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Model of a PT symmetric Bose-Einstein condensate in a delta-functions double well
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The observation of PT symmetry in a coupled optical wave guide system that involves a complex
refractive index has been demonstrated impressively in the experiment by Rüter el al. (Nat. Phys.

6, 192, 2010). This is, however, only an optical analogue of a quantum system, and it would be
highly desirable to observe the manifestation of PT symmetry and the resulting properties also
in a real, experimentally accessible, quantum system. Following a suggestion by Klaiman et al.
(Phys. Rev. Lett. 101, 080402, 2008), we investigate a PT symmetric arrangement of a Bose-
Einstein condensate in a double well potential, where in one well cold atoms are injected while in
the other particles are extracted from the condensate. We investigate, in particular, the effects of
the nonlinearity in the Gross-Pitaevskii equation on the PT properties of the condensate. To study
these effects we analyze a simple one-dimensional model system in which the condensate is placed
into two PT symmetric δ-function traps. The analysis will serve as a useful guide for studies of the
behaviour of Bose-Einstein condensates in realistic PT symmetric double wells.

PACS numbers: 03.65.Ge, 03.75.Hh, 11.30.Er

Beginning with the seminal paper by Bender and
Boettcher in 1999 [1], parity-time (PT ) symmetric quan-
tum mechanics has attracted ever increasing attention
over the past decade because it offers a class of complex
Hamiltonians which, in spite of their non-Hermiticity,
possess discrete real energy eigenvalue spectra. More-
over, these Hamiltonians feature the property of branch
points, i.e., the coalescence of both energy values and
eigenfunctions when some parameter in the Hamiltonian
is varied, a phenomenon impossible in Hermitian quan-
tum mechanics (but known to appear for resonances in
the continuous spectrum, see, e.g., [2]).

Recently PT symmetry has been realized experimentally
in structured optical waveguides [3, 4], where the com-
plex index of refraction is manipulated by introducing
loss and gain terms. These experiments make use of the
quantum-optical analogy that the wave equation for the
transverse electric field mode is formally equivalent to the
one-dimensional Schrödinger equation. It would, how-
ever, be desirable to observe PT symmetry also in a real
quantum system.

Klaiman et al. [5] have suggested a quantum scenario
analogous to the waveguide experiments in which a Bose-
Einstein condensate is placed in a double well potential,
and loss and gain is realized by removing atoms in one
well and coherently adding particles in the other. These
authors pointed out that to have a close analogy with
the optics experiments the nonlinearity in the Gross-
Pitaevskii equation governing these condensates should
be kept small. Here we want to ask the opposite question:
What are the effects of the nonlinearity on the PT sym-
metry on such an arrangement of a Bose-Einstein conden-
sate? It is namely exactly the nonlinearity, proportional
to |ψ(x)|2, in the Gross-Pitaevskii equation that compli-
cates matters. A necessary condition for the Hamilto-
nian to be PT symmetric is that the imaginary part of
the potential is an odd function, and the real part an

even function of x. The latter cannot be assumed from
the outset for |ψ(x)|2 when solving the Gross-Piatevskii
equation.

In this paper we will investigate the effects of the non-
linearity on the PT symmetry in the spirit of a model
calculation by considering the situation where the dou-
ble well is idealized by two delta-function traps, with
loss added in one trap and gain in the other. We will
demonstrate that the stationary solutions of the Gross-
Pitaevskii equation indeed preserve the PT symmetry of
the nonlinear Hamiltonian, and merge in a branch point
at some critical value of the loss and gain, beyond which
the symmetry is broken. Our results show that it will
be a worthwhile enterprise to investigate PT symmetric
Bose-Einstein condensates in realistic double well poten-
tials, and possibly pin down physical parameters where
PT breaking could be observed in a real experiment.

A model which mimics the physical situation of a BEC in
a symmetric double well with loss and gain has already
been investigated by Graefe et al. [6–8] in the frame-
work of a two-mode Bose-Hubbard-type PT symmetric
Hamiltonian. As an optical analogue, in the two-mode
approximation Ramezani et al. [9] have recently looked
at a mathematical model of a PT symmetric coupled
dual waveguide arrangement with Kerr nonlinearity. It is
one objective of this paper to see which features of these
models are recovered when actually solving the nonlinear
PT symmetric Gross-Pitaevskii equation.

For a system where a real delta-function potential is aug-
mented by a PT symmetric pair of delta-functions with
imaginary coefficients, bound states and scattering wave
functions have been calculated by Jones [10]. His interest
was devoted to the quasi-Hermitian analysis of the prob-
lem, and no nonlinearity was present. Jakubský and Zno-
jil [11] have considered the explicitly solvable model of a
particle exposed to two imaginary PT delta-function po-
tentials in an infinitely high square well, and determined
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the energy spectrum. The nonlinear Schrödinger equa-
tion for a delta-functions comb was studied by Witthaut
et al. [12] with the aim of gaining insight into the proper-
ties of nonlinear stationary states of periodic potentials.
Also, there exists a vast amount of literature on soli-
tons and Bose-Einstein condensates in periodic optical
and nonlinear lattices with PT symmetry and their non-
linear optical analogues (see, e.g., [13–21]). But to the
best of our knowledge the basic problem of two PT sym-
metric delta-function double wells with Gross-Pitaevskii
nonlinearity has not been considered so far.

The Gross-Pitaevskii equation we analyze in this paper
has the form

−Ψ′′(x)− [(1 + iγ)δ(x+ b) + (1− iγ)δ(x− b)]Ψ(x)

− g|Ψ(x)|2Ψ(x) = −κ2Ψ(x) , (1)

with κ ∈ C, Re(κ) > 0, and γ real.

It consists of two delta-function traps with distance a,
located at b = ±a/2, with a real attractive part of the
potential and imaginary gain/loss terms whose strengths
are determined by the parameter γ, and a nonlinear term
with amplitude g, which arises from the contact interac-
tion of the condensate atoms. Units have been chosen
in such a way that the strength of the real part of the
delta-function potential is normalized to unity. While
the delta-function potentials are PT symmetric, it is not
clear a priori that the equation itself is PT symmetric
since this requires the nonlinear term to be a symmetric
function.

For vanishing nonlinearity, we find that the simple quan-
tum mechanics model captures, for both eigenvalues and
wave functions, all the effects of a PT symmetric wave
guide configuration in optics. This is essentially due to
the fact that two attractive delta-function potentials have
exactly two bound states which correspond to the two su-
permodes in the wave guide arrangement.

For nonvanishing nonlinearity we have solved the Gross-
Pitaevskii equation (1) numerically using a procedure
in which the energy eigenvalues are found by a five-
dimensional numerical root search. The free parameters
which have to be adjusted in such a way that a physically
meaningful wave function is obtained are the eigenvalue
κ as well as initial conditions for the wave function and
its derivative. Since the overall phase is arbitrary we can
choose it such that Ψ(0) is a real number. Therefore five
real parameters remain, viz. the real part of Ψ(0), and
the real and imaginary parts of both Ψ′(0) and κ. Phys-
ically relevant wave functions must be square integrable
and normalized. The normalization is important since
the Gross-Pitaevskii equation is nonlinear and the norm
influences the Hamiltonian. This gives in total five condi-
tions which have to be fulfilled: The real and imaginary
parts of Ψ must vanish for x → ±∞, and the norm of
the wave function must fulfill ||ψ|| − 1 = 0.

Outside the delta-function traps the Gross-Pitaevskii
equation (1) coincides with the free nonlinear
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FIG. 1. (Color online) Eigenvalues κ of the nonlinear equa-
tion (1) as functions of the size of the loss/gain parameter γ

for a = 2.2. The value of the nonlinearity parameter chosen is
g = 1. The case g = 0 is drawn (dashed lines) for comparison.
A branch of complex conjugate eigenvalues appears which bi-
furcates from the ground state branch before the critical value
of γ where the branches of the real eigenvalues coaelesce in an
exceptional point. There a pair of complex eigenvalues only
emerges after an analytical continuation of the nonlinearity
in the Gross-Pitaevskii equation.

Schrödinger equation, which has well known real
solutions in terms of Jacobi elliptic functions (cf., e.g.,
[12, 22, 23]). The function which solves the equation
in the ranges |x| > b for the attractive nonlinearity
considered here and decays to zero for |x| → ∞ is
cn(κx, 1) = 1/cosh(κx). We find that once the cor-
rect eigenvalues and eigenfunctions are obtained our
numerical wave functions exactly show this behaviour.
Fig. 1 shows the results for the eigenvalues κ calculated
for a value of the nonlinearity parameter g = 1.0 and a
trap distance of a = 2.2 as functions of γ. The results
for the case g = 0 are also shown for comparison. It can
be seen that even with nonlinearity there still exist two
branches of real eigenvalues up to a critical value γcr ≈
0.4, at which the two eigenvalues coincide. There also
appears a branch of two complex conjugate eigenvalues,
but surprisingly these are born, not at γcr, but at the
smaller value of γ ≈ 0.31 where they bifurcate from the
real eigenvalue branch of the ground state. This implies
that there is a range of γ values where two real and two
complex eigenvalues coexist.
At this point it is useful to establish a link with the model
of a PT symmetric Bose-Hubbard dimer with loss and
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FIG. 2. (Color online) Real and imaginary parts and moduli
of the eigenstates of the nonlinear Hamiltonian in equation
(1) for g = 1, a = 2.2, and γ = 0.35, (a) ground state and (b)
excited state. The wave functions are PT symmetric, and the
moduli are symmetric functions, producing the PT symmetry
of the total nonlinear Hamiltonian.

gain investigated by Graefe et al. [8]. An eigenenergy
spectrum with a structure similar to the one in Fig. 1
also appeared in their calculations (see Fig. 13 in [8]). In
the model, stationary states correspond to fixed points
of the motion of a vector on the surface of the Bloch
sphere, whose types can be classified according to the
eigenvalues of the Jacobian matrix. In the region where
only two real eigenvalues exist the solutions correspond
to centers, while in the region with four eigenvalues the
solutions correspond to a center and a saddle point, and
a sink and a source. The center and saddle point collide
at the branch point and vanish. This behaviour is in
complete agreement with the results shown in Fig. 1. It
may be concluded that the familiar branching scheme
known for PT symmetric Hamiltonians quite generally
will be changed into a scheme of the type as shown in
Fig. 1 if a nonlinearity is added to the Hamiltonian.

Fig. 2 shows the real and imaginary parts of the ground
state and the excited state determined numerically for
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FIG. 3. (Color online) Real and imaginary parts and moduli
of the eigenstates of the nonlinear Hamiltonian in equation (1)
for g = 1, a = 2.2, and γ = 0.5, (a) solution with imaginary
part of κ > 0 and (b) imaginary part of κ < 0 . The PT

symmetry is broken, the moduli are not symmetric functions,
and the PT symmetry also of the nonlinear Hamiltonian is
broken.

g = 1, a = 2.2, and γ = 0.35, below the the critical value
γcr ≈ 0.4. The PT symmetry of each wave function
is evident since their real parts are even functions and
their imaginary parts odd functions of x. From the PT
symmetry of the wave function follows that the modulus,
also shown in Fig. 2 is an even function, and with it the
nonlinear term in equation (1). We therefore have the
important result that the nonlinear Hamiltonian picks
as eigenfunctions exactly those states in Hilbert space
which render the nonlinear Hamiltonian PT symmetric!
In the ground state, which emerges from the symmetric
real wave function for γ = g = 0, the symmetric contri-
bution from the real part still dominates, while for the
excited state, which originates from the antisymmetric
solution for γ = g = 0, the antisymmetric contribution
from the imaginary part prevails.

The PT symmetry of the wave functions is broken for
the eigenstates with complex eigenvalues. Fig. 3 shows
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as an example the wave functions obtained for g = 1, a =
2.2, and γ = 0.5 for the corresponding pair of complex
conjugate eigenvalues κ. It can be seen that the real
and imaginary parts are no longer even or odd functions,
and therefore PT symmetry is lost. As a consequence,
the moduli of the wave functions also are no longer even
functions of x. Thus we find that beyond the branch
point not only the PT symmetry of the wave functions
is broken but also that of the nonlinear Hamiltonian!

For the states with complex eigenvalues there is, how-
ever, an important difference between the case with and
without nonlinearity: for complex eigenvalues the modu-
lus squared of the wave functions grows or decays propor-
tional to exp(−2Im(κ2)t), and so does the nonlinear term
in equation (1). Therefore strictly speaking the solutions
presented here can only describe the onset of the tempo-
ral evolution of the two modes, for times Im(κ2)t ≪ 1.
To obtain the full time evolution in the region beyond the
branch point one would have to solve the time-dependent
Gross-Pitaevskii equation. This clearly goes beyond the
scope of our simple model calculation. In Fig. 3 the mode
with positive imaginary part of κ is the one which begins
to decay, as expected it is more strongly localized in the
trap with loss, while the mode with negative imaginary
part is the one which starts to grow and is more strongly
localized in the trap with gain.

The fact that at the branch point two real solutions co-
alesce without giving rise to two solutions with complex
eigenvalues contradicts the usual behaviour seen at ex-
ceptional points. Obviously these solutions cannot be
found by solving the nonlinear Gross-Pitaevskii equation
in its form (1), but require an analytical continuation of
the nonlinear Hamiltonian beyond the critical point γcr.
The reason is that the nonlinear term g|Ψ|2 is a non-
analytic function, and some care has to be taken when
analytically continuing the Hamilitonian beyond the ex-
ceptional point.

In the PT symmetric regime up to γcr we have Ψ∗(x) =
Ψ(−x). Therefore on the way to the bifurcation point we
can write the nonlinearity for the PT symmetric states
in the form g|Ψ(x)|2 ≡ gΨ(x)Ψ(−x). This function can
be continued analytically. In the numerical calculation
the additional condition

∫
Ψ(x)Ψ(−x)dx = 1 must be

introduced to fix the phase of the nonlinearity in the
PT broken regime. In the (then) six-dimensional root
search also Im(Ψ(0)) must varied. As a result we find two
more complex conjugate solutions that emerge from the
coaelescing states, see Fig. 1. These states are not PT
symmetric, and no longer possess vanishing imaginary
parts at the origin.

In this paper we have analyzed the simple quantum me-
chanical model of a Bose-Einstein condensate in PT sym-
metric delta-function double traps by directly solving the
nonlinear Gross-Pitaevskii equation. We find two sta-
tionary eigenstates with real eigenvalues which at a crit-
ical value of the loss/gain parameter merge in a branch

point. We have the important result that the wave func-
tions are PT symmetric. As a consequence their moduli
are even functions, and therefore the nonlinear Hamilto-
nian selects as solutions exactly such states which make
itself PT symmetric. We also find a branch of two com-
plex conjugate eigenvalues for which the PT symmetry
of the wave functions is broken, and with it that of the
nonlinear Hamiltonian.

An unexpected result is that, with the nonlinearity
present, the branches of complex conjugate eigenvalues
do not bifurcate from the point where the real eigen-
values conincide, but emerge at a smaller value of the
gain/loss term from the eigenvalue branch of the ground
state. On the other hand, at the critical value of the
gain/loss parameter we find the behaviour characteristic
of a branch point, i.e. the coalescence of both eigenval-
ues and eigenfunctions, but no pair of complex conjugate
eigenvalues seems to emerge. These are found only after
continuing analytically the nonlinear term in the Gross-
Pitaevskii equation. Note, however, that as stated before,
for complex eigenvalues the squared modulus of the wave
function becomes time-dependent, and a description us-
ing the stationary Gross-Pitaevskii equation breaks down
anyway. This does, however, not affect the main result of
our paper, namely the existence of PT symmetric eigen-
functions and the PT symmetry of the Hamiltonian also
when the nonlinearity is present.

We have considered the case of an attractive nonlinearity
but found that the same behaviour occurs for repulsive
nonlinearity.

The results of our model calculation make one to expect
that similar PT behaviour should also prevail in Bose-
Einstein condensates in more realistic double wells [24]
with PT symmetry, in one or more dimensions. Also
in addition to the nonlinearity resulting from the short-
range contact interaction condensates with a long-range
dipole-dipole interaction [25] could be considered. In-
vestigations of the Gross-Pitaevskii equation in these di-
rections are under way. It would also be interesting to
extend the quasi-Hermitian analysis given by Jones [10]
and to investigate whether for the nonlinear PT sym-
metric Hamiltonian considered in the present paper the
construction of a metric operator is possible with respect
to which the nonlinear Hamiltonian is quasi-Hermitian.
Furthermore it would be worthwhile looking for simple
matrix models which show the behaviour of the eigenval-
ues found for finite nonlinearity.

We thank Eva-Maria Graefe and Miloslav Znojil for help-
ful comments.
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