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Abstract

Recent observations of hundreds of hydrogen-rich magnetic white dwarf stars
with magnetic fields up to 105 T (103 MG) have called for more comprehen-
sive and accurate data bases for wavelengths and oscillator strengths of the H
atom in strong magnetic fields for all states evolving from the field-free levels
with principal quantum numbers n ≤ 10. We present a code to calculate
the energy eigenvalues and wave functions of such states which is capable
of covering the entire regime of field strengths B = 0T to B ∼ 109T. We
achieve this high flexibility by using a two-dimensional finite element expan-
sion of the wave functions in terms of B-splines in the directions parallel and
perpendicular to the magnetic field, instead of using asymptotically valid ba-
sis expansions in terms of spherical harmonics or Landau orbitals. We have
payed special attention to the automation of the program such that the data
points for the magnetic field strengths at which the energy of a given state are
calculated can be selected automatically. Furthermore, an elaborate method
for varying the basis parameters is applied to ensure that the results reach a
pre-selected precision, which also can be adjusted freely. Energies and wave
functions are stored in a convenient format for further analysis, e.g. for the
calculation of transition energies and oscillator strengths. The code has been
tested to work for 300 states with an accuracy of better than 10−6 Rydberg
across several symmetry subspaces over the entire regime of magnetic field
strengths.
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PROGRAM SUMMARY

Manuscript Title: Accurate 2d finite element calculations for hydrogen in mag-
netic fields of arbitrary strength
Authors: C. Schimeczek, G. Wunner
Program Title: H2db
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: Fortran95
Computer: 1 HP Compaq dc5750
Operating system: Linux
RAM: at least 2 GByte
Number of processors used: 1
Keywords: magnetic field, atomic data, B-spline, finite element, hydrogen
Classification: 2.1 Atomic Physics - Structure and Properties
External routines/libraries: GFortran, LAPACK, BSPVD
Nature of problem: The hydrogen problem in the presence of a magnetic field of
arbitrary strength shall be solved for all states up to a principal quantum number
of n = 10. We obtain the full energy vs. field strength function within a certain
precision.
Solution method: We expand the wave functions in a 2d B-spline basis, vary the
corresponding energy functional for the B-spline coefficients and solve the result-
ing generalised eigenvalue problem. The B-spline basis parameters are adapted
iteratively to ensure the overall precision of our results.
Restrictions: Non-relativistic Hamiltonian, non-moving atom
Unusual features: Automated analysis of the states at magnetic field strengths
from B = 0T to B = 109 T.
Running time: seconds to minutes per single result; hours to days for a full analysis
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1. Introduction

In the latest white dwarf catalogue based on the Sloan Digital Sky Survey
Data Release 7 a total of 521 hydrogen-rich white dwarf stars have been
found with magnetic fields in the range from around 1 to 733 MG (100
to 7.33 ×104T) (cf. [1, 2, 3] and references therein). The modelling of
the spectra with the help of radiative transfer calculations (cf. [1, 4]) has
revealed an urgent need for more comprehensive databases for energy values
and oscillator strengths of the hydrogen atom in magnetic fields from 100 to
106T, for all states evolving from the field-free levels with principal quantum
numbers n ≤ 10 [5].

The purpose of this paper is to provide a powerful tool that allows anyone
to create such databases for any value of the magnetic field strength with
the accuracy required. The method we use is a two-dimensional B-spline
expansion in both the directions perpendicular to and along the magnetic
field on an adaptive finite element grid. A spectroscopic resolution of about
1 Å at wavelengths of 104 Å sets the upper limit on the precision of the
numerical data for the energy values to 10−5 Rydberg. It must be noted
that sophisticated mathematical methods have been developed which allow
calculating energy values of the hydrogen atom in a strong magnetic field to
much higher accuracy, e.g. summation of the weak field series expansion by
Le Guillou and Zinn-Justin [6] or the power series expansion in combination
with an algebraic algorithm by Kravchenko et al. [7, 8]. However, these
methods are mathematically less accessible to the general reader, and much
harder to implement numerically.

Our code allows calculating energies and wave functions of ground to
highly excited hydrogen states at all magnetic field strengths from 0T to
about 109T. Relativistic corrections to the hydrogen energies are of the order
of 10−5Ry for the ground and the first excited states [9], and even less for
higher excited states at magnetic field strengths below 107T. We therefore
stick to a non-relativistic description.

In the Paschen-Back regime the well-defined quantum numbers of an elec-
tron under the combined action of a Coulomb potential and a magnetic field
B pointing in the z-direction are the magnetic quantum number m, the spin
projection ms and the parity in z-direction πz, which together define a sym-
metry subspace. Adding the quantum number ν, which counts the degree of
excitation of the state, we will use the notation (m, πz, ν) to label states at
any magnetic field strength.

3



2. 2d Finite element expansion of the wave function

The non-relativistic Hamiltonian of a non-moving hydrogen atom with a
nucleus of infinite mass in the presence of a magnetic field reads, in cylindrical
coordinates and dimensionless atomic Rydberg units [10],

Ĥ =−

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

)

− 2iβ
∂

∂φ
+ β2ρ2 + 4βms −

2

|r|
, (1)

with the magnetic field strength B measured in units of the reference mag-
netic field strength B0 ≈ 4.70103 · 105T, β = B/B0. B0 is defined as that
magnetic field strength where the Larmor radius aL =

√

2~/(eB) becomes
equal to the Bohr radius a0 = ~/(αmec) (α is the fine structure constant),
and thus for the ground state the effects of the Coulomb and the magnetic
field become of the same order. Note that for excited states the magnetic
field at which the switch-over from Coulomb to magnetic field dominance
occurs scales as B0/n

3.
In the following we can restrict ourselves to the calculation of states with

m ≤ 0 and ms = −1/2. To obtain the energy values for states with positive
m or spin-up one simply has to add 4β|m|, or 4β, respectively. The correct
energy results for finite proton mass can also be obtained from the results
for infinite proton mass via the scaling laws derived by Pavlov-Verevkin and
Zhilinskii [11] (see also [10, 12, 13]),

E(mp, β) = λE(mp →∞, β/λ2)− 4β(m+ms)
me

mp
. (2)

Here λ = 1/(1 +me/mp) depends on the ratio of the electron to the proton
mass and represents the well known reduced mass effect, which remains small
over the complete range of magnetic field strengths. The second term features
the proton’s cyclotron energy and can produce significant energy shifts at
higher magnetic field strengths [14].

Regardless of the magnetic field strength the Hamiltonian (1) retains its
cylindrical symmetry. We therefore choose an ansatz for the wave function
similar to the one by Wang et al. [15]

Ψ(r) = eimφ
∑

µν

αµνBµ(ρ)Bν(z), (3)

expanding the both the ρ and the z dependences in terms of B-splines [16]
Bµ, Bν with expansion coefficients αµν on a finite element grid. This ansatz
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may look uninspired since it neither exploits the spherical symmetry of the
wave function at weak magnetic fields β ≪ 1 as did Zhao et al. [17, 18], who
expanded the wave function in terms of spherical harmonics

Ψ(r) =
∑

lµ

αµ

1

r
Bµ(r)Ylm(ϑ, φ), (4)

nor does it profit from the Landau-orbital structure of the wave function
perpendicular to the magnetic field by a cylindrical expansion in terms of
Landau states in the regime of strong magnetic fields β ≫ 1 [10, 19],

Ψ(r) =
∑

nµ

αµBµ(z)Φ
Lan
nm (ρ, φ). (5)

Indeed, at weak or very strong magnetic field strengths the respective ex-
pansions are more efficient than the method we use, but in the intermediate
regime neither of them converges quickly, making the more general approach
necessary.

Figure 1 shows a comparison of the expansion orders needed to reach
an energy precision of 10−7Ry during calculations for the state (0,+,20) at
different magnetic field strengths using the three different wave function ex-
pansions (3), (4) and (5). From β = 0.003 to β = 0.5 neither the spherical
nor the Landau expansion converges faster than the 2d finite element ex-
pansion which shows an almost uniform convergence behaviour over the full
range of β. This region – where the 2d finite element expansion is superior
– even widens for higher excitation levels.

With the given Hamiltonian (1) we solve the corresponding Schrödinger
equation by setting up the Hamiltonian and overlap matrices

Hµνχξ =

∞
∫

0

∞
∫

0

Bµ(ρ)Bν(z)ĤBχ(ρ)Bξ(z)ρ dρ dz, (6)

and

Sµνχξ =

∞
∫

0

∞
∫

0

Bµ(ρ)Bν(z)Bχ(ρ)Bξ(z)ρ dρ dz. (7)
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Figure 1: Expansion orders of programs utilising the three different expansions (4) ’spher-
ical’, (5) ’Landau’ and (3) ’2d B-splines’ vs. magnetic field strength for the state (m = 0,
πz = +, ν = 20). The required precision was set to 10−7 Ry. The expansion orders are
given by the maximum number of angular momentum ℓmax in (4) for the spherical expan-
sion, by the maximum Landau quantum number nmax in (5) for the cylindrical expansion,
and by the maximum number µmax of B-splines in the 2d finite element expansion (3).
While in the regions of a very low or very strong magnetic field either the spherical or the
Landau expansion converges faster, the 2d B-spline expansion is superior in a region of
intermediate field strengths. Lines serve as a guide to the eye.

6



Since the states have definite z-parity we can restrict the integration to z ≥ 0.
We then search for the eigenstates and energy eigenvalues ε of the generalised
eigenvalue problem

∑

µν
χξ

αµνHµνχξ = ε
∑

µν
χξ

αµνSµνχξ. (8)

As we deal with a 2-dimensional problem, the matrix sizes can grow substan-
tially, up to 5000× 5000 entries – most of them nonzero. An efficient tool to
solve such big problems is therefore imperative - we use the LAPACK [20]
routine ’DSYGVX’. The library LAPACK offers many different routines to
solve symmetric definite generalised eigenvalue problems, but during several
test calculations this routine was found to be the most efficient in our case.

2.1. The finite element basis

The finite element basis for the B-spline expansion is characterised by its
node sequence {xi} and the B-spline order k. It is an important task of this
program to find a proper node sequence and to minimise the energy error
arising from the expansion. For the construction of a node sequence we need
to know the domains of definition [0, xmax] in each spatial direction and the
respective number of finite elements N . We then distribute the nodes from 0
to xmax, with a linearly increasing spacing between the nodes (cf. [21]). We
found this to be much more efficient than e.g. a uniform node distribution.
Both parameters xmax and N are chosen separately for both directions ρ and
z.

The cutoff length xmax, which corresponds to the outermost sampling
point of the wave function, has a strong influence on the precision of the
energy result. If this parameter is chosen too small, a significant part of the
wave function’s tail is neglected. Thus, the wave function will be overesti-
mated at the sampled points due to renormalisation, resulting in an overes-
timation of the binding energy, too. On the other hand, choosing xmax too
large increases the number of finite elements needed to accurately sample the
wave function, which results in an increase of the computation time. Our
goal is to find an optimal cutoff length xmax, which reduces the calculation
effort to a minimum, but maintains the demanded precision.

As an example, figure 2 shows a visualisation of the quite complex spatial
probability distribution of the state (−2,+,10) at an intermediate magnetic
field strength of β = 5 × 10−3 along with slices parallel to the ρ and z
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Figure 2: Contour plot of the squared spatial probability distribution of the state (m = −2,
πz = +, ν = 10) at a magnetic field strength of β = 5× 10−3 (a), as well as slices parallel
to the ρ- and z-axis at ρ = 30 (b) and z = 30 (c), rescaled relative to the maximum of the
squared total wave function.
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axes. Searching for a good estimate of xmax, we analyse several of such wave
function slices, determine the position where their absolute value has finally
dropped to 10−6 of the total wave function’s maximum absolute value and
assume this to be the slices’ optimal width. This cutoff criterion was found to
be appropriate for all investigated states during intensive calculations. If the
absolute value of the slice wave function has not decayed sufficiently far, an
improved basis width is obtained from an extrapolation of the wave function
assuming an exponential decay in its outer regions.

After analysing all slices, we set xmax to approach the maximum of all the
slices’ new optimal lengths of that direction. We then iteratively optimise
xmax, since a change of the B-spline basis may also induce changes in the
wave function. To dampen an oscillatory behaviour of xmax during these
iterations, we allow changes of the basis width only up to 20%. The iterations
are stopped when xmax exceeds the suggested basis width by less than 20%,
but not if xmax is smaller.

Now that we have found a suitable domain of definition, we have to opti-
mise the number of finite elements N . Appropriate initial values can be ob-
tained using previously calculated results at similar magnetic field strengths.
If such results are not available, the initial values have to be guessed. We
then increase N in steps of 5 and monitor the convergence of the resulting
energies. If energies of two consecutive steps differ less than a convergence
threshold ǫconv, we stop increasing N and use the last value obtained.

The energy convergence behaviour for N → ∞ strongly depends on the
magnetic field strength, the state in question, and the basis node sequence.
The exact remaining energy error caused by the basis at a given N and xmax

is not known, but can be determined empirically. Searching for a reasonable
error estimate, we compared hundreds of results at various magnetic field
strengths and for several states from our calculations to those from Ruder et
al. [10] and Kravchenko et al. [7] (see section 3), as well as to our own results
obtained with other programs using a spherical (4) or Landau (5) expansion,
where applicable. The remaining error was in all cases much smaller than ten
times the convergence threshold ǫconv. Therefore, ǫconv can safely be chosen
to one tenth of the demanded result precision ǫprec.

Accounting for the complex structure of the wave functions, we vary the
number of finite elements separately, but not independently, for both direc-
tions. If Nρ is changed, the energy has to be checked again for convergence
of Nz – and vice versa, until the finite element bases converge simultaneously
for both directions.
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Figure 3: Comparison of the energies of the states (m = 0, πz = +, ν = 3) and (m = 0,
πz = +, ν = 25) as function the magnetic field strength. The energy of the ν = 3 state
has been rescaled by a factor of 0.1 to make the comparison possible in one plot. The
energy of this state (dashed) goes through one minimum and one maximum, while the
highly excited state shows pronounced features arising from avoided crossings with other
states in the same symmetry subspace.

2.2. Automated Magnetic field strength Variation

2.2.1. Task

As is well known the energy values of excited states of the hydrogen
atom can undergo numerous avoided crossings as the magnetic field strength
is varied (cf. the figures in Appendix A 1.2 of [10] and figure 8 in [22]),
producing sharp ”edges” when the energies are plotted as function of the
magnetic field. This is demonstrated in figure 3 for the highly excited state
(m = 0, πz = +, ν = 25). Along with these crossings go changes of the
electronic structure of the wave function. If fixed equidistant or exponential
distributions of the data points of the magnetic field are chosen, such ”edges”
in the energy function may be missed or poorly described.

We have therefore created and applied an Automated Magnetic field
strength Variation method (AMV) which adapts the step width dβ when
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Figure 4: Energy of the state (m = −1, πz = −, ν = 30) as a function of the magnetic field
for field strengths typical of magnetic white dwarfs for different data point distributions.
1000 data points are distributed equidistantly in steps of 1MG (dashed), 267 exponentially
(dotted), and 793 according to our automated magnetic field strength method (AMV)
(solid). Lines connecting the energy values at the data points are the results of a linear
interpolation between them. The inset provides a detailed view on the pronounced edge
of the energy function at 13MG.

following the energy of a given state as a function of the field strength. A
minimal number of data points to describe the energy versus field strength
function is determined such that a linear interpolation between them de-
viates from the true result only within an acceptable interpolation error
margin ǫint – which should be larger than the working precision ǫprec. We
chose ǫint > 10 · ǫprec, resulting in the following final hierarchy of precision
parameters: ǫint > 10 · ǫprec > 100 · ǫconv.

In figure 4 we compare the results of calculations for the energy of the
rather complex state (−1,−,30) obtained with different data point distribu-
tions, namely a linear and an exponential data point distribution, with those
of our AMV method.

In figure 4 we compare the results of calculations for the energy of the
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rather complex state (−1,−,30) obtained with different data point distribu-
tions, namely a linear and an exponential data point distribution, with those
of our AMV method. The linear data point distribution is not precise enough
in the range of 1MG to about 15MG – while beyond 300MG the sample den-
sity is too high, wasting 700 data points in a rather featureless region of the
function. The exponential data point distribution yields quite good results,
but our adaptive AMV method reproduces the true energy function in better
detail, as can be seen from the inset. The AMV concentrates data points in
regions rich of features, e.g. induced by avoided crossings with other states,
and places them sparsely in regions where the energy function behaves very
regularly.

2.2.2. Procedure

Figure 5 shows a flow chart of the automated magnetic field variation
method. We begin at β = 0. Starting from the analytical value 1/n2Ry of
the energy function E(β) at β = 0 and its Zeeman effect gradient dE/dβ =
2m + 4ms at β ≈ 0 we try to extrapolate to the next energy value EEx

at β ′ = β + dβ linearly. We then perform a full calculation for E(β ′) and
compare the result with the extrapolated value EEx. If deviations are smaller
than ǫint we accept this data point, and are now able to interpolate any
energy value between β and β ′. Subsequently, we update the field strength
β ← β ′, the last accepted energy data point E(β)← E(β ′) as well as the true
gradient, and try to extrapolate again. Each time the interpolation succeeds
and falls within the desired precision bound compared to the result of a full
calculation at this field strength, we double the field strength step dβ for
subsequent calculations. Each time the extrapolation fails, the current dβ
is halved and the data point is not accepted, but stored for later use. If
the field strength is addressed again the result can be loaded from storage
directly, which saves a considerable amount of computation time.

If one wishes to start at β > 0, one has to provide the program with a
starting field strength and the valid corresponding energy and gradient and
optionally a reasonable field strength step width.

3. Results

We compare our energy results for the lowest two states of the symmetry
subspaces (0,+) in table 1 and (0,−) in table 2 with the highly precise results
of Kravchenko et al. [7] as well as with those of Wang et al. [15], who also
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truefalse
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dβ = 2dβ

print β, E(β)

Figure 5: Scheme of the automated magnetic field variation procedure (for details see
text).
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(0,+,1) (0,+,2)

β this work Ref.[7] Ref.[15] this work Ref.[7] Ref.[15]

1× 10−4 1.0002000 1.000199980000 1.0001999800 0.2501997 0.250199720000 0.25019971
2× 10−4 1.0003999 1.000399920000 − 0.2503989 0.250398880008 −

5× 10−4 1.0009995 1.000999500000 − 0.2509930 0.250993000318 0.25099300
1× 10−3 1.0019980 1.001998000008 1.1001998000 0.2519720 0.251972005096 0.25197200
2× 10−3 1.0039920 1.003992000142 − 0.2538881 0.253888081394 −

5× 10−3 1.0099500 1.009950005518 − 0.2593031 0.259303142716 0.25930312
1× 10−2 1.0198001 1.019800088178 1.0198000878 0.2672484 0.267248355070 0.26724835
2× 10−2 1.0392014 1.039201403538 − 0.2794797 0.279479649158 0.27947964
5× 10−2 1.0950530 1.095052960802 − 0.2961783 0.296178311580 0.29617830
1× 10−1 1.1807631 1.180763130070 1.1807631235 0.2979734 0.297973356396 0.29797334
2× 10−1 1.3292108 1.329210759736 − 0.2983327 0.298332695696 0.29833268
5× 10−1 1.6623378 1.662337793466 1.6623377850 0.3209380 0.320937965268 0.32093795
1× 100 2.0444278 2.044427815330 2.0444278053 0.3478894 0.347889411946 0.34788939
2× 100 2.5615960 2.561596032104 2.5615960169 0.3776929 0.377692927400 0.37769290
5× 100 3.4955943 3.495594327428 3.4955942951 0.4179037 0.417903658090 0.41790363
1× 101 4.4307970 4.430797030866 4.4307969687 0.4476842 0.4476842536 0.44768422
2× 101 5.6020596 5.602059649556 5.6020594559 0.4763985 0.4763985456 0.47639850
5× 101 7.5796084 7.579608472610 7.5796079443 0.5123631 0.5123631406 0.51236192
1× 102 9.4542902 9.454290221374 9.4542886885 0.5379364 0.5379364 0.53793620
2× 102 11.7033023 11.703302325664 11.70329920 0.5620594 0.5620594 0.56205587
5× 102 15.3248465 15.324846495510 15.32483814 0.5917149 0.591714 0.59171424
1× 103 18.6095301 18.609530165540 18.60951488 0.6124825 − 0.61248116
2× 103 22.4082904 22.408290413206 − 0.6318565 − −

5× 103 28.2819371 − 28.2816839 0.6554214 − −

Table 1: Binding energies in Rydberg atomic of the states 1s0 and 2s0 (m = 0,πz = +, ν =
1, 2) in dependence on the magnetic field strength given in β.

used a B-spline expansion. Additionally, we compare our data for the tightly
bound states (−1,+,1) and (−2,+,1) in table 3 with those of Zhao et al. [17].
In all cases, we see deviations only in the 7th digit, exceeding our targeted
accuracy of 10−5 Ry.

Results given by Ruder et al. [10] are not shown here, because they are
in perfect agreement with our results. We have extended the energy tables
presented in that reference to principal numbers n ≤ 10 for the magnetic
quantum numbers m = 0,−1, · · · ,−4. This amounted to analysing over
300 low lying states. As an example, results for the lowest 30 states of the
symmetry subspace (m = 0, πz = +) are presented in figure 6, while the full
set of data will be presented elsewhere [23].

4. Program description

The magnetic field strengths the program will perform calculations for can
either be specified in a list, or as a given range, with equidistant magnetic
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(0,−,1) (0,−,2)

β this work Ref.[7] Ref.[15] this work Ref.[7] Ref.[15]

1× 10−4 0.2501999 0.250199880000 0.25019988 0.1113104 0.1113103912 0.11131039
2× 10−4 0.2503995 0.250399520002 − 0.1115082 0.1115082312 −

5× 10−4 0.2509970 0.250997000084 0.25099700 0.1120931 0.1120931182 0.11209312
1× 10−3 0.2519880 0.251988001344 0.25198800 0.1130392 0.1130392236 0.11306976
2× 10−3 0.2539520 0.253952021470 − 0.1148249 0.1148248914 −

5× 10−3 0.2597008 0.259700831666 0.25970083 0.1193757 0.1193757400 0.11937573
1× 10−2 0.2688129 0.268812931962 0.26881293 0.1247571 0.1247571238 0.12475712
2× 10−2 0.2853874 0.285387419480 0.28538741 0.1308128 0.1308127600 0.13081275
5× 10−2 0.3248201 0.324820156798 0.32482015 0.1397834 0.1397833808 0.13978337
1× 10−1 0.3703681 0.370368082136 0.37036807 0.1498509 0.1498509108 0.14985090
2× 10−1 0.4285310 0.428531003988 0.42853100 0.1624457 0.1624457130 0.16244568
5× 10−1 0.5200132 0.520013231888 0.52001323 0.1804490 0.1804490226 0.18044898
1× 100 0.5954219 0.595421944770 0.59542194 0.1937092 0.1937092020 0.19370916
2× 100 0.6713915 0.671391457342 0.67139145 0.2059013 0.2059013320 0.20590129
5× 100 0.7652997 0.765299696612 0.76529969 0.2196912 0.2196912068 0.21969114
1× 101 0.8267555 0.82675546 0.82675546 0.2281022 0.22810222 −

2× 101 0.8774676 0.87746760 0.87746760 0.2347463 0.23474628 −

5× 101 0.9272355 0.92723552 0.92723438 0.2410508 0.24105082 −

1× 102 0.9530640 0.9530640 0.95306399 0.2442537 − −

2× 102 0.9707261 0.9707260 0.97072608 0.2464227 − −

5× 102 0.9849900 0.9849900 0.98498997 0.2481656 − −

1× 103 0.9911896 − 0.99118929 0.2489221 −

Table 2: Binding energies in Rydberg atomic units of the states 2p0 and 3p0 (m = 0,πz =
−, ν = 1, 2) in dependence of the magnetic field strength given in β.
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(−1,+,1) (−2,+,1)

β this work Ref.[7] Ref.[17] this work Ref.[7]

1× 10−4 0.2503998 0.250399760000 0.250399760000 0.1117100 0.111710031126
2× 10−4 0.2507990 0.250799040006 − 0.1123068 0.112306791348
5× 10−4 0.2519940 0.251994000232 0.251994000232 0.1140841 0.114084120350
1× 10−3 0.2539760 0.253976003710 0.253976003710 0.1170033 0.117003258404
2× 10−3 0.2579041 0.257904059260 − 0.1226814 0.122681435522
5× 10−3 0.2694023 0.269402288354 0.269402288354 0.1384944 0.138494366806
1× 10−2 0.2876352 0.287635220694 0.287635220694 0.1613717 0.161371748792
2× 10−2 0.3208951 0.320895070818 − 0.1982491 0.198249060540
5× 10−2 0.4016913 0.401691344746 0.401691344746 0.2756790 0.275679030924
1× 10−1 0.5010782 0.501078203430 0.501078203430 0.3626412 0.362641213032
2× 10−1 0.6427096 0.642709562360 − 0.4819653 0.481965274112
5× 10−1 0.9131941 0.913194116848 0.913194116848 0.7060960 0.706096050298
1× 100 1.1992255 1.199225547204 1.199225547204 0.9423439 0.9423438614
2× 100 1.5756505 1.575650544060 − 1.2540185 1.2540184504
5× 100 2.2508447 2.250844683680 2.250844683680 1.8164295 1.8164295510
1× 101 2.9310171 2.931017091090 2.931017091090 2.3872664 2.3872663600
2× 101 3.7921651 3.792165064852 − 3.1153981 3.1153981400
5× 101 5.2695213 5.269521330598 5.269521330598 4.3763345 4.3763344800
1× 102 6.6942905 6.69429046 − 5.6040001 5.60400006
2× 102 8.4302566 8.43025656 − 7.1124256 7.11242556
5× 102 11.2768422 11.27684216 − 9.6102214 9.61022134

Table 3: Binding energies in Rydberg atomic units for the tightly bound states 2p−1 and
3d−2 (m = −1,−2,πz = +, ν = 1) in dependence of the magnetic field strength given in
β.
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Figure 6: Energies of the lowest 30 states of the symmetry subspace (m = 0, πz = +) over
the magnetic field strength. Data points distributed via AMV. Avoided crossings between
the higher excited states are clearly visible.
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field steps, or using the above described AMV, which is active by default.

4.1. Program usage

Usage of the H2db program is simple. The installation package contains
an example file “Example.ini”, which only contains a Fortran95 parameter
list

&para m=2,zparity=1,nu=2,srprec=1.d-6,betaend=1.d-3/

which specifies the absolute value of the (negative) magnetic quantum num-
ber, the z-parity and the excitation number of the state in the symmetry
subspace, starting with 1 being the corresponding ground state. Optional
arguments can be specified, e.g. the absolute precision of each result in
Rydberg energies or the magnetic field strength to calculate. The default
precision value is ǫprec = 10−7Ry, with a corresponding maximum interpola-
tion error of ǫint = 10−6Ry and a default maximum magnetic field strength
of β = 103. Please consult the “Readme”-file included with this installation
package to learn more about other parameters and their default values. H2db
is started with a simple call like

./h2db < Example.ini |tee Example.out

The AMV method typically calculates about 1000 data points for a full anal-
ysis of the energy function between 0 < B < 109T, while each result takes
a few seconds to minutes to be calculated, depending on excitation num-
ber and demanded precision. Therefore, a program run may take several
hours to complete. By specifying the targeted magnetic field strengths in
a separate file or by setting a lower maximum magnetic field strength, the
total program run time can be shortened to just a few seconds – depending
on the number of states to be calculated. The amount of RAM needed by
H2db significantly increases for the calculation of highly excited states, and
if higher than default precisions are demanded, which we discourage because
of the restricted physical importance as discussed in the introduction. H2db
was tested successfully for the first 30 states of both z-parities and m = 0 to
m = −4.

The example output file below shows a short program run for the state
(−2,+,2) at a precision of 10−6Ry. The header contains the program version,
the state in question using low field and high field quantum numbers, and the
method of choosing magnetic field strengths (AMV up to β = 10−3). Each
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line corresponds to a single result and contains the magnetic field strength
in β, the energy in Rydberg units, the expansion parameters in brackets
(Nρ,Nz, k) as well as the required time for the calculations. Looking at the
magnetic field strengths, one can see that the AMV increases the step width
from dβ = 2 × 10−4 to dβ = 8 × 10−4 and thus reduces the number of
calculations as intended.
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Output of Example.ini

Starting H2db v0.526

State 4d-2: m= -2, Pi_z=+, nu= 2, at 6 digits precision

Automated Beta Variation from 0.0000000000 to 0.0010000000

Beta: 0.0000100000 E[Ry]: -0.062560 ( 15/ 20/10) in 13s

Beta: 0.0000300000 E[Ry]: -0.062680 ( 15/ 20/10) in 7s

Beta: 0.0000700000 E[Ry]: -0.062918 ( 15/ 20/10) in 7s

Beta: 0.0001500000 E[Ry]: -0.063390 ( 15/ 20/10) in 7s

Beta: 0.0002300000 E[Ry]: -0.063857 ( 15/ 20/10) in 7s

Beta: 0.0003100000 E[Ry]: -0.064319 ( 15/ 20/10) in 7s

Beta: 0.0003900000 E[Ry]: -0.064774 ( 15/ 20/10) in 7s

Beta: 0.0004700000 E[Ry]: -0.065225 ( 15/ 20/10) in 7s

Beta: 0.0005500000 E[Ry]: -0.065670 ( 15/ 20/10) in 7s

Beta: 0.0006300000 E[Ry]: -0.066109 ( 15/ 20/10) in 7s

Beta: 0.0007100000 E[Ry]: -0.066543 ( 15/ 20/10) in 7s

Beta: 0.0007900000 E[Ry]: -0.066972 ( 15/ 20/10) in 7s

Beta: 0.0008700000 E[Ry]: -0.067395 ( 15/ 20/10) in 7s

Beta: 0.0009500000 E[Ry]: -0.067813 ( 15/ 20/10) in 7s

Beta: 0.0010300000 E[Ry]: -0.068225 ( 15/ 20/10) in 7s

All denoted magnetic fields analyzed after 122s. Stopping Program.
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