Gaussian wave packets (GWPs) are well suited as basis functions to describe the time evolution of arbitrary wave functions in systems with non-singular smooth potentials. They are rare in atomic systems on account of the singular behaviour of the Coulomb potential. We present a time-dependent variational method that makes the use of GWPs possible in the description of propagation of quantum states also in these systems. We use a regularization of the Coulomb potential and introduce a fictitious time coordinate in which the evolution of an initial state can be calculated exactly and analytically for a pure Coulomb potential. Therefore, in perturbed atomic systems variational approximations only arise from those parts of the potentials which deviate from the Coulomb potential. The method is applied to the hydrogen atom in external magnetic and electric fields. It can be adapted to systems with definite symmetries and thus allows for a wide range of applications.

Key words: Hydrogen Atom in External Magnetic and Electric Fields; Coulomb Potential; Gaussian Wave Packets.

PACS numbers: 32.80.Ee, 32.60.+i, 31.15.-p, 05.45.-a
tion in the Coulomb problem exactly. Therefore only deviations from the Coulomb potential require a variational treatment. As prime examples we will apply the method to wave packet propagation in the hydrogen atom in a magnetic field and in crossed electric and magnetic fields. Both systems have attracted considerable attention over the past decades because classically they exhibit a transition from regular to chaotic motion and thus can be used in the search for quantum signatures of chaos [22, 23]. If the method can be further extended to larger systems with more degrees of freedom, it will allow for a wide range of future applications in different branches of physics.

This article is a report on current research of special interest, where we introduce the basic ideas and example results of the method. Mathematical derivations and details of the implementation are presented in [24, 25].

2. Restricted Gaussian Wave Packets

The Hamiltonian for an electron under the combined action of the Coulomb potential and external perpendicularly crossed electric and magnetic fields has the form

\[H_s = \frac{1}{2} p^2 - \frac{1}{r} + \frac{1}{2} B_l z + \frac{1}{8} B^2 (x^2 + y^2) + F x \]

(in atomic units, with \(F_0 = 5.14 \times 10^9 \) V/cm, \(B_0 = 2.35 \times 10^5 \) T). Here we have assumed that the electric field is oriented along the \(x \)-axis and the magnetic field along the \(z \)-axis. We regularize the singularity of the Coulomb potential by switching to KS coordinates \(\mathbf{u} \) with \(x = u_1 u_3 - u_2 u_4 \), \(y = u_1 u_4 + u_2 u_3 \), and \(z = \frac{1}{2} (u_1^2 + u_2^2 - u_3^2 - u_4^2) \). Introducing scaled coordinates and momenta \(\mathbf{u} \rightarrow n_{eff}^{1/2} \mathbf{u} \), \(\mathbf{p}_u \rightarrow n_{eff}^{-1/2} \mathbf{p}_u \) one obtains

\[H \psi = \left[\frac{1}{2} p^2 + V(\mathbf{u}, \mathbf{u}) \right] \psi = 2n_{eff} \psi , \]

where the scaled potential \(V \) depends on the parameters

\[\alpha \equiv -n_{eff}^2 E \, , \quad \beta \equiv n_{eff}^2 B \, , \quad \zeta \equiv n_{eff}^3 F \, , \]

which can be chosen constant. (2) is an eigenvalue problem for the effective quantum number \(n_{eff} \), and for any quantized \(n_{eff} \) the energy \(E \) and field strengths \(B \) and \(F \) of the physical state are obtained from (3). In KS coordinates physical wave functions must fulfill the constraint

\[(u_2 p_1 - u_1 p_2 - u_4 p_3 + u_3 p_4) \psi = 0 . \]

For \(\alpha = 1/2 \) and vanishing external fields \((\beta = 0, \zeta = 0) \) (2) describes the 4D harmonic oscillator with \(V = \frac{1}{2} \mathbf{u}^2 \), and \(n_{eff} = n \) becomes the principal quantum number of the field-free hydrogen atom.

(2) can be extended to the time-dependent Schrödinger equation in a fictitious time \(\tau \) by the replacement \(2n_{eff} \rightarrow i \frac{d}{d \tau} \), viz.

\[i \frac{d}{d \tau} \psi = \left(\frac{1}{2} \mathbf{p}_u^2 + V \right) \psi = H \psi . \]

When the TDVP is used to solve (5), the wave function \(\psi \) depends on a set of appropriately chosen parameters whose time-dependences are obtained by solving ordinary differential equations. As the regularized Hamiltonian without external fields (2) becomes that of a harmonic oscillator basis trial wave functions in the form of GWPs

\[g(A, q, \mathbf{u}, \mathbf{v}) = e^{i[A(u-q)A(u+q)+\mathbf{u}^T\mathbf{v}+\mathbf{v}^T\mathbf{u}+\gamma]} , \]

with time-dependent parameters as natural choice. In (6) \(A \) designates a complex symmetric \(4 \times 4 \) width matrix with positive definite imaginary part, \(\mathbf{u} \) and \(\mathbf{v} \) are the expectation values of the momentum and position operator, respectively, and the phase and normalization are given by the complex scalar \(\gamma \). In KS coordinates physical wave functions must fulfill the constraint (4). Inserting the ansatz (6) into (4) leads to restrictions for the admissible variational parameters, viz. \(\mathbf{q} = 0, \mathbf{p} = 0 \), and the special form of the width matrix

\[A = \begin{pmatrix} a_{\mu} & 0 & a_{\gamma} & a_{\nu} \\ 0 & a_{\mu} & a_{\gamma} & -a_{\nu} \\ a_{\gamma} & a_{\gamma} & a_{\nu} & 0 \\ a_{\nu} & -a_{\gamma} & 0 & a_{\nu} \end{pmatrix} , \]

which depends only on four parameters \((a_{\mu}, a_{\nu}, a_{\gamma}, a_{\gamma}) \) [24, 25]. The ‘restricted Gaussian wave packets’ obeying (4) are located around the origin with zero mean velocity and this at first glance might not appear appropriate for dynamical calculations. However, they are the key for both the exact analytical derivation of the fictitious time wave packet dynamics in the field-free hydrogen atom and the time-dependent variational approach to the perturbed atom.
The restricted GWPs are not a complete basis set for the four-dimensional harmonic oscillator but they are in the 3D space, i.e., any physically allowed state can be expanded in that basis. This can be verified by transforming the restricted GWP in KS coordinates back into 3D Cartesian coordinates:
\[
g(y) = \exp(i(a_\mu a_v + \gamma) = \exp(i[(a_\mu + a_v)\tau + (a_\mu - a_v)z + 2a_x + 2a_\gamma + \gamma]
\]
\[
ge^{i(p_x r + px + \gamma)}. \tag{8c}
\]
In (8c) the set of parameters \((a_\mu, a_v, a_x, a_\gamma, \gamma)\) is replaced by an equivalent set \(y = (p_x, p_y, \gamma)\) with
\[
p_x = a_\mu + a_v,
\]
\[
p_y = (p_x, p_y, p_z) = (2a_x, 2a_\gamma, a_\mu - a_v). \tag{9}
\]
For \(p_x = 0\) and real valued parameters \(p_x, p_y, p_z\), the restricted GWP in Cartesian coordinates (8c) reduces to a plane wave. Since plane waves form a complete basis we have the result that the restricted GWPs (8) are also complete, or even over-complete.

3. Time-Dependent Variational Principle (TDVP)

The propagation of the wave packets is investigated by applying the TDVP. Briefly, the TDVP of McLachlan [26], or equivalently the minimum error method [27], requires to minimize the deviation between the right-hand and the left-hand side of the time-dependent Schrödinger equation with the trial function inserted. The quantity
\[
I = ||\psi(\tau) - H\psi(\tau)||^2 = \min \tag{10}
\]
is to be varied with respect to \(\phi\) only, and then \(\psi \equiv \phi\) is chosen, i.e., for any time \(\tau\) the fixed wave function \(\psi(\tau)\) is supposed to be given and its admissible time derivative \(\dot{\psi}(\tau)\) is determined by the requirement to minimize \(I\). As trial functions we consider superpositions of \(N\) restricted GWPs (8a), i.e.,
\[
\psi(\tau) = \psi(z(\tau)) = \sum_{k=1}^{N} g(y^k) \equiv \sum_{k=1}^{N} g^k, \tag{11}
\]
which are parameterized by a set of \(5N\) time-dependent complex parameters \(z = (y^k, k = 1, \ldots, N)\) instead of \(15N\) complex parameters when using the most general superposition of Gaussian wave packets (6) in 4D coordinate space. The equations of motion for the variational parameters \(z(\tau)\) are obtained as
\[
\dot{A}^k = -2(A^k)^2 - \frac{1}{2}V^k, \tag{12}
\]
where we have introduced the time-dependent scalars \(\nu_0^k\) and matrices \(V_k^2\), which induce couplings between the restricted GWPs. Since the special structure of the matrices \(A^k\) in (7) is maintained in the squared matrices \((A^k)^2\), that structure carries over to the \(4 \times 4\) complex symmetric matrices \(V_k^2\). Therefore, they have only four independent coefficients \((V_k^1, V_k^2, V_k^3, V_k^4)\), in the notation of (7). The parameters \(\nu_0^k\) and \(V_k^2\) are calculated at each time step by solving a \(5N\)-dimensional set of linear equations. All integrals required for the setup of that linear system have the form \(\langle \phi^t | f(u, p_u) | \phi^s \rangle\), with \(f(u, p_u)\) a polynomial in the KS coordinates and momenta, and can be calculated analytically [25].

For the field-free hydrogen atom one finds \(\nu_0^0 = 0\) and \(V_2^2 = 1\), i.e., the equations of motion (12) simplify to the uncoupled equations \(\dot{A} = -2A^2 - \frac{1}{4}\), \(\gamma = \text{tr}A\) for the parameters of each basis state. These equations can be solved analytically [24] and yield for the time evolution of the restricted GWP the explicit form
\[
g(\tau) = \frac{1}{N(\tau)} \exp \left\{ i \frac{z(\tau)}{N(\tau)} \right\}, \tag{13}
\]
with
\[
z(\tau) = p^0 \cdot x + p^0 r \cos 2\tau
\]
\[
+ \frac{\beta}{2}[(p^0)^2 - (p^0)^2 - 1]\sin 2\tau, \tag{14}
\]
\[
N(\tau) = 1 + [(p^0)^2 - (p^0)^2](1 - \cos 2\tau)
\]
\[
+ p^0 \sin 2\tau,
\]
where \(p^0\) and \(p^0\) are the parameters (9) of the initial GWP at time \(\tau = 0\). This is an important result for the field-free hydrogen atom: The time evolution of a restricted GWP (8c) can be calculated analytically, and takes the compact form (13), which is a periodic function of the fictitious time \(\tau\) with period \(\pi\). In the physical time wave packets disperse in the hydrogen atom. By contrast, the wave packets in the fictitious time show an oscillating behaviour with no long-time dispersion in \(\tau\).

4. Gaussian Wave Packet Dynamics

We now investigate the propagation of 3D Gaussian wave packets which are localized around a given point
Carlo method using importance sampling of the integral representation (15). This is most efficiently finite number of restricted GWPs rather than using the proximate the initial 3D Gaussian wave packet by a even with a rather low number restricted GWPs are included. However, it is important packet (15), and the accuracy depends on how many in (16) is an approximation to the 3D Gaussian wave function by Fourier transform. The peak positions agree very well with the numerically exact eigenvalues of the effective quantum number shown in the lower panel of each figure.

In numerical computations it is convenient to approximate the initial 3D Gaussian wave packet by a finite number of restricted GWPs rather than using the integral representation (15). This is most efficiently achieved by evaluating the integral in (15) by a Monte Carlo method using importance sampling of the momenta. The initial wave packet then reads
\[
\psi = (2\pi\sigma^2)^{-3/4} \frac{1}{N} \sum_{k=1}^{N} g(\mathbf{y}^k) e^{-i\mathbf{p}^k \cdot \mathbf{x}_0}, \tag{16}
\]
with \(\mathbf{y}^k = (i\varepsilon, \mathbf{p}^k - i\varepsilon \mathbf{x}_0)/|\mathbf{x}_0|, 0\), and the \(\mathbf{p}^k\) distributed randomly according to the normalized Gaussian weight function \(w(\mathbf{p}) = (\sigma^2/\pi)^{3/2} \exp\{-\sigma^2(\mathbf{p} - \mathbf{p}_0)^2\}\). A small \(\varepsilon > 0\) has been introduced for damping the restricted GWPs at large radii \(r\), which is convenient in numerical computations. The wave function \(\psi\) in (16) is an approximation to the 3D Gaussian wave packet (15), and the accuracy depends on how many restricted GWPs are included. However, it is important to note that a localized wave packet can be described even with a rather low number \(N\) of restricted GWPs. The time propagation of an initial state (16) in the fictitious time \(\tau\) is now obtained exactly and fully analytically by replacing the initial restricted GWPs \(g(\mathbf{y})\) in (16) with the corresponding time-dependent solutions (13). Results for the wave packet propagation in the field-free hydrogen atom are given in [24].

Here we present example calculations for the hydrogen atom in external fields. In crossed electric and magnetic fields the propagation of 3D GWPs is computed for the time-dependent Schrödinger equation (2) with parameters \(\alpha = 0.5, \beta = 0.05, \zeta = 0.01\) in (3). The choice of an appropriate initial state \(\psi(0)\) is very important for the successful application of the TDVP. We achieved optimal results by choosing a 3D initial Gaussian wave packet in physical Cartesian coordinates as given in (15). The external fields lead to couplings between the basis states, and the time-dependence of the variational parameters must be determined by the numerical integration of (12). For better numerical performance we resort to the TDVP with constraints [28].

Once a time-dependent wave packet (11) is determined the eigenvalues \(n_{\text{eff}}\) of the stationary Schrödinger equation (2) and thus a quantum spectrum of the hydrogen atom in external fields can be obtained by frequency analysis of the time signal
\[
C(\tau) = \langle \psi(0)|\psi(\tau)\rangle = \sum_j c_j e^{-2n_{\text{eff}}^{(j)} \tau}, \tag{17}
\]
with the amplitudes \(c_j\) depending on the choice of the initial wave packet. In perpendicularly crossed fields the \(z\)-parity is conserved. Spectra with even and odd \(z\)-parity obtained from the Fourier transforms of the autocorrelation functions \(C^+(\tau) = \langle \psi^+(0)|\psi^+(\tau)\rangle\) of the parity projected wave packets are shown in Figure 1. The solid and dashed lines result from the propagation of two different initial 3D GWPs with \(\sigma = 3.5, \varepsilon = 0.15\), the same initial position but different initial mean momenta. \(N = 41\) and \(N = 31\) basis states were coupled in the calculations. The line widths, i.e., the

![Fig. 1. Spectra with (a) even and (b) odd \(z\)-parity of the Hamiltonian (2) with \(\alpha = 0.5, \beta = 0.05, \zeta = 0.01\) obtained from the propagation of two different 3D GWPs. Solid and dashed line: \(x_0 = (6,0,0), p_0 = (0, \pm 1/\sqrt{2}, 1/\sqrt{2})\), respectively. The eigenvalues are extracted from the autocorrelation function by Fourier transform. The peak positions agree very well with the numerically exact eigenvalues of the effective quantum number shown in the lower panel of each figure.](image-url)
resolution of the spectra is determined by the length of the time signal τ_{max}. The eigenvalues obtained by numerically exact diagonalizations of the stationary Hamiltonian (2) are shown in the lower panel in Figure 1. The line-by-line comparison shows a very good agreement between the exact spectrum and the results obtained from the wave packet propagation. The amplitudes of levels indicate the excitation strengths of states with higher or lower angular momentum l_z by the two initial wave packets rotating clockwise or anticlockwise around the z-axis.

The method presented can be especially adapted to systems with, e.g., cylindrical or spherical symmetries. For the hydrogen atom in a magnetic field we consider the very challenging regime around the field-free ionization threshold $E = 0$ where the Coulomb and the Lorentz force are of comparable strength, resulting in a fully chaotic classical dynamics. The real part of the even z-parity autocorrelation function is shown in Figure 2a. A number of $N = 90$ basis states was used in the computation. The eigenvalues are extracted from the signal $C^\tau (\tau)$ by the high-resolution harmonic inversion method [29] and drawn in Figure 2b. The agreement between the eigenvalues computed variationally (upper panel) and the numerically exact results (lower panel) is very good. Some lines are lacking in the variational computation because of a nearly zero overlap of the respective eigenstates $|n_{\text{eff}}\rangle$ and the initial GWP, but can be revealed by choosing different initial GWPs.

5. Conclusion

In this article we have extended the Gaussian wave packet method in such way that it can also be applied to quantum systems with singular Coulomb potentials. We have shown that the evolution in fictitious time can be calculated analytically in the pure quantum Coulomb problem. Therefore in applying the time-dependent variational principle to the description of time evolution of wave packets in perturbed atomic systems approximations arise only from the non-Coulombic parts of the potentials. The method can be adapted to special symmetries, such as axisymmetric or spherical, and opens the way to a wide range of applications in systems with Coulomb potentials.