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In this work we present a new generic feature of PT -symmetric Bose-Einstein condensates by
studying the many-particle description of a two-mode condensate with balanced gain and loss. This
is achieved using a master equation in Lindblad form whose mean-field limit is a PT -symmetric
Gross-Pitaevskii equation. It is shown that the purity of the condensate periodically drops to small
values but then is nearly completely restored. This has a direct impact on the average contrast
in interference experiments which cannot be covered by the mean-field approximation, in which a
completely pure condensate is assumed.
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Condensates with large numbers of atoms are accu-
rately described in the mean-field approximation by the
Gross-Pitaevskii equation, however, if quantum correla-
tions are important the mean-field approach is no longer
appropriate. In particular, in the mean-field limit it is
assumed that the condensate is completely pure although
in a real condensate the interaction of the particles and
the coupling to the environment will in general reduce
the purity and coherence [1]. The coherence of the matter
wave field, however, is the requirement for the observation
of a well-defined interference pattern.
A rather unusual behavior is the growth of the coher-

ence in a system. Yet, a collapse and revival of the matter
wave field due to the interaction between the particles
has already been observed in the dynamical evolution of
the interference pattern by preparing a condensate in an
optical lattice and then ramping up the potential bar-
rier to inhibit tunneling [2]. However, these revivals are
damped by particle losses into the environment [3, 4]. On
the other hand, it was shown in a two-mode system that
taking dissipation and phase noise into account can, if
carefully prepared, yield a revival of the purity before it
eventually decays [5–7].

In this work we show that oscillations of the purity are a
characteristic feature of Bose-Einstein condensates subject
to balanced gain and loss of particles. We demonstrate
that the purity of this system does not simply decay.
Instead it drops periodically to small values and then is
nearly completely restored. This has a direct impact on
the average contrast measured in interference experiments.
To do so we study a Bose-Einstein condensate on two

lattice sites with an influx of particles at one site and an
outflux from the other site. This serves as a model for a
spatially extended double-well potential where particles
are removed or injected in the two wells. The particle gain
and loss is introduced via a master equation in Lindblad
form [8] where the coherent dynamics is governed by
the Bose-Hubbard Hamiltonian [9] and the rate of the
Lindblad superoperators are balanced in such a way that
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the in- and outflux, at least for small times, cancel each
other out if half of the particles are at each site [10].

The mean-field limit of this master equation yields the
Gross-Pitaevskii equation where balanced particle gain
and loss occurs as a PT -symmetric imaginary potential [7,
10, 11]. Non-Hermitian but PT -symmetric systems, i.e.
systems whose Hamiltonians commute with the combined
action of the parity reflection and time reversal operator,
are known to support stationary solutions [12] under
certain conditions [13] and PT -symmetric Bose-Einstein
condensates have been the subject of various studies [14–
17]. In these works stable stationary solutions, a rich
dynamics, and a variety of bifurcation scenarios were
found. Proposals for the experimental realization of a
PT -symmetric double well exist by embedding it in a
Hermitian four-well system [18, 19]. Since the exchange
of particles with the environment plays a crucial role in
these systems it cannot be expected that a mean-field
approach is appropriate, thus motivating the formulation
of a many-particle description.
The master equation describing a Bose-Einstein con-

densate on two lattice sites with balanced gain and loss
was introduced in [10] and reads

d

dt
ρ̂ = −i[Ĥ, ρ̂] + Llossρ̂+ Lgainρ̂, (1a)

Ĥ = −J(â†1â2 + â†2â1) +
U

2
(â†1â

†
1â1â1 + â†2â

†
2â2â2),

(1b)

Llossρ̂ = −γloss
2

(â†1â1ρ̂+ ρ̂â†1â1 − 2â1ρ̂â
†
1), (1c)

Lgainρ̂ = −γgain
2

(â2â
†
2ρ̂+ ρ̂â2â

†
2 − 2â†2ρ̂â2), (1d)

where â†j and âj are the bosonic creation and annihilation
operators, respectively. Master equations are routinely
used to describe phase noise and both feeding and de-
pleting of a Bose-Einstein condensate [1, 20]. In [10] it
was shown that the balanced gain and loss in the master
equation correctly reproduces characteristic properties of
its PT -symmetric mean-field limit such as the in-phase
pulsing between the lattice sites, and thus can describe
the underlying process of effective non-Hermitian PT -
symmetric potentials. Comparing the time evolution of
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expectation values such as the particle number showed
that there is an excellent agreement between the results
of the master equation with balanced gain and loss and
the PT -symmetric Gross-Pitaevskii equation. Here we
show that there is in fact a crucial difference by analyzing
the purity of the condensate and the average contrast
measured in interference experiments.
The Bose-Hubbard Hamiltonian [9] in Eq. (1b) de-

scribes the coherent dynamics of bosonic atoms in the
lowest-energy Bloch band of an optical lattice. The tun-
neling rate between the two lattice sites is given by the
parameter J , and the strength of the on-site interaction
by the parameter U . We introduce the macroscopic inter-
action strength

g = (N0 − 1)U, (2)

which is used in the mean-field limit and depends on the
initial amount of particles N0 in the system.

The underlying process of the particle loss localized at
site 1 could be a focused electron beam [21, 22] and the
particle gain at site 2 may be induced by feeding from
a second condensate [23] in a Raman superradiance-like
pumping process [24–26]. The strength of the particle
loss and gain is given by the parameters γloss and γgain,
respectively. The ratio

γgain
γloss

=
N0

N0 + 2
(3)

is chosen in such a way that for small times the gain and
loss cancel each other out if half of the particles are at
each lattice site [10]. In the following we use the notation
γ = γloss, while γgain is always chosen such that it fulfills
relation (3).
The mean-field approximation is obtained in the limit

N0 →∞. In this limit covariances are neglected and the
condensate is pure. For the two-mode system described
by Eqs. (1) this yields the PT -symmetric Gross-Pitaevskii
equation [10]

i
d

dt
c1 = −Jc2 + g|c1|2c1 − i

γ

2
c1, (4a)

i
d

dt
c2 = −Jc1 + g|c2|2c2 + i

γ

2
c2. (4b)

The Gross-Pitaevskii equation has two PT -symmetric
stationary solutions which we will refer to as the ground
and excited state of the system [10, 27]. The parity reflec-
tion operator P is defined by its action on a state vector
P(c1, c2)T = (c2, c1)

T and the time reversal operator T
is, as usual, a complex conjugation. Their components
read, up to a global phase,

c1 = ± 1√
2
exp

(
±i asin

( γ
2J

))
, c2 =

1√
2
. (5)

For γ = 0 the ground state (positive signs in Eq. (5))
is symmetric and the excited state (negative signs) anti-
symmetric. These solutions only exist for |γ| ≤ 2J . Two
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Figure 1. (Color online) (a) Time evolution of the purity P
for four different values of the gain-loss parameter γ. With
increasing values of γ the oscillations become stronger and their
frequencies become smaller. The comparison of the purity with
the total particle number 〈n〉 for (b) γ = 0.5 and (c) γ = 1.5
shows the similar behavior of the two oscillation frequencies.
In all calculations the pure initial state c1/2 = 0.5± 0.5i and
the parameters J = 1, g = 0.5 and N0 = 100 were used and it
was averaged over 500 trajectories.

additional decaying or growing PT -broken solutions exist
in the regime |γ| ≥

√
4J2 − g2. To avoid the influence

of an instability introduced by the PT -broken states all
calculations are done in the parameter regime of unbroken
PT symmetry.
In this work we solve the master equation (1) via the

quantum jump method [28, 29]. We average over a certain
amount of quantum trajectories till the results converge.
In all calculations the initial state is a pure product state,
which in the mean-field limit is defined by two complex
numbers c = (c1, c2)

T . The many-particle state with N0

particles that corresponds to this mean-field state reads

|ψ〉 =
N0∑
m=0

√(
N0

m

)
cN0−m
1 cm2 |N0 −m,m〉, (6)

where |n1, n2〉 describes a Fock state with nj particles
at lattice site j [10]. Furthermore in the following the
tunneling rate is set to J = 1.
The purity of the reduced single-particle density ma-

trix σred,jk = 〈â†j âk〉/
∑

i〈â
†
i âi〉 measures how close the

condensate is to a pure Bose-Einstein condensate [30] and
is defined as

P = 2 trσ2
red − 1 ∈ [0, 1]. (7)

Only in a pure condensate, i.e. P = 1, all atoms are in
the same single-particle state as assumed for the Gross-
Pitaevskii equation and the eigenvalues of the single-
particle density matrix are one and zero. For smaller
values of P there is an increasing number of particles
occupying the non-condensed mode. A system is called
fragmented if there is more than one large eigenvalue [31].
In Fig. 1(a) the time evolution of the purity is shown

for different values of the gain-loss parameter γ. The re-
markable feature here is that the purity shows oscillations.
The amplitude of these oscillations is heavily influenced
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by the strength of the gain-loss parameter γ. Tuning
the gain-loss parameters to higher values results in much
stronger oscillations. In the case γ = 1.5, which is still sig-
nificantly below the limit γ = 2 where the PT -symmetric
states vanish, the purity drops in its first oscillation from
P = 1 to values as small as 0.2 but then is nearly fully
restored to P & 0.9.

In addition to the oscillations there is an overall decay
of the purity. Such a decay of purity also exists without
gain and loss, γ = 0. In this case the purity will vanish but
then is also restored due to the elastic atomic interactions.
However, this revival takes place on much longer time
scales (for the system studied the first revival occurs
at t > 100). Also this revival process is damped by
particle losses [3, 4] which stands in contrast to the purity
oscillations discussed in this work where the coupling
to the environment is the driver behind the oscillations.
Only if there is also no interaction between the particles,
g = 0, the condensate will stay completely pure.
We notice that the oscillation frequency of the purity

becomes smaller for higher values of the gain-loss param-
eter γ. It is known that in PT -symmetric double-well
systems the oscillations of the total particle number show
a similar behavior. The total particle number oscillates as
a result of the particle number oscillations in each of the
two wells. For γ = 0 the phase between the oscillations
in the two wells is π and the total particle number is
conserved, however, for an increasing gain-loss parameter
these oscillations become more and more in phase leading
to the oscillations of the total particle number [32]. As
can be seen in Figs. 1(b) and 1(c) the frequencies of the
purity oscillations are in fact very similar to those of the
oscillations of the total particle number. The minima and
maxima of the two oscillations approximately coincide
and, thus, show a similar dependency on the gain-loss
parameter.

The most prominent feature of PT -symmetric systems
is the existence of stationary solutions despite the in- and
outcoupling of particles. Therefore, we are interested in
the many-particle dynamics of the stationary states of
the PT -symmetric Gross-Pitaevskii equation (4). It has
already been shown that the expectation values of the
particle numbers of the corresponding many-particle state
also behave approximately stationary when solving the
time evolution with the master equation [10]. Therefore,
we do not expect oscillations of the purity in this case.
This is confirmed by Fig. 2(a) where the purity of the
stationary ground and excited state is compared with
an oscillating state using the same gain-loss parameter
γ = 0.5. There are no oscillations of the purity for the
stationary states but instead the purity decays similar
to the overall decay of an oscillating state. As a result
the stationary states stay almost pure, thus justifying the
use of the PT -symmetric Gross-Pitaevskii equation to
calculate stationary solutions.
As a next step, we discuss the behavior of the pu-

rity for different values of the nonlinearity parameter g
with the starting conditions of an oscillating state. Fig-
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Figure 2. (Color online) (a) The purity of the station-
ary ground and excited state of the PT -symmetric Gross-
Pitaevskii equation does not show oscillations but decays
slowly, and in contrast to an oscillating state with c1/2 =
0.5 ± 0.5i does not reach small purities. The results were
obtained using g = 0.5. (b) Increasing the nonlinearity pa-
rameter g results in a faster overall decay of the purity but
changes only slightly the frequency of the oscillations. The
initial state is pure with c1/2 = 0.5± 0.5i. In all calculations
the parameters J = 1, γ = 0.5 and N0 = 100 were used and it
was averaged over 500 trajectories.

ure 2(b) shows the time evolution of the purity for differ-
ent values of g but with an identical gain-loss parameter
γ = 0.5. The increasing nonlinearity parameter g results
in a slightly higher oscillation frequency. This is not sur-
prising since we have already seen that the oscillations
of the purity are similar to those of the total particle
number and we know from PT -symmetric double-well
systems that a greater nonlinearity slightly increases the
pulsing frequency [16]. The main effect of the nonlinear
term is that it increases the strength of the overall decay
of the purity. This effect is not exclusive to systems with
balanced gain and loss but also occurs without coupling
to the environment in the limit γ = 0.
The purity oscillations have a direct impact on the

spatial coherence between the two lattice sites which
can be measured by the average contrast in interference
experiments. Such experiments can be realized by turning
off the double-well trap whereby the condensate expands
and interferes [33, 34]. The average contrast is given
by [5, 6]

ν =
2|〈â†1â2〉|

〈â†1â1〉+ 〈â†2â2〉
∈ [0, 1] (8)

and the squared contrast can be written as

ν2 = P − I, (9)

where we defined the imbalance of the particle number in
the two lattice sites

I =

(
〈â†1â1〉 − 〈â†2â2〉
〈â†1â1〉+ 〈â†2â2〉

)2

∈ [0, 1]. (10)

Note that the average contrast has to be understood as
an ensemble average, i.e. it is obtained by averaging over
various experiments and, thus, is reduced if the phase
fluctuates for different measurements. The contrast in



4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

(a)

0

0.5

1
(b)

0

0.5

1

0 2 4 6 8 10

(c)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

(d)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

(e)

ν

t

γ = 0.5
γ = 1.0 γ = 1.5

P I ν2

t

ν

t

stationary oscillating

ν

t

g = 0.5
g = 1.0 g = 1.5

Figure 3. (Color online) (a) The contrast ν for three different
values of γ shows oscillations. Every second peak is smaller
and narrower. For (b) γ = 0.5 the overall behavior of the
contrast is dominated by the imbalance I and for (c) γ = 1.5 by
the purity P . (d) The contrasts of the stationary ground and
excited state of the PT -symmetric Gross-Pitaevskii equation
lie nearly perfectly on top of each other. They do not oscillate
and stay high compared to an oscillating state. (e) The main
effect of the nonlinearity g is that it dampens the oscillations
of the contrast. For all calculations except the stationary
states the pure initial state c1/2 = 0.5 ± 0.5i was used. If
not stated otherwise in the legend the parameters are J = 1,
γ = 0.5, g = 0.5 and N0 = 100 and it was averaged over 500
trajectories.

a single measurement, however, is only reduced by an
imbalance of the particle number [33, 35].
The average contrast for different values of the gain-

loss parameter γ is shown in Fig. 3(a). Since the initial
wave function is pure, P = 1, and the particles are evenly
distributed, I = 0, the initial contrast is ν = 1. Just
as the purity oscillates, so does the contrast: It runs
through small values but then is nearly fully restored.
Every second peak is smaller and less broad, which can
be seen very clearly for γ = 1. For increasing values of
γ these peaks become smaller and can even vanish. This
happens for γ = 1.5, where the first small peak is still
visible but the second small peak has vanished.

This behavior can be understood by having a closer look
at the components of Eq. (9). For the small value γ = 0.5
the purity, imbalance and squared contrast is shown in
Fig. 3(b). The purity is the upper limit of the squared
contrast. The contrast is maximum where the imbalance
reaches a minimum and vice versa. Since the oscillations
of the imbalance are stronger than the oscillations of the
purity at small values of γ the overall behavior of the
contrast is dominated by the imbalance.

For the larger value γ = 1.5 the situation changes dras-
tically as can be seen in Fig. 3(c). The purity oscillations

are now strong enough to dominate the behavior of the
contrast. Since the oscillations of the purity reach small
enough values every second peak of the contrast is either
very small (t ≈ 2.25) or even suppressed (t ≈ 7). The
remaining peaks that coincide with the maxima of the
purity become broader.
Note that in both cases the purity is at an extremum

whenever the particles are equally distributed, i.e. I = 0.
This is a result of the already discussed observation that
the extrema of the purity coincide with the extrema of
the total particle number. Since for I = 0 the contrast
is not reduced by the imbalance, this allows a precise
measurement of the purity’s extrema.
As discussed previously the purity of the stationary

ground and excited state of the PT -symmetric Gross-
Pitaevskii equation do not oscillate but only decay slowly.
Also for PT -symmetric states c1 = c∗2 holds, i.e. the
particles are equally distributed, I = 0. Thus we expect
that the contrast stays high and does not oscillate which
is confirmed by Fig. 3(d). For comparison an oscillating
state is shown.

Looking at the contrast for different values of the non-
linearity in Fig. 3(e) shows that the overall behavior of
the contrast does barely change. The main effect of the in-
teraction is that the amplitude of the oscillations become
smaller and the oscillation frequency is slightly increased.

To conclude we have shown that the purity undergoes
oscillations, i.e. starting with an initially pure state the
purity drops to small values but then is almost completely
restored. This behavior is periodically repeated and the
oscillations of the purity were found to be in phase with
the oscillations of the total particle number. Tuning the
strength of the gain and loss or the on-site interaction
of the atoms strongly influences both the amplitude and
the frequency of the oscillations. Using the stationary
states of the PT -symmetric Gross-Pitaevskii equation as
initial states of the master equation does not yield such
oscillations but the condensate’s purity decays only slowly.
The oscillations of the purity have a direct impact on the
average contrast that can be observed in interference
experiments. Since the purity is minimum or maximum
at precisely the times where the particles are equally
distributed the purity’s extrema can be directly measured
via the contrast.

Since the system studied in this work can be understood
to be an elementary building block of a larger transport
chain [18, 19] the numerical study and the experimental
accessibility [21–26] of the information provide new insight
into transport processes of quantum systems ranging from
Bose-Einstein condensates to solid state systems, where
the existence of macroscopic superposition states can be
decisive [36]. Furthermore these results are important
for the feasibility of continuous atom lasers where the
lasing mode is required to be pure [23] if the atom laser
is implemented with in- and outcoupling occurring at
different sites. For future work it will be instructive to
study the purity oscillations in an analytical manner, e.g.
by using the Bogoliubov backreaction method [37] to gain
a deeper understanding of the underlying process.
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