum (Q= 0), if all l ocal statesare completely pure (Tr[(�̂ (i ))2] = 1) and its maximum

7



2. Basic Concepts

(Q= 1), if all l ocal statesare totally mixed (Tr[(�̂ (i ))2] = 1
2).

2.1.7. Calculati ng the ti me evoluti on

To calculate the t ime evolut ion of the state j i , one has to solve the t ime dependent
Schr•odinger Equat ion. In the following, some methods to do this will be sketched.

Exact soluti on

In the caseof a t ime independent Hamil ton operator, the Schr•odinger Equat ion has the
following solut ion:

j (t)i = Û(t) j (t = 0)i (2.32)

with the t ime evolut ion operator

Û(t) = e� t i
~ Ĥ : (2.33)

Thus, for not t oobig systems, j (t)i can becalculatedby diagonalizing Ĥ and calculat ing
the exponent ial operator Û(t).

Iterati ve approximation procedures

For bigger systems or systems with t ime dependent Hamil tonian exact diagonalizat ion
works only in very few special cases.Thus one needs approximat ion procedures. There
are several methods to integrate the di�er ent ial equat ion for j i numerically, like the
Runge-Kutt a or t he Fehlberg algorithm, which are more or lessstandard procedures.
In the following will be presented another method, which was used for most of the
calculat ions done in this work.

Suzuki-Trotter Decompositi on

The Suzuki-Trott er decomposit ion [17] is useful i f exact diagonalizat ion of the Hamil ton
operator Ĥ is not possible, but Ĥ can be spli t up into Ĥ = ĤA + ĤB , where ĤA and ĤB

can be diagonalizedseparately. The t ime evolut ion operator can then be approximated
by

exp[� t
i
~

(ĤA + ĤB )] = lim
N !1

�
exp[� � t

i
~

(ĤA + ĤB )]
� N

= lim
N !1

�
exp[� � t

i
~

ĤA ] � exp[� � t
i
~

ĤB ]
� N

�
�

exp[� � t
i
~

ĤA ] � exp[� � t
i
~

ĤB ]
� N

, � t =
t
N

(2.34)

8



2.2. Classical Cellular Automata

with an overall error of order 1=N . This can be improved by symmetrizing the incre-
mental propagator

exp[� � t
i
~

(ĤA + ĤB )] � exp[�
� t
2

i
~

ĤB ] � exp[�
� t
2

i
~

ĤA ] � exp[�
� t
2

i
~

ĤB ] (2.35)

which results in an overall error of order 1=N 2. One of the advantages of the Suzuki-
Trott er method is that it conservesthe norm (symplectic integrator).

2.2. Classical Cellular Autom ata

In the following, a de� nit ion of classical cellular automata will be given, according to
various de� nit ions found in li terature:

De�nition: A classical cellular automaton (CCA) consists of an (usually in�nite) d-
dimensionallattice of cells indexed by ~x 2 Z d, a �nite neighborhoodschemef ~ni g � Z d, a
local update rule f and a set of discrete cell states� . Each cell posessesa state S~x 2 � .
Time evolvesin discrete timesteps. At each discrete timestep the state of each cell is
updated according to S~x (t + 1) = f (S~x (t); f S~x+ ~n i (t)g) which givesthe new state of a cell
as a function of its own state and the state of all cells in its neighborhood de�ned by
f ~ni g.

Usually, instead of using an in�n ite grid of cells, periodic boundary condit ions are ap-
plied. In this work, the grid will always be limited to a � xed size with periodic or
non-periodic boundaries.
To ill ustrate this rather mathemat ical de� nit ion, an example of a one-dimensional CCA
will be given:

Ex ample: Consider a one-dimensional CCA with possiblecell states0 (white/ inactive)
and 1 (black/a ctive) and a neighborhood scheme that consists only of the nearest neigh-
bors. Thus 256di�er ent local update rulescan be implemented. One possible rule could
look like this:

Sx� 1; Sx ; Sx+1 111 110 101 100 011 010 001 000
f (Sx ; Sx� 1; Sx+1 ) 1 0 0 1 0 1 1 0

This rule would be numbered as rule 150 according to Wolfram, reading the second line
as a binary number. By running the automaton with this rule on an init ial state where
all cells except for one cell are in state 0, one obtains the patt ern displayed in � gure 2.1.

9



2. Basic Concepts

Figure 2.1.: Classical cellular automaton with rule 150

2.3. Quantum Cellular Autom ata

An intuit ive way of intr oducing a quantum cellular automaton would be to ident ify
the latt ice of cells with an array of qubits and the local update rule with a unitary
tr ansformat ion on each qubit depending on the state of the qubits in its neigborhood.
But when extending the concept of the classical cellular automaton into the quantum
regime, one has to deal with the problem that a classical CA needs to memorize its
current state during the calculat ion of the subsequent state becausethe next value of a
cell depends on the valuesof the surrounding cells which will change their state during
the calculat ion, that means one has to make a copy of the current state. This however
is not possible for a quantum mechanical state due to the non-cloning theorem.
As there exist several ways to circumvent t his problem by intr oducing a part it ioning
scheme, many di�er ent models of QCA have beenproposed, like the Watr ous-Van-Dam
QCA [21], [18], [3], the Linear QCA [8], the Colored QCA [11], the Margolous QCA [7]
or t he Local Unitary QCA [12]. Some of themwill be described in the following sections.

2.3.1. Linear QCA

This model was � rst proposed in 1993by S. Lloyd [8] and is often referred to as Spin
Chain QCA. It consists of a one-dimensional chain of two-level systems (cells) with
nearest neighbor interactions, part it ioned into threedi�er ent species,i.e. AB CAB C : : :
with di�er ent energy spli tt ings for each species. The energy levels of each cell are shifted
as a function of the energy levels of its neighbors. This results in di�er ent r esonant
frequencies! A

00; ! A
01; ! A

10; ! A
11 for A depending on whether C and B are in the state 0 and

0, 0 and 1, 1 and 0 or 1 and 1. By applying the adequate sequenceof pulses,all cells of

10



2.3. Quantum Cellular Automata

a given speciesare updated in parallel with the local unitary update rule

Ûloc = j0i h0j 
 Û00 
 j0i h0j + (2.36)

j0i h0j 
 Û01 
 j1i h1j +

j1i h1j 
 Û10 
 j0i h0j +

j1i h1j 
 Û11 
 j1i h1j

which applies the unitary Û00; Û01; Û10; Û11 on a spin, depending on the state of its left
and right neighbors (see� gure 2.2).

If one allows for di�er ent coupling strengths of the cell with its right and its left neigh-
bor, respectively a part it ioning into 2 di�er ent species i.e. ABAB : : : is su� cient . The
evolut ion of such an automaton with an even number of N cells and an init ial state j 0i
can than be described as follows:

Let ÛA=B be the unitary, that updatesall cells of the type A or B depending on the
state of their neighbors:

ÛA = Û(1;2;3)
loc Û(3;4;5)

loc � � � Û(N � 2;N � 1;N )
loc (2.37)

ÛB = Û(2;3;4)
loc Û(4;5;6)

loc � � � Û(N � 1;N ;1)
loc (2.38)

then the state  of the automaton after 2t steps is given by:

j i = (ÛB ÛA )t j 0i (2.39)

Figure 2.3 ill ustratesthe functioning of such a two-specieslinear QCA.

Figure 2.2.: Function of a 3-specieslinear QCA

11



2. Basic Concepts

Figure 2.3.: Function of a two-specieslinear QCA

2.3.2. Colored QCA

A generalizat ion of Lloyd's scheme for a part it ioning into an arbitr ary number � 2 of
species(here: colors) for dimensions � 1 hasbeenintr oducedin [11] and iscalledColored
QCA (CQCA). In a CQCA, each cell is assigned a color in a checkerboard fashion such
that no two neighbors have the same color. At each t ime step only the cells of a certain
color are updated with a unitary depending on their neighbor's values. Neighbors of the
same color are not distinguishable in this context .

2.3.3. M argolus QCA

Figure 2.4.: Part it ioning for an MQCA, as intr oducedby Margolus (a) and an example
for a more general part it ioning, following the de� nit ion by Schumacher and
Werner (b).

A Margolus QCA (MQCA) as � rst intr oduced by N. Margolus [7] consists of a one-
dimensional latt ice of cells. In the � rst step all even ordered sitesare grouped together

12



2.3. Quantum Cellular Automata

with their r ight neighbors and a unitary tr ansformat ion is performed on each of these
pairs. Then the cells are regrouped, so that t he even ordered sites are now grouped
together with their left neighbors and a unitary tr ansformat ion is performed on these
pairs (see� gure 2.4a).
Schumacher and Werner extended this concept t o a more general form [13]. In their
version, a Margolus scheme consists of 2 part it ionings. Each part it ioning dividies the
latt ice into �n ite, disjoint and uniformly arranged blocks, such that each block of one
part it ioning overlaps with at least 2 blocks from the other part it ioning.
It can be shown that for every automata of the Margolus type there exists an automaton
of the colored type that has exactly the same dynamics and vice versa [11].

13
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3. Relaxation of M QCA with 2-qubit
block parti ti oning

M odel

The model under considerat ion will be a Margolus cellular automaton where each cell
consists of a 2-level system. The part it ioning consists of blocks containing 2 qubits as
depicted in � gure 2.4a. The MQCA will have a �n ite number of cells N and periodic
or non-periodic boundary condit ions. As local update rule, one can therefore choosean
arbitr ary two-bit quantum gate represented by the unitary Ûloc 2 SU(4). An arbitr ary
unitary tr ansformat ion out of SU(4) can be given by a 4� 4 matr ix

Ûloc = ei Ĝ G =
15X

i =1

� i � i (3.1)

where � i are 15 real valued parameters and � i are the Gell-Mann matr ices(seeA.1).

Questi ons

The main questions, that will be investigated in this section are:

Does there exist somekind of stationary state, into which the automaton tends to relax
(regardlessof the initial state)?
And if so, what does it look like?

General remarks

It is clear t hat a stat ionary state in the sensethat t he state vector of the total automa-
ton j i remains constant after some steps cannot exist due to the unitarity of the global
evolut ion. However if one looks at smaller subsystems, it is very likely that t he system
evolvesinto some dominant r egion in Hilbert space,where the reduceddensity matr ices
of thesesubsystems remain approximately constant , what will be called in the following
a local stat ionary state.
Of course,due to the unitarity of the global evolut ion, the automaton has to return to
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3. Relaxat ion of MQCA with 2-qubit block part it ioning

its original state at some point in t ime, but as the dimension of the Hilbert spacegrows
exponent ially with the size of the automaton, this will usually happen on a t imescale
that is signi� cant ly longer than any observer could wait .
The local update ruleand the init ial stateof theautomaton will determine theaccessible
subspace to which the evolut ion of the global state vector is constrained. As it t urns
out, the shape of this subspace strongly a�ect s the relaxat ion of the automaton. Due
to this, a classi�cation of the local update rules depending on the accessiblesubspace is
feasible.

3.1. Trivial rules

Any local update rule Ûloc that can be writt en as

Ûloc = Û1 
 Û2 = (Û1 
 12)(12 
 Û2) Û1; Û2 2 SU(2) (3.2)

will only result in a rotat ion of the state of each cell regardlessof the neighboring cells.
Thus, no complex dynamics of the automaton are to be expected.

3.2. Rules with Ûloc : fj 01i ; j10ig ! fj 01i ; j10ig
(excitati on number conserving rules)

The excitat ion number of an arbitr ary state j i will be de� ned as

n =
NX

i =1

h jP̂ (i )
j1ih1j j i P̂j1ih1j =̂ j1i h1j : (3.3)

The subspace spanned by all basis states

js(1)i 
 � � � 
 js(N )i , s(1); : : : ; s(N ) 2 f 1; 0g (3.4)

with the same excitat ion number

n =
NX

i =1

� s(i );1 (3.5)

will be called\ n-excitat ion subspace". It s dimension is given by

dn =
�

N
n

�
: (3.6)
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3.2. Ruleswith Ûloc : fj 01i ; j10ig ! fj 01i ; j10ig (excitat ion number conserving rules)

Al l local update rules which only tr ansform between states belonging to the same n-
excitat ion subspacewill be called\ excitat ion number conserving". Thoserulesare given
by:

Ûloc =

0

B
B
@

ei� 11 0 0 0
0 e

1
2 i ( � � � ) cos

2 e
1
2 i ( � + � ) sin 

2 0
0 � e� 1

2 i ( � + � ) sin 
2 e� 1

2 i ( � � � ) cos
2 0

0 0 0 ei� 00

1

C
C
A (3.7)

and tr ansform only betweenthe local statesj01i and j10i (except for a phaseshift of j11i
and j00i ). One can easily verify that t he commutator betweenthe operator for t he total
excitat ion number and Ûloc applied on an arbitr ary pair of cells (i; j ) is always equal to
0:

[
NX

k=1

P̂ (k)
j1ih1j ; Û(i;j )

loc ] = 0 (3.8)

Therefore, rulesof this type conserve the total excitat ion number for any given state.

To give a � rst overview of the dynamics obtained by theserules,� gures3.1-3.5 show
the t ime evolut ion of the occupat ion propabili t ies hP̂ (i )

j1ih1j i of periodic and nonperiodic
MQCA with a � xed sizeof 20 cells and two di�er ent excitat ion number conserving rules
for di�er ent init ial states.
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3.2. Ruleswith Ûloc : fj 01i ; j10ig ! fj 01i ; j10ig (excitat ion number conserving rules)

Obviously, there seems to exist a local stat ionary state, that t he MQCA tends to
reach, where not only the state of each cell remains approximately constant but also
homogeneous along the array. As one can see,the strength of the relaxat ion is not t he
same for all rulesof this type, but depends also on the boundary condit ions, the init ial
state and on the phasefactors � 00 and � 11 .

Dependence on the initi al state

As one can seefrom the examples,the strength of the relaxat ion depends strongly on the
the init ial stateof theautomaton. This isdue to the fact that t he init ial statedetermines
the dimension of the subspacewhich will be accessible for t he global state vector during
the evolut ion of the automaton. For t he n-excitat ion subspace, this dimension is given

by the binomial coe� cient
�

N
n

�
. The higher now the dimension, the more coe� cients

cs(1) ;:::;s(N ) of the state vector change their valuesamong each other during the evolut ion
and thus the more di�er ent frequencies are contained in the t ime evolut ion of each of
thesecoe� cients. Due to this, one should expect that t he expectat ion value of a cell for
being in the excited state,

h jP̂ (k)
j1ih1j j i =

X

s(1) ;:::;s(N )

jcs(1) ;:::;s(N ) j2� s(k);1 (3.9)

will get more and more constant , the higher the dimension of the subspace.

Properti es of the local stati onary state

If one addit ionally assumes that t he t ime average in the local stat ionary state is the
same for all coe� cients cs(1) ;:::;s(N ) , one can deduce some more propert ies for smaller
subsystems of size � 1 in the local stat ionary state:
Consider a small subsystem of the MQCA in the local stat ionary state, consisting of M
cells at posit ions pk (k 2 f 1; : : : ;M g).
The diagonal elements of the reduceddensity matr ix describing this subsystemare given
by

� jj = h jP̂ (p1 ;:::;pM )
jj ihj j j i =

1:::1X

s;r =0 :::0

c�
scr hsjP̂ (p1 ;:::;pM )

jj ihj j jr i =
1:::1X

s=0 :::0

jcsj2
MY

k=1

� s(pk )= j (k) (3.10)

where j denotesan arbitr ary M -bit string where the bits at posit ions (p1; : : : ; pM ) have
thevaluesj (p1); : : : ; j (pM ). If thestateof thetotal systemliesent irely in then-excitat ion
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3. Relaxat ion of MQCA with 2-qubit block part it ioning

subspace and under the assumpt ions made above, this can be writt en as:

� jj =
X

s

jcj2
MY

k=1

� s(pk )= j (k) =

�
N � M
n � m

�

�
N
n

� m =
MX

k=1

� j (k);1 (3.11)

Thus the propabili ty of �nd ing the subsystem in any state, where m of the M cells are
in the excited state, is given by the hypergeometric distribut ion

P(m) =

�
M
m

� �
N � M
n � m

�

�
N
n

� (3.12)

which can be approximated by the binomial distribut ion if M << N :

P(m) =
�

M
m

�
(

n
N

)m (
N � n

N
)M � m (3.13)

Thus for M << N , the diagonal elements � jj can be rewritt en as

� jj =
1
Z

e� � m 1
Z

=
� N � n

N

� M
; � = log

N � n
n

(3.14)

The o�d iagonal elements of the reduced density matr ix are correlat ion functions of the
form

� ij = h jP̂ (p1 ;:::;pM )
ji ihj j j i =

1:::1X

s;r =0 :::0

c�
scr hsjP̂ (p1 ;:::;pM )

ji ihj j jr i =
1:::1X

s;r =0 :::0

c�
scr

MY

k=1

� s(pk )= j (k) � r (pk )= j (k)

(3.15)
over the coe� cients cs and cr . The smaller a subsystem is chosen, the larger is the
number of coe� cients part icipat ing in this sum and thus, the smaller the value for � ij .

Thus, one would expect the reduced density matr ix of a su� cient ly small part ial
system to be a diagonal matr ix with a canonical distribut ion of the diagonal elements,
given by (3.14). Figure 3.6 ill ustratesthis for a MQCA with 20 cells and an init ial state
of n = 8 active cells. They show the diagonal elements of the reduced density matr ices
for part ial systems of di�er ent sizes.
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3.2. Ruleswith Ûloc : fj 01i ; j10ig ! fj 01i ; j10ig (excitat ion number conserving rules)

Figure 3.6.: Diagonal elements of the reduced density matr ix for a part ial system of
cells at posit ions (8,9), (8,9,10) and (8,9,10,11) after 800 steps of a MQCA
with an init ial state of n = 8 active cells. Update rule given by (3.7) with
� 00 = � 11 = �

2 ; � = �
� = 0;  = �

2 .
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3. Relaxat ion of MQCA with 2-qubit block part it ioning

Figure 3.7.: Developing of the occupat ion propabili t iesof cell 1 and 15 for being in the
excited state for t he � rst 150steps of the automaton from � gure 3.6. As one
can see,the relaxat ion of a single subsystem is quite good.

Entanglement in the local stati onary state

According to the preceding considerat ions, one can expect the reduced density matr ix
of any single cell to be given by:

�̂ (k) =
�

n
N 0
0 1� n

N

�
(3.16)

In this case,the mult i-part icle entanglement Q is given by

Qmax = 4(
n
N

�
n2

N 2
) (3.17)

One can easily see,that t his is the highest possible value for Q for a given excitat ion
number n, if one maximizesQ for some general density matr icesgiven by:

�̂ (k) =
�

ak bk

b�
k 1 � ak

�
(3.18)

under the constraints
NX

k=1

ak
!= n (3.19)

which gives(3.16) as solut ion. To ill ustrate this, � gures3.8-3.11 show the developing of
the mult i part icle entanglement Q for t he examplesshown in � gures3.1-3.5.
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3.2. Ruleswith Ûloc : fj 01i ; j10ig ! fj 01i ; j10ig (excitat ion number conserving rules)

Figure 3.8.: Evolut ion of the mult i part icle entanglement Q of the periodic MQCA
showed in � g. 3.1 (� 00 = � 11 = � = � = 0;  = �

2 ). The dashed lines
show the maximum possible value for Q for a given excitat ion number n.
The entanglement always tends to reach its maximum possible value, which
depends on the number of excited cells in the init ial state.

Figure 3.9.: Evolut ion of the mult i part icle entanglement Q of the periodic MQCA
showed in � g. 3.2 (� 00 = � 11 = �

2 ; � = � = 0;  = �
2 ). The dashed

linesshow the maximum possible value for Q for a given excitat ion number
n. The better quali ty of the relaxat ion for phase factors other than 0 can
be seen. The entanglement gets much closerto its maximum possible value.
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3. Relaxat ion of MQCA with 2-qubit block part it ioning

Figure 3.10.: Evolut ion of the mult i part icle entanglement Q of the nonperiodic MQCA
showed in � g. 3.3 (� 00 = � 11 = � = � = 0;  = �

2 ). One can seethat t he
boundary condit ions do not have a great inu enceon the developing of the
entanglement.

Figure 3.11.: Evolut ion of the mult i part icle entanglement Q of the nonperiodic MQCA
showed in � g. 3.4 (� 00 = � 11 = �

2 ; � = � = 0;  = �
2 ). Again, the di�er ent

phasefactorsresult in a much better relaxat ion than in thepreceding � gure.
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3.3. Ruleswith Ûloc : fj 00i ; j11ig ! fj 00i ; j11ig

Dependence on the phase factors � 00 and � 11

If one comparesthe results shown in � gure 3.1 and 3.2, one can seethat t he relaxat ion
of the MQCA is much better if the phasefactors � 00 and � 11 are unequal to 0. As can
be seenin the following sections, the inu ence of such phase factors on the quali ty of
the relaxat ion is not r estricted to only this type of local update rules. Unfort unately
the reason for t his could not be discovered in this thesis. However it seems that it has
something to do with the\ scatt ering"of excitat ionsamongst each other. Thisassumpt ion
is basedon the observat ion from the numerics, that for a non-periodic MQCA with a
excitat ion conserving rule with � 00 = � 11 = 0 and an init ial state with n excited cells,
the propagat ion of each single excitat ion can be calculated seperately from the others.
But unfort unately, this could not yet be proven analyt ically.

3.3. Rules with Ûloc : fj 00i ; j11ig ! fj 00i ; j11ig

Theserulesare given by

Ûloc =

0

B
B
@

e
1
2 i ( � � � ) cos

2 0 0 e
1
2 i ( � + � ) sin 

2
0 ei� 10 0 0
0 0 ei� 01 0

� e� 1
2 i ( � + � ) sin 

2 0 0 e� 1
2 i ( � � � ) cos

2

1

C
C
A (3.20)

In this caseÛloc tr ansforms betweenbasis states that di�er in their excitat ion number
by mult iples of two. But for a given excitat ion number, not all possible states with
the same excitat ion number can be reached. Thus by applying rules of this type, the
evolut ion of the global state vector is again restricted to a subspaceof the total Hilbert
space. But t his t ime, the shape and dimension of this subspace cannot be easily given
in an analyt ical way. To give an impression of the basis statesspanning the accessible
subspace for a speci� c init ial state, � gure 3.12 shows an example of a MQCA with 8
cells, together with the basis statesfor a local update rule given by

Ûloc =

0

B
B
@

1p
2

0 0 1p
2

0 1 0 0
0 0 1 0

� 1p
2

0 0 1p
2

1

C
C
A (3.21)

Figure 3.13 shows the dimension of the accessible subspacecompared to the dimension
of the total Hilbert spacedepending on thesizeof a MQCA featuring such a local update
rule. From this, one can see,that t he subspacedimension alsoscalesexponent ially with
the size of the system.
Figures 3.14 and 3.15 show some examples of MQCA with a rule given by (3.20) and
di�er ent sets of parameters. One can seethat t his rule results in relaxat ional behaviour
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3.4. Ruleswith Ûloc : fj 00i ; j11ig ! fj 00i ; j11ig ; fj 01i ; j10ig ! fj 01i ; j10ig

Figure 3.16.: Mult i part icle entanglement of the � rst two examplesshown in � gure 3.14
a) and b). One can seethat t he entanglement gets much closer to its
maximum possible value for phasefactors � 01; � 10 6= 0.

3.4. Rules with Ûloc : fj 00i ; j11ig !
fj 00i ; j11ig ; fj 01i ; j10ig ! fj 01i ; j10ig

Theserulesare given by

Ûloc =

0

B
B
B
@

e
1
2 i ( � 1 � � 1+ � ) cos 1

2 0 0 e
1
2 i ( � 1+ � 1+ � ) sin  1

2

0 e
1
2 i ( � 2 � � 2 ) cos 2

2 e
1
2 i ( � 2+ � 2 ) sin  2

2 0
0 � e� 1

2 i ( � 2+ � 2 ) sin  2
2 e� 1

2 i ( � 2 � � 2 ) cos 2
2 0

� e� 1
2 i ( � 1+ � 1+ � ) sin  1

2 0 0 e� 1
2 i ( � 1 � � 1+ � ) cos 1

2

1

C
C
C
A

(3.22)

and can be seenas a combinat ion of the rulesfrom the preceding two sections. In this
case,the subspaceto which the evolut ion of the global state vector is restricted to can be
easily described. Due to the part t hat tr ansforms betweenj00i and j11i , Ûloc tr ansforms
betweensome basis statesthat di�er in their excitat ion number by mult iplesof two. In
addit ion, due to the part t hat tr ansforms between j01i and j10i , Ûloc tr ansforms now
alsobetweenall possible basis statesthat belong to the same excitat ion number. Thus,
one can seethat Ûloc can be spli t up in two part s, where the one part acts only in the
subspacespanned by all basis stateswith an even excitat ion number and the other part
acts only in the subspace corresponding to an odd excitat ion number.
Figure 3.17 shows examplesof an MQCA featuring such a rule for di�er ent parameter
sets and init ial states.
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3.5. Total mixing rules

Figure 3.18.: Mult i part icle entanglement of the two � rst examplesshown in � gure 3.17
b) and c)

The � rst threeexamplesare a strong indicator, that t here have to exist furt her sym-
metries,that could not be found yet. As could already be seenin the previous sections,
the phasefactor � seems to play an import ant r ole here, too.

3.5. Total mixing rules

Al l rules that do not fall under one of the casesalready presented will act in the total
Hilbert spaceof dimension d = 2N (eventually without t heground/a ll -excitedstate, thus
d = 2N � 1).
In this case,one would expect the strength of the relaxat ion to be more or lessindepen-
dent of the init ial state and stronger than in the preceding cases.
If, in analog to the assumpt ions made in the previous section, the coe� cients of the state
vector in the local equili brium state would get totally \ mixed", one should expect the
density matr ix of a (not t oo small ) part ial system of dimension d then to be given by

0

B
@

1
d 0

.. .
0 1

d

1

C
A (3.23)

and themaximum value for t hemult i part icleentanglement Q should begivenby Q = 1.
However, as it t urnsout, this isnot alwaysexactly full � lled for all rulesand init ial states.
Figures3.19 and 3.22 show examplesof MQCA for di�er ent init ial statesand 2 di�er ent
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3.5. Total mixing rules

Figure 3.20.: Mult i part icle entanglement for t he automaton showed in � g. 3.19. Dashed
line: init ial state with 1 excited cell. Solid line: init ial state with 5 excited
cells. In both cases,the entanglement r eachesthe maximum possible value
of Q = 1 which means a perfectly mixed state.

Figure 3.21.: Mean value of the occupat ion propabili t ies for t he excited state
( 1

N

P N
i =1 hP̂ (i )

j1ih1j i = n
N ) for t he automaton showed in � g. 3.19. One can

seethat t here exists a slight dependence on the init ial state which indi-
cates that t he assumpt ion of a total mixing of the coe� cients cannot be
completely correct.
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3.5. Total mixing rules

Figure 3.23.: Mult i part icle entanglement for t he automaton showed in � g. 3.22. Dashed
line: init ial state with 1 excited cell. Solid line: init ial state with 5 excited
cells.

Figure 3.24.: Mean value of the occupat ion propabili t ies for t he excited state
( 1

N

P N
i =1 hP̂ (i )

j1ih1j i = n
N ) for t he automaton showed in � g. 3.22. Here the

dependenceon the init ial state is even stronger than in the previous exam-
ple.
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4. Relaxation of a two species LQCA

M odel

Themodel under considerat ion will bea Linear QCA with two di�er ent energy spli tt ings
and di�er ent coupling strengths to the left and right neighbors. The LQCA will have a

�n itenumber N of cellsand periodic or non-periodic boundary condit ions. At t hispoint ,
it is assumed, that all statesof the spin chain are long lived states, thus the\ intr insic"
dynamicsof the chain are slow compared to the t ime scale at which QCA dynamicstake
place. The local update rule of the QCA will be given by (2.36), with

Û00 = R̂(� 00; � 00;  00)

Û01 = R̂(� 01; � 01;  01)

Û10 = R̂(� 10; � 10;  10)

Û11 = R̂(� 11; � 11;  11) (4.1)

where R̂ denotes a general rotat ion in the state space of a spin-1
2 system and will be

denoted by the set f � 00 : : :  11g.
The main questions, that will be investigated are the same as in the previous chapter.
Again, it is advantageous to de� necertain classesof update ruleswith special propert ies.

4.1. Trivial rules

Any local update rule Ûloc that has

Û00 = Û01 = Û10 = Û11=̂ V̂ (4.2)

can be writt en as
Ûloc = 12 
 V̂ 
 12 (4.3)

and will only result in a rotat ion of the state of each cell regardlessof the neighboring
cells. Thus, no complex dynamics of the automaton are to be expected in this case.
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4.2. Non-propagat ing rules

Dimension of the accessible subspace

To get an impression, of how the accessible subspace may look like in casea), consider
an init ial state, where all cells are inactive, except for t he chain of cells between and
including the posit ions a and b:

j 0i = js(0)i � � � j s(N )i s(k) =
n 1 for a � k � b

0 otherwise
(4.7)

By applying Ûloc at an arbitr ary 3-spin block one can create all kinds of statesconsisting
of basisstateswhere one or more cells betweena and b are  ipped, but not on adjacent
sites.
Thesebasis statesspan the accessible subspace in this case. To calculate its dimension
d, one therefore has to count all binary numbers of length n = b� a � 1 that don't have
two or more adjacent digits set to \0". One can show [4] that t his number is given by

d = F (n + 2); (4.8)

where F (n) denotesthe Fibonacci series,which is given by

F (n + 2) = F (n) + F (n + 1), n � 1 and n(1) = n(2) = 1 (4.9)

and can be also be writt en in a closedform [1]

F (n) =
1

p
5

�h 1 +
p

5
2

i n
+

h1 �
p

5
2

i n �
(4.10)

Therefore, it should be possible for t he automaton to evolve into a local stat ionary
state, if there exists a big enough area of the type described above, and therefore a
higher number of coe� cients takespart in the evolut ion. One can seethis behaviour in
the example shown in � gure 4.2. For t his type of rulesof course, the local equili brium
state cannot be homogenious acrossthe latt ice.
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4.2. Non-propagat ing rules

Figure 4.3.: Mult i part icle entanglement for t he LQCA shown in � gure 4.2.

Figure 4.4.: Reduced density matr ix of a part ial subsystem consisting of cells 14-17 of
the automaton shown in � gure 4.2. Statesof the subsystem that have two
or more adjacent inactive cells cannot be found.
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4. Relaxat ion of a two speciesLQCA

4.3. Rules with  01 =  10 = 0,  00 6= 0,  11 6= 0

In this case,excitat ion propagat ion is no longer restricted to special areas. However, the
subspaceS of all global statesthat can bereachedduring theevolut ion of theautomaton
for a given init ial state is also a smaller part of the total Hilbert space,but not as easy
to describe as in the preceding case. Consider an init ial product state where all cells are
inactive, except for t he chain of cells betweenand including the posit ions j and l (l � j ):

j 0i = js0i � � � j sN i sk =
n 1 for j � k � l

0 otherwise
(4.11)

Becauseit is  01 =  10 = 0, one can only alter the state by applying Ûloc on a block of 3
cells whoseouter left and outer right cells lie both inside the chain of active cells or both
outside. By this, one creates states that are constituted of basisvectors with one cell
inverted, that liesinside or outside the chain but not at t he borders (at j � 1; j ; l ; l + 1)
except for chains of length 1. By repeat ing theseconsiderat ions for t he obtained basis
vectors, one can �nd all statesthat span the subspace for a given init ial state:
If the init ial state is a product state consisting of n chains of active cells, then theseare
given by all product states,where one or more of the n chains are extended or tr uncated
by mult iplesof two cells and/o r have a cell inverted as described above.
To ill ustrate this, � gure 4.5 shows an example of a LQCA and the basis vectors that
span the accessible subspace for t he given init ial state. The rule of the automaton is
given by

Û01 = Û10 = 12

Û00 = Û11 =
1

p
2

�
1 1

� 1 1

�
(4.12)

Figure 4.6 shows the dimension of the accessible subspace compared to the dimension
of the total Hilbert space depending on the size of the LQCA featuring such a local
update rule. As one can see,the dimension grows exponent ially with the size of the
automaton. One therefore should expect that t he automaton tends to relax into a local
stat ionary state if it is su� cient ly large. Figure 4.7 shows an example of a larger LQCA
that con� rms this expectat ion.
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Figure 4.7.: Two examplesof a LQCA with a rulegivenby (4.12) and non-periodic (a) or
periodic (b) boundary condit ions. Onecan seethat t heboundary condit ions
only a�ect the relaxat ion of some few cells at t he boundaries.

48





4. Relaxat ion of a two speciesLQCA

Figure 4.9.: Mult i part icle entanglement for t he LQCA shown in � gure 4.8. Here one
can also see,that t he automaton does not r each any stat ionary state but
rather shows some periodic behaviour.

Properti es of the accessible subspace

Consider a LQCA with periodic boundary condit ions, a left propagat ing rule and an
init ial product state where all cells are inactive except for t he cells at posit ions j and l
which shall be separated by at least 1 cell (jl � j j > 1):

j 0i = js0i � � � j sN i si = � i;j + � i;l jl � j j > 1 (4.16)

Becauseit is  11 =  10 = 0, one can easily see,that t he cells at posit ions j + 1 and l + 1
always stay in the inactive state. From that follows with  00 =  10 = 0, that t he cells at
posit ions j and l always stay in the active state. This means that one always stays in
the subspace S of all states,where the cells at posit ions (j ; j + 1) and (k; k + 1) are in
the state j1i j0i . In this case, the part Û(S) of the global unitary Û that acts in S can
be spli t up into two part s

Û(S)(1;:::;N ) = Û1(S)(j +1 ;:::;l )Û2(S)(l+1 ;:::;N ;1;:::;j ) (4.17)

Now the evolut ion of the periodic automaton can be described by the evolut ion of two
separate non-periodic automata of sizeN1 = l � j � 1 and N2 = N � N1 and with init ial
states where all cells are inactive except t he cell at posit ion 1. In analog, for init ial
product stateswith a higher number of excited cells, the automaton can be spli t up into
a higher number of non-periodic automata. One can easily see,that all statesthat can
be reached during the evolut ion of such a non-periodic automata of size Nm belong to
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the Nm -dimensional subspace spanned by the basis-vectors

jki = js1i : : : jsNm i k = 1; : : : ;Nm � 1 si =
n 1 for i � k

0 otherwise
(4.18)

Thus, the dynamicsof a LQCA with a left or right propagat ing rule take placein several
disjoint subspacesof maximum dimension d = N � 1. Due to this, one should expect
the relaxat ion into a local stat ionary state to be very weak.

4.5. left and right propagating rules

Al l rulesthat have
 00 =  11 = 0 (4.19)

and
 01 6= 0 and  10 6= 0 (4.20)

will be called left and right propagat ing rules. Figure 4.11 and 4.10 show examplesof
LQCA with a left and right propagat ing rule given by

Û00 = Û11 = 12

Û01 = Û10 =

 
1p
2

1p
2

� 1p
2

1p
2

!

(4.21)

for periodic and non-periodic boundary condit ions and two di�er ent init ial states. Fig-
ure 4.12 shows the corresponding mult i-part icle entanglement.

As one can seefrom thesetwo examples, the automaton tends to relax into a local
stat ionary state. One can also see,that t he relaxat ion depends on the init ial state and
on the boundary condit ions. Again, this can be explained, if one looks at t he underlying
subspace structure.

Properti es of the accessible subspace

Consider a LQCA of length N with non-periodic boundary condit ions, a left and right
propagat ing rule and a init ial state drawn from the subspacespanned by all basis states
given by

ja;bi = js(0)i � � � j s(N )i s(k) =
n 1 for a � k < b

0 otherwise
(4.22)

1 < a < b � N

By applying Ûloc at an arbitr ary block of 3 cells, one can only create states that are
constituted of the old state and a basis state where one cell is  ipped at t he posit ion a,
a � 1, b or b+ 1. Therefore one can easily con� rm, that all states that can be reached
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4. Relaxat ion of a two speciesLQCA

remain within this subspace. To generalize this, let Sn denote the subspacespanned by
all basis statesgiven by

ja1; b1; : : : ; an ; bn i = js(0)i � � � j s(N )i s(k) =
n 1 for k 2 [a1; b1 � 1] [ � � � [ [an ; bn � 1]

0 otherwise
(4.23)

1 < a1 < b1 < � � � < an < bn � N

Then the global unitary Û can be spli t up into

Û = Û(S1) + Û(S2) + � � � + Û(SN =2� 1) (4.24)

where each Û(Si ) acts only in the subspace Sn .
To calculate the dimension d(Sn ) of the subspaceSn one has to count all possible combi-
nat ions of a1; b1; : : : ; an ; bn . This is equivalent t o count ing all binary numbers of length
N � 1 with exactly 2n bits set to \1". Thus, the dimension of the subspace in the
non-periodic caseis given by

d(Sn ) =
�

N � 1
2n

�
(4.25)

For a periodic LQCA, the condit ion 1 < a < b � N for eq. (4.22) has to be changed to
be 1 � a < b � N and one has to allow for rotat ions of thesestatesalong the chain:

ja;b;r i = js(0)i � � � j s(N )i s(k) =
n 1 for a � k + r < b

0 otherwise
(4.26)

1 � a < b � N

Where k + r indicatesperiodicity ( k + r =̂
�
(k + r � 1) mod N

�
+ 1 ).

From this, one might guess,that t he subspace dimension in the caseof n = 1 would be

given by d(S1) = N
�

N
2

�
. But in fact this is not t he case,as for a parametrizat ion of

the form (4.26), the same basis vector may be described by mult iple di�er ent parameter
sets f a;b;rg.
By taking this into account, one �nd s the correct subspace dimension to be given by

d(S1) = 2
�

N
2

�

and in the general caseby

d(Sn ) = 2
�

N
2n

�
(4.27)
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a)

b)

Figure 4.12.: Mult i part icleentanglement for t heLQCA shown in � gure4.11(a) and 4.10
(b). Solid Line: Init ial state 1. Dashed line: Init ial state 2. The relaxat ion
in the periodic caseis much better than in the nonperiodic case. This can
be explained by the observat ion that in the periodic caseafter some steps,
all cells have the same occupat ion propabili t iesof � 11 � � 00 � 1

2 while in
the nonperiodic case not. In addit ion, the number of part icipat ing basis
vectors is higher as in the nonperiodic case.
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Figure 4.14.: Mult i part icle entanglement for t he LQCA shown in � gure 4.13.

4.6.1. M QCA equivalent rules

A subclassof the total mixing rulesare the MQCA equivalent r ules. Any local update
rule Uloc that has

Û00 = Û01=̂ V̂0 and Û10 = Û11=̂ V̂1 (4.31)

can be writt en as

Ûloc =
�

j0i h0j 
 V̂0 + j1i h1j 
 V̂1

�

 12 (4.32)

This corresponds to a MQCA with the total mixing local update rule given by j0i h0j 

V̂0 + j1i h1j 
 V̂1. The same appliesfor ruleswith Û00 = Û10=̂ Ŵ0, Û01 = Û11=̂ Ŵ1, which
can be writt en as

Ûloc = 12 

�

Ŵ0 
 j0i h0j + Ŵ1 
 j1i h1j
�

(4.33)

4.7. Summary and Comparison of Chapter 3 and 4

It has beenshown for quantum cellular automata of the margolus and the linear type
that nearly all l ocal update ruleslead to a relaxat ion into local stat ionary states.

The strength of this relaxat ion depends strongly on the dimension of the subspace
which is accessible to the global state vector of the automaton during the evolut ion.
Therefore, in some casesthe strength of the relaxat ion depends also on the init ial state
of the automaton.
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4. Relaxat ion of a two speciesLQCA

The quali ty of the relaxat ion in the caseof a MQCA has beenfound to be dependent
on some relat ive phasefactors of the local update rule. In the caseof a LQCA, such a
dependence could not yet be found.

Al l examples have shown that t he relaxat ion leads to an asymptot ic increase of the
mult i-part icle entanglement Q towards some maximum value which is never exceeded
during the evolut ion. This means that t he �n al state is a maximally mixed state with
respect to the accessible subspace.

58



5. Relaxation control with a LQCA

The model under considerat ion here will be a Linear QCA like in chapter 4 with a
�n ite number of cells N and non-periodic boundary condit ions. But t his t ime it will
be assumed that t he dynamics due to the coupling betweenthe spins are on the same
t imescale as the distance between the periodically interrupt ing contr ol pulsesof the
LQCA. The coupling shall be a F•orster type coupling and the total Hamil tonian of the
chain shall be of the following form:

Ĥ =
� EA

2

(N � a)=2X

k=1

�̂ (2k� 1)
z +

� EB

2

(N + a)=2X

k=1

�̂ (2k)
z

+ � AB

(N � a)=2X

k=1

(�̂ x 
 �̂ x + �̂ y 
 �̂ y)(2k� 1;2k) + � B A

(N + a)=2� 1X

k=1

(�̂ x 
 �̂ x + �̂ y 
 �̂ y)(2k;2k+1 )

(5.1)

a =
n 0 for N even

1 for N odd

where � EA ; � EB denote the two di�er ent spli tt ing energies and � AB ; � B A denote the
two di�er ent coupling constants to the left and right neighbors.
The total evolut ion of the LQCA is now given by the \ free" evolut ion of the chain,
interrupted by periodic contr ol pulsesof the LQCA. According to [6], one can expect
that t he free evolut ion will l ead to a relaxat ion of smaller local subsystems into some
local equili brium state,and thusby applying theaddit ional LQCA pulses,onecan expect
much more complex dynamics than in the caseof a stat ic spin chain.
However, considering the results shown so far, one would expect that in most cases,the
system will tend to reach some kind of local equili brium state, anyway.
If one wants to construct a quantum computer, an import ant question is, how one could
get rid of the unwanted free evolut ion result ing from the inevitable internal coupling
betweenthe individual qubits. It wasshown by M.Stollsteimer and G.Mahler in [15], [16]
how this can be done by applying speci� c pulsesequences acting either globally on all
spins or selectively on some spins, depending on the type of interaction that one has to
deal with. Especially for t he caseof only nearest neighbor coupling of the form

H (k;k+1 )
in t = Jx � (k)

x 
 � (k+1 )
x + Jy � (k)

y 
 � (k+1 )
y + Jz� (k)

z 
 � (k+1 )
z ; (5.2)

they intr oduced a method which usespulsesthat alternately act on all even numbered
and then on all odd numbered qubits.
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In this chapter will be given some numerical examples of how the free evolut ion can
be altered or supressedin the formalism of a Linear QCA. This allows for example to
supressthe free evolut ion for some init ial states of the automaton, while other states
will be not a�ect ed.
It seems that t hereexistsa � eld for investigat ionsabout t hee�ect of all thinkableupdate
ruleson the natural relaxat ion behaviour of a spin-1

2 chain which could not be covered
completely in this thesis. So in this chapter can just be given some intr iguing examples
for LQCA with di�er ent update ruleswithout t he intent ion of a complete classi� cat ion.

5.0.1. Example 1

An interesting type of rulesare rulesthat have

 00 =  01 =  10 =  11 = 0 (5.3)

and were termedtr ivial in thecaseof slow intr insic dynamics. But now thefreedynamics
of the spin chain already inducesa propagat ion of excitat ions along the chain and these
rules can have a great e�ect on how this happens, while leaving the total excitat ion
number of the state unchanged.
This example shows, how rulesof the form (5.3) can be usedto contr ol the strength and
speedof the relaxat ion of a spin-1

2 chain. The local update rule shall have the following
form:

� 01 = � 10 = � 11 = � 01 = � 10 = � 11 =
�
2

(5.4)

all others = 0:

This rule means a phaserotat ion of each spin, if its left and/o r its right neighbor is in
the excited state.
Figure5.1 showsthedynamicsof theoccupat ion propabili t iesof such a LQCA and � gure
5.2 shows the corresponding mult i part icle entanglement. One can seethat for t he same
rule, one can either accelerate or decelerate the relaxat ion depending on the distance
betweenthe QCA pulses,while in both cases,after some t ime the system seems to be
closer to a local equili brium state than in the caseof freedynamics.

5.0.2. Example 2

We eventually consider another example of a rule of the form (5.3). This t ime, the local
update rule shall have the following form:

� 01 = � 10 = � � 01 = � � 10 =
�
2

(5.5)

all others = 0

One can seefrom � gure 5.3 that t his leads to di�er ent speeds of relaxat ion depending
on the init ial state.
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Figure 5.2.: Mult i part icle entanglement for t he LQCA shown in � gure 5.1. From this,
one can seethat t he system with applied QCA pulsesseems to be closer to
a local equili brium state than in the caseof freedynamics.
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6. Simulating spin chain dynamics
through QCA dynamics

One of the possible applicat ions where a quantum computer can outperform a classical
computer is the factoring of large numbers or t he search in large databases. In 2001
an example for an experimental NMR implementat ion of a quantum computer factoring
the number 15 by using the Shor-Algorithm [14] was given in [19]. This task required
the useof 7 qubits. One can expect that building a quantum computer that can factor
numbers that cannot be factorizedby classical computat ion will require the contr ol over
thousands of qubits. However, in 1981R. Feynman sketched the possibili ty of using a
quantum computer to simulateanother quantum mechanical system[5]. Such a quantum
simulator consisting only of a few tens of qubits may be usedfor simulat ions of quantum
systems that would already be impossible to simulate using a classical computer. This
is, why it is oftenclaimed, that such a quantumsimulator will be implemented far before
any useful implementat ion of a quantumcomputer of the Shor-class.
In the following will be shown, how QCA of the Margolus type can be usedto simulate
the t ime-dependent behaviour of spin chains.

6.1. Simulation of spin chains by M QCA

In the following will be shown that any spin chain with only nearest neighbor couplings
can be simulated using a Margolus QCA. The Hamil tonian of such a spin chain shall be
of the following form:

Ĥ =
NX

k=1

Ĥ (k)
s +

N � 1X

k=1

Ĥ (k;k+1 )
c ; (6.1)

where Ĥ (k)
s corresponds to the spli tt ing energy of the spin at posit ion k and Ĥ (k;k+1 )

c

corresponds to the coupling energy of the spins located at k,k+ 1.
In order to calculate the t ime evolut ion of the chain using the Suzuki-Trott er method,
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6. Simulat ing spin chain dynamics through QCA dynamics

one can spli t up the total Hamil tonian into Ĥ = ĤA + ĤB with

ĤA =
N =2X

k=1

Ĥ (2k� 1)
s + Ĥ (2k)

s + Ĥ (2k� 1;2k)
c

ĤB =
N =2� 1X

k=1

Ĥ (2k;2k+1 )
c (6.2)

Now the t ime evolut ion can be calculated by

j (t)i = j (t = 0)i exp[� t
i
~

(ĤA + ĤB )] (6.3)

= j (t = 0)i lim
� t ! 0

�
exp[� � t

i
~

ĤA ] exp[� � t
i
~

ĤB ]
� t

� t (6.4)

= j (t = 0)i lim
� t ! 0

�
ÛA (� t)ÛB (� t)

� t
� t (6.5)

Because both ÛA (� t) = exp[� � t i
~ĤA ] and ÛB (� t) = exp[� � t i

~ĤB ] respectively are
only composedof operators acting on disjoint blocks of 2 spins, they can be writt en as

ÛA (� t) =
N =2Y

k=1

Û(� t)(2k� 1;2k)
loc;A (6.6)

ÛB (� t) =
N =2� 1Y

k=1

Û(� t)(2k;2k+1 )
loc;B (6.7)

where

Û(� t)(2k� 1;2k)
loc;A = exp[� � t

i
~

�
Ĥ (2k� 1)

s + Ĥ (2k)
s + Ĥ (2k� 1;2k)

c

�
] (6.8)

Û(� t)(2k;2k+1 )
loc;B = exp[� � t

i
~

�
Ĥ (2k;2k+1 )

c

�
] (6.9)

are the unitariesacting on blocks of two spins at posit ions 2k � 1; 2k and 2k; 2k + 1.
This corresponds to a MQCA as depicted in Fig. 2.4a with the local update rule

Ûloc;A = exp[� � t
i
~

�
Ĥs 
 1 + 1 
 Ĥs + Ĥc

�
] (6.10)

applied to all blocks start ing at odd posit ions and the local update rule

Ûloc;A = exp[� � t
i
~

Ĥc] (6.11)

applied to all blocks start ing at even posit ions.
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7.1. Summary

In this thesis the condit ions, under which the cells of a Quantum Cellular Automaton
relax into local stat ionary states,due to the dynamics causedby the applicat ion of dif-
ferent local update rules have been investigated for two di�er ent models of Quantum
Cellular Automata, namely for t he Margolus Quantum Celular Automaton (MQCA)
and the Linear Quantum Cellular Automaton (LQCA).

It has beenshown, that t he cells of the two investigated models of Quantum Cellular
Automata will relax into local stat ionary states for most of the possible local update
rulesif the sizeof the automaton is su� cient ly large. It turned out, that t he relaxat ion
strongly depends on the subspace that is accessible for t he global state vector of the
automaton during its evolut ion. This subspacedepends on the speci� c update rule that
has beenchosen, as well as (for most of the local update rules)on the init ial state of the
automaton. Therefore a classi� cat ion of the di�er ent local update rulesin terms of the
subspace structure that arisesout of thoseruleshas beengiven.

Furt hermore there has been shown by two examples, that t he natural relaxat ion of
a F•orster coupled spin-1

2 chain into equili brium can to some extend be contr olled by
applying LQCA update rules. In doing so, one can either slow down or accelerate the
relaxat ion independent ly of the init ial state or selectively slow down the relaxat ion for
speci� c init ial states,while other init ial stateswill relax more quickly.

In a short digression, there has also beenshown the connection betweena Margolus
QCA and the simulat ion of spin chains via the Suzuki-Trott er Decomposit ion.

7.2. Outl ook

A � rst step towards a classi� cat ion of local update rulesof two di�er ent QCA with re-
spect to their abili ty to producerelaxat ion into local stat ionary stateshas beenmade in
this thesis. However there remain many open questions, as for example some subspace
structures are still l acking an analyt ical descript ion. Another example would be the
question whether the classi� cat ion can be furt her extended with respect to other not
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yet discovered symmetries(one example would be the strong dependenceon the relat ive
phasesof some rules).
Another � eld where there is much space for investigat ions is the contr ol of relaxat ion
using LQCA rules. It seems that t here exists a � eld for investigat ions about t he e�ect of
all conceivable update ruleson the natural relaxat ion behaviour of a spin-1

2 chain, which
could not be covered completely in this thesis, as there was unfort unately not enough
t ime left to systemat ically investigate this topic.
One could also think about extending all theseinvestigat ions into 2 or 3 dimensions,
although the computat ional facili t iesfor numerical simulat ions of such models will prob-
ably very quickly reach their limits.
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A.1. Generators of SU(4)

Any unitary Û drawn from the special unitary group SU(4) can be writt en as

Û = ei Ĝ G =
15X

i =1

� i � i

where � i are 15 real valued parameters and � i denotesthe Gell-Mann matr icesgiven by

� 1 =

0

B
B
@

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1

C
C
A � 2 =

0

B
B
@

0 � i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

1

C
C
A � 3 =

0

B
B
@

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

1

C
C
A � 4 =

0

B
B
@

0 0 0 0
0 0 � i 0
0 i 0 0
0 0 0 0

1

C
C
A

� 5 =

0

B
B
@

0 0 0 0
0 0 0 1
0 0 1 0
0 0 0 0

1

C
C
A � 6 =

0

B
B
@

0 0 0 0
0 0 0 � i
0 0 i 0
0 0 0 0

1

C
C
A � 7 =

0

B
B
@

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

1

C
C
A � 8 =

0

B
B
@

0 0 � i 0
0 0 0 0
i 0 0 0
0 0 0 0

1

C
C
A

� 9 =

0

B
B
@

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

1

C
C
A � 10 =

0

B
B
@

0 0 0 0
0 0 0 � i
0 0 0 0
0 i 0 0

1

C
C
A � 11 =

0

B
B
@

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1

C
C
A � 12 =

0

B
B
@

0 0 0 � i
0 0 0 0
0 0 0 0
i 0 0 0

1

C
C
A

� 13 =

0

B
B
@

1 0 0 0
0 � 1 0 0
0 0 0 0
0 0 0 0

1

C
C
A � 14 =

0

B
B
@

0 0 0 0
0 1 0 0
0 0 � 1 0
0 0 0 0

1

C
C
A � 15 =

0

B
B
@

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 � 1

1

C
C
A

A.2. A note on the numerics

Al l numerical simulat ions in this work have been performed using the library \ libqn"
which providesfunctions for simulat ing quantum registersconsisting of two-level systems
by taking only the a�ect ed basis statesinto account. The library was writt en in C code
by the author during the making of this thesis and can be linked into Mathemat ica via
the MathLink interface. The t ime evolut ion of the spin-1

2 chains was calculated using
the Suzuki-Trott er Decomposit ion.
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