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Abstract. The spectra of, e.g. open quantum systems are typically given as the

superposition of resonances with a Lorentzian line shape, where each resonance is

related to a simple pole in the complex energy domain. However, at exceptional

points two or more resonances are degenerate and the resulting non-Lorentzian line

shapes are related to higher order poles in the complex energy domain. In the Fourier-

transform time domain an n-th order exceptional point is characterised by a non-

exponentially decaying time signal given as the product of an exponential function

and a polynomial of degree n − 1. The complex positions and amplitudes of the

non-degenerate resonances can be determined with high accuracy by application of

the nonlinear harmonic inversion method to the real-valued resonance spectra. We

extend the harmonic inversion method to include the analysis of exceptional points.

The technique yields, in the energy domain, the amplitudes of the higher order poles

contributing to the spectra, and, in the time domain, the coefficients of the polynomial

characterising the non-exponential decay of the time signal. The extended harmonic

inversion method is demonstrated on two examples, viz. the analysis of exceptional

points in resonance spectra of the hydrogen atom in crossed magnetic and electric

fields, and an exceptional point occurring in the dynamics of a single particle in a

time-dependent harmonic trap.

PACS numbers: 05.70.Jk, 02.30.-f, 32.80.Fb, 31.70.Hq

1. Introduction

Nonlinear methods such as filter diagonalization [1, 2] and harmonic inversion [3–5]

have been established which allow for the high-resolution analysis of signals, i.e., the

frequencies and amplitudes of a time signal with finite length can be determined

with high accuracy without the restriction by the uncertainty principle of the Fourier

transform. Those methods can be applied to obtain the eigenspectra of large matrices [6],

semiclassical periodic orbit quantisation [7–11], and the analysis of quantum spectra

[12,13]. It is also possible to analyse spectra given as the superposition of resonances with

Lorentzian line shape (e.g. the level density or scattering cross section of open quantum

systems or microcavities), and to determine the exact positions and corresponding

amplitudes of the resonance poles in the complex energy plane [14,15].

So far, the harmonic inversion method has typically been applied to spectra with

non-degenerate complex resonances, and the formulae and derivations presented, e.g. in
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[3,4,11,14] are restricted to that case. However, two or more resonances can degenerate

at an exceptional point (EP) [16] in the complex energy plane. The occurrence of EPs

in open quantum systems has attracted much attention since at these points not only

the resonance energies but also the eigenstates coalesce [17–19]. Mathematically, the

EPs are branching singularities of non-Hermitian operators [20] and show interesting

properties such as the permutation of states when the EP is encircled along a closed

path in the parameter space of the system. Theoretical investigations have revealed the

existence of EPs, e.g. in spectra of the hydrogen atom in crossed magnetic and electric

fields [21, 22] and in Bose-Einstein condensates with long-range interactions [23, 24].

Experimentally, EPs have been observed in spectra of microwave resonators [25–29] and

in electronic circuits [30]. Recently, an experiment has been proposed to observe a third

order EP in the dynamics of a single particle in a time-dependent harmonic trap [31].

In most of the systems mentioned above signatures of an EP have been verified using

properties of the nearly degenerate states in the close vicinity of the exact degeneracy,

viz. the permutation behaviour of states when the EP is encircled in the parameter

space. However, in some systems, e.g. that discussed by Uzdin et al [31], appropriate

parameters for the encircling of an EP do not exist or at least are not experimentally

accessible. Therefore, alternative methods for the verification of EPs are needed. In

this paper, we study the features of EPs close to or even exactly at the degeneracy. In

resonance spectra a resonance related to an EP is characterised by a non-Lorentzian

line shape. In the time domain the survival probability of that resonance shows a

non-exponential decay [32]. We extend the harmonic inversion method to handle the

degeneracies occurring at EPs. The extended method provides the amplitudes of the

first and higher order poles in the complex energy or frequency plane and thus the

exact profile of both Lorentzian and non-Lorentzian resonance line shapes. In the time

domain the harmonic inversion method yields the decay signal of a resonance given

by an exponential function multiplied by a polynomial in time. The observation of a

resonance with non-Lorentzian line shape or non-exponentially decaying time signal can

be taken as clear evidence for the existence of an exceptional point in the system.

The paper is organised as follows. In section 2 the harmonic inversion method is

introduced and extended to the case of degenerate resonances. The method is applied

to the analysis of exceptional points by way of two examples in section 3. Firstly, in

section 3.1 the non-Lorentzian shape of a resonance related to an EP is revealed in the

photoabsorption spectrum of the hydrogen atom in crossed magnetic and electric fields,

and, secondly, in section 3.2 a third order EP is observed in the dynamics of a single

particle in a time-dependent harmonic trap. Conclusions are drawn in section 4.

2. Harmonic inversion method

For the convenience of the reader we first briefly recapitulate the harmonic inversion

method for spectra with non-degenerate resonances and then extend the method by

including degeneracies.
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2.1. Harmonic inversion of spectra with non-degenerate resonances

A spectrum of non-degenerate resonances is given by the imaginary part of the function

G(w) =
∑
k

dk
w − wk

, (1)

where the complex parameters wk with Imwk < 0 determine the positions and widths of

the resonances and the complex dk describe the amplitudes and details of the Lorentzian

line shapes. The aim of the harmonic inversion method is to extract the parameters wk
and dk from the spectrum given on an equidistant grid of points along the real w-axis.

The first step is to apply the Fourier transform to G(w) to obtain the signal

C(s) =
1

2π

∫ w+

w−

G(w) exp (−iws) dw = −i
K∑
k=1

dk exp (−iwks) . (2)

The parameters w± in (2) are introduced to analyse the spectrum in the window

[w−, w+]. Note that K is the number of poles in that window and can be small compared

to the number of poles in the full spectrum G(w). The set of resonances in a larger region

is then obtained by analysing several consecutive windows [4]. The harmonic inversion

of band-limited signals C(s) with K not larger than about 50 to 200 is numerically

more efficient and stable compared to the analysis of a signal with a huge number of

frequencies. When the spectrum is given on equidistant grid points w = w− + σ∆w for

σ = 0, 1, . . . , N − 1 the Fourier integral in (2) is approximated by a discrete sum. Using

the time step τ = 2π/(w+ − w−) the signal points

cn ≡ C(nτ) =
exp (−inτw−)

2π

N−1∑
σ=0

G(w− + σ∆w) exp
(
−2πi

nσ

N

)
(3)

are easily obtained for n = 0, 1, . . . , N−1 with a fast Fourier transform (FFT) algorithm.

Considering the factor exp(−inτw−) in (3) as a shift of resonances, wk → wk −w−, the

comparison with the signal C(s = nτ) in (2) yields

cn ≡ C(nτ) =
K∑
k=1

(−idk){exp[−i(wk − w−)τ ]}n =
K∑
k=1

d̂kz
n
k (4)

for n = 0, 1, . . . , N−1 and with the abbreviations d̂k = −idk and zk = exp[−i(wk−w−)τ ].

The second step is to determine the 2K parameters d̂k and zk for given signal points

cn. Note that at least N = 2K signal points are required to solve the nonlinear set of

equations (4). As the number of frequencies in the band-limited signal is relatively small

(K ∼ 50 − 200) several methods, which otherwise would be numerically unstable, can

be applied, e.g. linear predictor, Padé approximant, or direct signal diagonalization [4].

Here, we resort to the Padé approximant. Let us assume for the moment that the signal

points cn are known up to infinity, n = 0, 1, . . .∞. Interpreting the cn’s as the coefficients

of a Maclaurin series in the variable z−1, we can define the function g(z) =
∑∞

n=0 cnz
−n.

With (4) and the sum rule for geometric series we obtain

g(z) ≡
∞∑
n=0

cnz
−n =

K∑
k=1

d̂k

∞∑
n=0

(zk/z)n =
K∑
k=1

zd̂k
z − zk

≡ PK(z)

QK(z)
. (5)
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The right-hand side of (5) is a rational function with polynomials of degree K in the

numerator and denominator. Evidently, the parameters zk are the poles of g(z), i.e., the

zeros of the polynomial QK(z). Of course, the assumption that the coefficients cn are

known up to infinity is not fulfilled and, therefore, the sum over all cnz
−n in (5) cannot

be evaluated in practice. However, the convergence of the sum can be accelerated by

use of the Padé approximant. Indeed, knowledge of 2K signal points c0, . . . , c2K−1 is

sufficient for the calculation of the coefficients of the two polynomials

PK(z) =
K∑
k=1

bkz
k and QK(z) =

K∑
k=1

akz
k − 1 . (6)

The coefficients ak with k = 1, . . . , K are obtained as solutions of the linear set of

equations

cn =
K∑
k=1

akcn+k , n = 0, . . . , K − 1 . (7)

Once the ak are known, the coefficients bk are given by the explicit formula

bk =
K−k∑
m=0

ak+mcm , k = 1, . . . , K . (8)

The parameters zk = exp[−i(wk − w−)τ ] and thus the frequencies

wk = w− +
i

τ
ln zk (9)

(choosing the branch of the logarithm with 0 ≤ Im ln z < 2π) are obtained by searching

for the zeros of the polynomial QK(z) in (6). This is the only nonlinear step of the

algorithm. The roots of polynomials can be found, in principle, by application of

Laguerre’s method [33]. However, it turns out that an alternative method, i.e. the

diagonalization of the Hessenberg matrix

A =


−aK−1

aK
−aK−2

aK
· · · − a1

aK

1
aK

1 0 · · · 0 0

0 1 · · · 0 0
...

...

0 0 · · · 1 0

 , (10)

with ak the coefficients of the polynomial QK(z) in (6), is a numerically more robust

technique for finding the roots of high degree (K & 60) polynomials [33].

The parameters d̂k are calculated via the residues of the last two terms of (5).

Application of the residue calculus yields

d̂k = −idk =
PK(zk)

zkQ′K(zk)
, (11)

with the prime indicating the derivative d/dz. Note that Q′K(zk) vanishes if zk is a

multiple root of the polynomial QK(z) and thus equation (11) is not valid for degenerate

resonances occurring at exceptional points. In the following we extend the harmonic

inversion method to include that case.
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2.2. Extension of the harmonic inversion method to degenerate resonances

Degenerate resonances cannot be described by simple poles of the function G(w) but

higher order poles are required. Therefore, the ansatz (1) is generalised to

G(w) =
∑
k

rk∑
α=1

dk,α
(w − wk)α

, (12)

where rk is the order of degeneracy of resonance k. Note that resonances with rk > 1 in

spectra given as ImG(w) have a non-Lorentzian line shape. The aim is now to extract

the complex resonance positions wk and amplitudes dk,α from a given spectrum.

The first step is again the computation of a band-limited time signal by a windowed

Fourier transform of G(w). Writing G(w) in (12) as

G(w) =
∑
k

rk∑
α=1

dk,α
(−1)α−1

(α− 1)!

(
d
dw

)α−1
(w − wk)−1

we obtain

C(s) =
1

2π

∫ w+

w−

G(w) exp (−iws) dw

=
∑
k

rk∑
α=1

dk,α
(−1)α−1

(α− 1)!
(is)α−1(−i) exp (−iwks) , (13)

where the sum over k is now restricted to those resonances with Rewk ∈ [w−, w+]. At

discrete grid points s = nτ (with n = 0, 1, . . . , N − 1) the signal reads

cn ≡ C(nτ) =
∑
k

rk∑
α=1

(−idk,α)
(−inτ)α−1

(α− 1)!
exp[−i(wk − w−)nτ ] . (14)

With the abbreviations

d̂k,α = −idk,α
(−iτ)α−1

(α− 1)!
and zk = exp[−i(wk − w−)τ ] (15)

we finally obtain the nonlinear set of equations

cn =
∑
k

rk∑
α=1

d̂k,αn
α−1znk , n = 0, 1, . . . , 2K − 1 , (16)

where K =
∑

k rk is the total number of resonances of the band-limited signal counting

all multiplicities.

The second step, i.e. the solution of the nonlinear set of equations (16), also starts

analogously to the non-degenerate case. Interpreting the cn’s in (16) as the coefficients

of a Maclaurin series in z−1 given for n = 0, 1, . . . ,∞ we now obtain

g(z) ≡
∞∑
n=0

cnz
−n =

∑
k

rk∑
α=1

d̂k,α

∞∑
n=0

nα−1(zk/z)n ≡ PK(z)

QK(z)
. (17)

The rational function with the polynomials PK(z) and QK(z) on the r.h.s. of (17) is

obtained in the same way as in (5) using equations (6)-(8). The parameters zk are the

roots of the polynomial QK(z), however, the difference to the non-degenerate case is
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Table 1. Stirling numbers of the second kind S(n, k) for n, k ≤ 5.

k

S(n, k) 0 1 2 3 4 5

n = 0 1

n = 1 0 1

n = 2 0 1 1

n = 3 0 1 3 1

n = 4 0 1 17 6 1

n = 5 0 1 15 25 10 1

that now each root zk is rk-fold degenerate. For α > 1 the sum on the l.h.s. of (17) is

no longer a simple geometric series. In the following we use the relation (see appendix)

∞∑
n=0

nα−1 xn =
α−1∑
n=0

n!S(α− 1, n)
xn

(1− x)n+1
=
xαfα(x)

(x− 1)α
(18)

with

S(n, k) =
1

k!

k∑
µ=0

(−1)k−µ
(
k

µ

)
µn (19)

the Stirling numbers of the second kind [34], and the functions

fα(x) = (−1)α
α−1∑
ν=0

ν!S(α− 1, ν)
1

x

(
1− x
x

)α−1−ν
. (20)

A few Stirling numbers S(n, k) for n, k ≤ 5 are given in table 1. Using the second term

of (18) the function g(z) can be written as

g(z) =
∑
k

rk∑
α=1

d̂k,α

α−1∑
n=0

n!S(α− 1, n)
zznk

(z − zk)n+1
≡ PK(z)

QK(z)
. (21)

Both sides of (21) are rational functions in z with degree K polynomials in the

numerator and denominator. Using a partial fraction decomposition of PK(z)/[zQK(z)]

the parameters d̂k,α can, in principle, be obtained as solutions of sets of linear equations

comparing the coefficients of terms (z − zk)
−n with the same root zk and order n.

However, it is also possible to derive explicit formulae for the computation of the d̂k,α [35].

Using the last term of (18) equation (21) can also be written as (we drop the subscript

K on the polynomials P (z) and Q(z) in the following)

g(z) =
∑
k

rk∑
α=1

d̂k,α
fk,α(z)

(1− z/zk)α
≡ P (z)

Q(z)
(22)

with the functions fk,α(z) = fα(zk/z), which are polynomials of degree α in z. Equation

(22) is now multiplied with Q(z), and both sides are expanded, for each root zk, in a
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Taylor series of degree rk − 1 around z = zk. Comparison of the coefficients of terms

(z − zk)l for l = 0, . . . , rk − 1 yields

rk∑
α=rk−l

d̂k,α

l+α−rk∑
ν=0

(rk + ν − l − 1)!S(α, rk + ν − l) zrk+ν−lk Q[rk+ν](zk) = P [l](zk) (23)

with the notation

f [n](x) =
1

n!
f (n)(x) =

1

n!

(
d
dz

)n
f(z)

∣∣
z=x

. (24)

From (23) we finally obtain

d̂k,α =
P [rk−α](zk)

(α− 1)! zαk Q
[rk](zk)

−
rk∑

µ=α+1

d̂k,µ

µ−α∑
ν=0

(α− 1 + ν)!S(µ, α + ν)zνk Q
[rk+ν](zk)

(α− 1)!Q[rk](zk)
. (25)

For every index k equation (25) can be evaluated recursively starting with the highest

value α = rk down to α = 1. In the following some special cases of (25) are given

explicitly. For a non-degenerate resonance (rk = 1) we obtain the already known formula

d̂k,1 =
P (zk)

zkQ[1](zk)
=

P (zk)

zkQ(1)(zk)
. (26)

For a twofold degenerate resonance (rk = 2) equation (25) yields

d̂k,2 =
P (zk)

z2k Q
[2](zk)

=
2P (zk)

z2k Q
(2)(zk)

,

d̂k,1 =
P [1](zk)

zkQ[2](zk)
− d̂k,2

(
1 +

zkQ
[3](zk)

Q[2](zk)

)
=

2P (1)(zk)

zkQ(2)(zk)
− d̂k,2

(
1 +

zkQ
(3)(zk)

3Q(2)(zk)

)
. (27)

Threefold degenerate resonances will probably occur more rarely. For rk = 3 the

amplitudes read:

d̂k,3 =
P (zk)

2z3kQ
[3](zk)

=
3P (zk)

z3kQ
(3)(zk)

,

d̂k,2 =
P [1](zk)

z2kQ
[3](zk)

− d̂k,3
(

3 +
2zkQ

[4](zk)

Q[3](zk)

)
=

6P (1)(zk)

z2kQ
(3)(zk)

− d̂k,3
(

3 +
zkQ

(4)(zk)

2Q(3)(zk)

)
,

d̂k,1 =
P [2](zk)

zkQ[3](zk)
− d̂k,2

(
1 +

zkQ
[4](zk)

Q[3](zk)

)
− d̂k,3

(
1 +

3zkQ
[4](zk)

Q[3](zk)
+

2z2kQ
[5](zk)

Q[3](zk)

)
=

3P (2)(zk)

zkQ(3)(zk)
− d̂k,2

(
1 +

zkQ
(4)(zk)

4Q(3)(zk)

)
− d̂k,3

(
1 +

3zkQ
(4)(zk)

4Q(3)(zk)
+
z2kQ

(5)(zk)

10Q(3)(zk)

)
. (28)

The parameters zk and rk are the roots and corresponding multiplicities of the

polynomial Q(z). The values of the wk and dk,α in (12) are finally obtained by using

(9) for the frequencies and

dk,α = i d̂k,α
(α− 1)!

(−iτ)α−1
(29)

for the amplitudes.

In practical applications of the harmonic inversion method the roots zk of the

polynomial Q(z) can again be computed by e.g. Laguerre’s method or diagonalization
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of the Hessenberg matrix (10). Numerically two or more roots will typically not coincide

exactly, however, the distance between neighbouring roots can become very small. In

that case, the application of formulae for the degenerate case derived in this section

is meaningful. Close to a degeneracy related to an exceptional point the amplitudes

dk in (1) of the non-degenerate resonances can become very large and diverge at the

exact EP [22]. By contrast, the amplitudes dk,α in (12) of higher order poles describing

the non-Lorentzian shape of a resonance close to an EP only weakly depend on the

distances between nearly degenerate zk values, as will be shown in section 3. In an

implementation of the extended harmonic inversion method it is useful to introduce a

parameter δ and to assume zk values with distances less than δ to be degenerate. The

formulae for the amplitudes of a degenerate resonance require inserting the parameter

zk of the degenerate frequency. In the numerical procedure that zk value is taken as the

geometric mean of the individual nearly degenerate zk’s.

3. Analysis of exceptional points

We now present applications of the extended harmonic inversion method for the analysis

of exceptional points. In section 3.1 we analyse photoabsorption spectra of the hydrogen

atom in crossed magnetic and electric fields, and in section 3.2 we investigate the

occurrence of an EP in the dynamics of a single particle in a time-dependent harmonic

trap.

3.1. Hydrogen atom in crossed magnetic and electric fields

Atoms in crossed static magnetic and electric fields are open quantum systems, which

have been investigated in detail both experimentally [36–39] and theoretically [40–43].

For the hydrogen atom in crossed fields the Hamiltonian [in atomic units with γ =

B/(2.35 × 105 T), f = F/(5.14 × 1011 V/m), and Lz the z-component of the angular

momentum] reads

H =
1

2
p2 − 1

r
+

1

2
γLz +

1

8
γ2(x2 + y2) + fx . (30)

As the crossed fields hydrogen atom is an open system the photoabsorption spectrum

is a superposition of resonances with nonzero line widths. The photoabsorption cross

section for excitations of an initial state ψ0 at energy E0 to a final state at energy E

can be written as [44]

σ(E) = 4πα(E − E0) Im

(∑
j

〈ψ0|D|ψj〉2

Ej − E

)
, (31)

with α the fine-structure constant and D the dipole operator. The Ej are complex

energy eigenvalues and the ψj the corresponding complex eigenstates, which can be

computed with the complex coordinate rotation method [45–47].

The resonance positions in the complex energy plane depend on two parameters,

viz. the magnetic and electric field strengths γ and f . By varying the two field
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Figure 1. Photoabsorption spectrum around the nearly degenerate resonance at

E ≈ −0.0221 of the crossed fields hydrogen atom at field strengths γ = 0.004604

and f = 0.0002177. The numerically exact cross section σexact (black solid line) is

excellently reproduced by the sum σ1 + σ2 (red dashed line) of the contributions σ1
related to a first order pole (blue dotted line) and σ2 related to a second order pole

(grey dashed line). The non-vanishing contribution of the second order pole clearly

indicates that the resonance is related to an exceptional point. The positions E1 and

E2 of the two nearly degenerate resonance poles are marked in the lower panel. All

values are in atomic units.

strengths it can happen that two resonances coincide at the same complex energy.

Various methods can be applied to investigate whether or not the degeneracy is an

exceptional point. The most established technique is to encircle the critical point in

the (γ, f) parameter space [21, 22]. The EP is a branching singularity characterised by

the property that the two states permute when the EP is encircled along a closed path.

The method, however, requires the analysis of a sufficiently high number of measured or

computed photoabsorption spectra at (γ, f) parameters surrounding the critical point.

An alternative method is to analyse a degenerate or nearly degenerate resonance with

the extended harmonic inversion method. Here, the fingerprint of an EP is a non-

Lorentzian line shape of the resonance caused by higher order poles (α ≥ 2) in the

ansatz (12). The advantage of the method is that a single spectrum is sufficient to

reveal exceptional points.

As an example we analyse the resonance at energy E ≈ −0.0221 in the

photoabsorption spectrum of the crossed fields hydrogen atom at the field strengths

γ = 0.004604 and f = 0.0002177 shown as solid black line in figure 1. The

photoabsorption cross section σ(E) is computed for transitions from the initial state

|2p0〉 to final states with light polarised parallel to the magnetic field axis as described

in [22]. The harmonic inversion analysis of the numerically exact spectrum reveals two

nearly degenerate complex energies E1 and E2 shown in the lower panel of figure 1. They

are related to the exceptional point labelled 8 in table I of [22]. The values of the energies
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Table 2. Harmonic inversion analysis of the degenerate resonance at E ≈ −0.0221

in figure 1. The amplitudes d1 and d2 have been obtained with (26) for the two

slightly different complex energies E1 and E2. The amplitudes d1,1 and d1,2 have

been computed with (27) for a twofold degenerate resonance at the mean energy

Ē1 = (E1 + E2)/2.

ReE ImE Re d Im d

E1 -0.0221376 -0.0000655 d1 10.034060 14.122197

E2 -0.0221322 -0.0000720 d2 -10.029165 -12.224046

Ē1 -0.0221349 -0.0000688
d1,1 0.004687 1.897540

d1,2 -0.000140 -0.000006

and amplitudes obtained by the harmonic inversion method are presented in table 2.

As the complex energies E1 and E2 do not exactly coincide the two corresponding

amplitudes d1 and d2 can be computed with equation (26) valid for non-degenerate

resonances. However, it should be noted that roughly d2 ≈ −d1, i.e. both amplitudes

cancel each other to a large amount. The values of d1 and d2 strongly depend on the

distance between the two nearly degenerate resonances and diverge at the exact EP

where E1 = E2. It is therefore more appropriate to describe the resonance in figure 1

using the ansatz (12) for a non-Lorentzian line shape. The amplitudes d1,1 and d1,2 in

table 2 have been computed with (27) for a twofold degenerate resonance at the mean

energy Ē1 = (E1 +E2)/2. The Lorentzian part of the resonance related to a first order

pole in (12) and the non-Lorentzian part related to a second order pole in (12) are shown

as grey dashed and blue dotted line in figure 1, respectively, and the sum of the two

contributions (red dashed line) reproduces the total photoabsorption cross section (black

solid line) very well. The amplitudes d1,1 and d1,2 only weakly depend on how closely

the exact EP is approached and, in particular, do not diverge at the EP. This clearly

demonstrates that the extended harmonic inversion method introduced in section 2.2 is

not restricted to the case of exact degeneracies but is well suited even for the analysis of

nearly degenerate resonances. Furthermore, the method allows for the detection of an

EP using a single spectrum. The contributions of both the first and second order pole

in figure 1 are of similar size. The non-vanishing contribution of the second order pole

provides clear evidence that the two resonance poles in the lower panel of figure 1 are

related to a second order exceptional point. By contrast, the method of encircling the

EP requires several spectra at various parameter values to observe the permutation of

states as a fingerprint of the EP [21,22].

The spectrum in figure 1 has been computed numerically, however, it is important

to note that high-resolution spectroscopy of atoms in external fields allows for the

experimental observation of exceptional points. The resolution of the experiment must

be sufficiently high to resolve the line shapes of resonances and, in particular, to

distinguish between Lorentzian and non-Lorentzian profiles. The harmonic inversion

analysis of experimental high-resolution spectra is an alternative to the measurement of

the survival probability S(t) = |〈ψ(0)|ψ(t)〉|2 of a decaying degenerate resonance ψ(t),
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which has been excited with a laser whose bandwidth is large compared to the width of

the resonance [32]. Nevertheless, the extended harmonic inversion method can also be

applied to adjust the measured survival probability to the functional form of the signal

(13), and to detect, e.g., a second order EP by the non-exponential decay of the survival

probability S(t) = |1− at|2 exp(2ImEEPt/~) with a parameter a 6= 0.

3.2. Single particle in a time-dependent harmonic trap

As a second example for the application of the extended harmonic inversion method

we study the dynamics of a single particle with mass m in a harmonic oscillator with

changing frequency given by the Hamiltonian

H =
p2

2m
+
m

2
ω2(t)x2 . (32)

It has been shown by Uzdin et al [31] that when the frequency is changed by keeping

the dimensionless adiabatic parameter

µ =

[
1

ω2(t)

]
dω(t)

dt
(33)

fixed, the time evolution features an exceptional point at µ = 2. The variance of

the position operator 〈x2〉 normalised by the width of the instantaneous potential

1/
√

2mω(t) as function of the renormalised time s = (1/µ) ln[ω(t)/ω(0)] is given by

the signal

C(s) =
µ2 cosh(s

√
µ2 − 4/µ) + µ

√
µ2 − 4 sinh(s

√
µ2 − 4/µ)− 4

µ2 − 4
(34)

and illustrated for various values of µ in figure 2. The signal C(s) shows a sharp

transition from an oscillatory to a monotonic exponential dynamics at µ = 2, where

three frequencies of the signal are identical. Is this degeneracy a third order EP? That

question cannot be answered with the established method of observing the permutation

of the frequencies when the EP is encircled in the parameter space because the single

control parameter µ of the system does not allow for such an encircling. Uzdin et al [31]

propose to observe the third order derivative of the renormalised variance which should

vanish at µ = 2, where C(s) is a second order polynomial in s. However, higher order

derivatives of the experimentally measured signal may strongly suffer from noise.

As an alternative approach we suggest to use the extended harmonic inversion

method to identify the EP unambiguously. For the analysis of signals it is convenient

to write the signal C(s) defined in (13) in the form

C(s) =
∑
k

rk∑
α=1

d̃k,α s
α−1 exp(−iwks) (35)

with

d̃k,α =
(−i)α

(α− 1)!
dk,α , (36)
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Figure 2. Signal C(s) obtained as normalised variance of the position operator 〈x2〉
as a function of renormalised time of a particle in a time-dependent harmonic trap

for various values of the adiabatic parameter µ. A transition from an oscillatory to a

monotonically growing exponential dynamics occurs at µ = 2.

and to determine the frequencies wk and amplitudes d̃k,α with the extended harmonic

inversion method. The results for the analysis of the signal (34) are presented in figure 3.

The numerical procedure reveals that the signal possesses exactly three frequencies with

nonzero amplitudes. The frequencies are shown in figure 3(a). Evidently, w1 = 0 is

constant and w2 and w3 undergo a transition from purely real to purely imaginary

frequencies at µ = 2, which is directly related to the transition from an oscillatory to

a monotonic exponential dynamics in figure 2. The amplitudes d̃1 to d̃3 in figure 3(b)

obtained with equation (26) for non-degenerate resonances diverge at µ = 2, where

the three frequencies coincide. By contrast, the amplitudes d̃1,1 to d̃1,3 in figure 3(c)

obtained with equation (28) for a threefold degenerate resonance are smooth functions

around µ = 2. The nonzero value d̃1,3 = 0.5 in the region µ ≈ 2 provides clear evidence,

that the critical point is a third-order EP.

In any realisation of the experiment proposed by Uzdin et al [31] the frequency

ω(t) of the time-dependent harmonic trap can certainly be varied only within a limited

finite range, and thus the signal C(s) in figure 2 cannot be measured at large values s

of the renormalised time. The results in figure 3 have been obtained by analysing the

region s ∈ [0, 2] of the signal. Note that at small values of s the signals belonging to

different parameters µ become more and more similar (see, e.g. the signals with µ = 1.8,

µ = 2, and µ = 2.2 in figure 2) and thus the extraction of the correct frequencies and

amplitudes from a short signal is a nontrivial task. We have checked that signals with a

short signal length down to smax ≈ 1 are sufficient to clearly observe the degeneracy of

the three frequencies at µ = 2 and to verify the nonzero amplitude d̃1,3 ≈ 0.5 indicating

the third-order EP. Furthermore, the harmonic inversion method is robust against a

certain amount of noise in the signal [4, 5]. For these reasons the extended harmonic
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Figure 3. (a) Frequencies and (b), (c) amplitudes obtained by the harmonic inversion

analysis of the signal C(s) in (34) as functions of the adiabatic parameter µ. The

amplitudes d̃1 to d̃3 in (b) obtained with equation (26) for non-degenerate resonances

diverge at µ = 2, where the three frequencies in (a) coincide. By contrast, the

amplitudes d̃1,1 to d̃1,3 in (c) obtained with equation (28) for a threefold degenerate

resonance are smooth functions around µ = 2. The nonzero value d̃1,3 = 1 in the

region µ ≈ 2 provides clear evidence, that the critical point is a third-order EP.
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inversion method introduced in this paper is ideally suited to reveal exceptional points

in experimentally measured signals.

4. Conclusion

We have extended the harmonic inversion method to allow for the analysis of spectra

and time signals with degeneracies. In the energy or frequency domain the parameters

of non-Lorentzian line shapes related to higher order resonance poles and in the time

domain the parameters of non-exponentially decaying contributions to time signals

can be extracted. The method has been applied to reveal exceptional points in the

photoabsorption spectrum of the hydrogen atom in crossed electric and magnetic fields

and in the dynamics of a single particle in a time-dependent harmonic trap. The

harmonic inversion analysis is an alternative to the observation of the permutation of

states when the exceptional point is encircled in the parameter space. The advantage of

the method is that it allows for the verification of an EP even in cases when appropriate

parameters for the encircling of the EP are not available. In the future the extended

harmonic inversion method can be used to observe exceptional points in a large variety of

physical systems, including e.g. electronic circuits, mechanical systems, atomic spectra,

Bose-Einstein condensates, microcavities, and microwave resonators.

Appendix A. Derivation of the sum relation

Here we present derivations of equations (18) and (20) for the series
∑∞

n=0 n
α−1xn. We

start with the formula(
x d
dx

)α
f(x) =

α∑
n=0

S(α, n)xn
(

d
dx

)n
f(x) (A.1)

which can easily be proved by induction: With the Stirling numbers S(α, α + 1) = 0

and S(α,−1) = 0 we obtain(
x d
dx

)α+1
f(x) =

α∑
n=0

S(α, n)
(
nxn

(
d
dx

)n
f(x) + xn+1

(
d
dx

)n+1
f(x)

)
=

α+1∑
n=0

(nS(α, n) + S(α, n− 1))xn
(

d
dx

)n
f(x) , (A.2)

with an index shift n → n − 1 in the second term of the upper equation. Using the

recurrence relation S(α + 1, n) = nS(α, n) + S(α, n− 1) [34] we obtain (A.1).

Now this formula is applied to the geometric series. On the one hand we have(
x d
dx

)α−1 ∞∑
n=0

xn =
(
x d
dx

)α−1 1

1− x
=

α−1∑
n=0

n!S(α− 1, n)
xn

(1− x)n+1
. (A.3)

On the other hand, the derivatives of the geometric series yield(
x d
dx

)α−1 ∞∑
n=0

xn =
∞∑
n=0

nα−1 xn , (A.4)
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and therefore we arrive at equation (18). To obtain the functions fα(x) in (18) we

factorise the highest powers of x and 1/(1− x)

∞∑
n=0

nα−1 xn =
xα

(1− x)α

α−1∑
n=0

n!S(α− 1, n)

(
1

x

)(
1− x
x

)α−n−1
, (A.5)

which yields (20).
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