Quantum-classical model for the formation of Rydberg molecules

Andrej Junginger, Jörg Main, and Günter Wunner
Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
(Dated: January 27, 2012)

A fascinating aspect of Rydberg atoms is their ability to form huge but very weakly bound molecules with a ground state atom, only held together by a scattering process between the latter and the Rydberg electron. Beyond the usual way of creating such molecules by laser excitation from two ground state atoms with a distance of less than the Rydberg radius, we demonstrate that Rydberg molecules can also be formed by capturing a ground state atom which is initially located outside the range of the Rydberg atom when it comes in contact with it. To demonstrate this effect, we investigate the scattering process between the Rydberg electron and the ground state atom within a quantum-classical framework. In this picture capturing results from a dissipative finite-mass correction term in the classical equations of motion. We show that and under which conditions the capturing takes place.

PACS numbers: 34.50.Cx, 34.20.Cf

I. INTRODUCTION

Highly excited Rydberg atoms have long-since become the focus of numerous theoretical and experimental investigations [1–8], which exploit, e.g., their large spatial extensions, which give rise to huge polarizabilities and strong interactions, or their long lifetimes. In 2000, Greene et al. [3] predicted that Rydberg atoms can form very weakly bound molecules with ground state atoms. This was experimentally confirmed in 2009 by Bendkowsky et al. [1] in a cold dilute gas of rubidium atoms, and the results well agree with a simple quantum mechanical model developed by Greene et al. [3].

Rydberg molecules are created by laser excitation of one ground state atom in a two-photon process using detuned lasers. The resulting Rydberg atom can then form a molecule with another ground state atom, which, at the time of laser excitation, is within a distance from the nucleus of the Rydberg atom smaller than the extension of the wave function of the Rydberg electron. In this way, also the creation of excited dimers and Rydberg trimers is possible [2, 8].

In this paper, we pursue a quantum-classical approach to understand the mechanism by which Rydberg molecules are formed. In such a picture we will demonstrate how ground state atoms which are initially located at distances from the Rydberg atom larger than its extension can be captured by the latter after its excitation. This will lead to the interpretation that a Rydberg molecule is formed in the sense of a chemical reaction in which two reactants, the Rydberg and the ground state atom, interact to form the reaction product, i.e. the Rydberg molecule. As is well known chemical reactions cannot take place between two single particles because energy and momentum cannot be conserved simultaneously. A reaction, however, can occur in the formation of a Rydberg molecule because the Rydberg electron plays the role of a third particle which can within the natural linewidth of the Rydberg state, absorb kinetic energy from the ground state atom.

Our paper is organized as follows: First, we give a brief review and discussion of Greene’s quantum mechanical model before we introduce our quantum-classical treatment which is based on classically describing the motion of the Rydberg electron in the 1/r-potential, locally approximating it as a superposition of plane waves at the position of the ground state atom, quantum mechanically describing the s-wave scattering process. As a result, we can derive an expression for the force acting on the ground state atom which includes a dissipative finite-mass correction term in the classical equations of motion. Finally, we compare the results obtained for the models with and without the correction term, and determine under which conditions the capturing of a ground state atom, i.e., the formation of a molecule, can occur.

II. THEORY

As framework for the theoretical description of the dynamics one could use Quantum Molecular Dynamics [9] classically describing the motion of the nuclei of the molecule under the influence of the electron. However, in the case of Rydberg molecules, the dynamics of the Rydberg electron is predominantly determined by the nucleus of the Rydberg atom since the latter is positively charged, and the ground state atom is a neutral particle which only acts as a small perturber. Thus, the wave function of the Rydberg electron is known for given quantum numbers and an appropriate description of the interaction between the Rydberg electron and the ground state atom in a quantum-classical picture is therefore possible by locally approximating the known Rydberg wave function by a superposition of plane waves, each representing one classically corresponding Kepler ellipse of the Rydberg electron.

The following two sections review the quantum mechanical description of Rydberg atoms and introduce the quantum-classical treatment of the scattering process.
FIG. 1. Molecular potential of a Rydberg molecule as a function of the internuclear distance for a negative scattering length $a_0 = -18.5$ and a polarizability $\alpha = 319.0$ in Eq. (2), calculated from Eq. (3) for quantum numbers $n = 31$, $l = 0$, $m = 0$. The assignment of colours to the different potential wells will be the same in Fig. 5 and Fig. 6.

A. Molecular potential of Rydberg molecules

In the quantum mechanical model of Greene et al. [3] the interaction between the Rydberg electron and the ground state atom is described using a Fermi type pseudopotential [10]

$$V(r, R) = 2\pi a(k)\delta(r - R), \quad (1)$$

where r and R denote the positions of the Rydberg electron and the ground state atom, respectively, and the function $a(k)$ is the s-wave scattering length, which depends on the wave vector k of the Rydberg electron. In a first-order approximation, it can be expressed in the form [11]

$$a(k) = a_0 + \frac{\pi}{3}\alpha k + \mathcal{O}(k^2). \quad (2)$$

Here a_0 is the zero-energy scattering length and α the polarizability of the target. Within a mean-field approximation this contact interaction leads to the molecular potential

$$V(R) = 2\pi a(k)|\psi_{\text{Ry}}(R)|^2, \quad (3)$$

where $\psi_{\text{Ry}}(R)$ is the value of the wave function of the Rydberg electron at the position R of the ground state atom. If $a(k) < 0$ the interaction is attractive. Fig. 1 shows the molecular potential for a particular set of quantum numbers.

By construction, Eq. (3) associates a fixed position R of the ground state atom with the potential energy $V(R)$. If one considers a single scattering event of the Rydberg electron with the ground state atom this is physically equivalent to the assumption that the centre of mass of the two scattering partners lies exactly at the centre of the ground state atom, i.e. $m_e/m_{\text{gs}} = 0$. Moreover, Eq. (3) only takes into account the mean density distribution of the Rydberg electron and thus neglects dynamical effects of the scattering process.

B. Scattering process within the quantum-classical framework

The assumption $m_e/m_{\text{gs}} = 0$ is, of course, never strictly fulfilled, and, e.g., for rubidium atoms, which we will consider throughout this paper, we have $m_e/m_{\text{Rb}} \approx 6 \times 10^{-6}$. Thus the description of the electron-Rb-scattering in the framework of Eq. (3) is not complete. To take into account dynamical effects of single scattering events, we will describe these in a quantum-classical way. In the classical equations of motion, by which we describe the dynamics of the heavy ground state atom, this treatment will lead to a small but nonvanishing dissipative correction term in the order of the ratio of the masses of the two scattering partners, $O(m_e/m_{\text{Rb}})$. In spite of its smallness it can have drastic effects on the dynamics of the rubidium atoms, as we will demonstrate in Section III.

Our quantum-classical model is based on the following assumptions: We describe the Rydberg atom as hydrogen-like with one Rydberg electron and a core with charge $+e$. Because of the high excitation of the Rydberg atom ($n \gg 1$), correspondence principle allows us to treat the motion of the Rydberg electron in terms of the classical trajectories, namely Kepler ellipses, and we quantize the latters’ angular momentum L and their energy E semiclassically according to

$$L = l + \frac{1}{2}, \quad E = \frac{p^2}{2} - \frac{1}{r} = -\frac{1}{2nm^2}, \quad (4)$$

where $n = 1, 2, 3, \ldots$ and $l = 0, 1, 2, \ldots$ are the principal and azimuthal quantum numbers, respectively, p is the momentum of the Rydberg electron and $r = |r|$ is its distance from the core. Note that the continuous set of Kepler ellipses fulfilling these conditions only differ from each other by a rotation of the ellipses around the azimuthal quantization axis.

Since the interaction between the Rydberg electron and the ground state atom is of contact-like type, within this quantum-classical framework these two will only interact if the Kepler ellipses hit the latter (see Fig. 2), i.e. if the orbit includes the position R of the ground state atom. It can be easily shown that out of the infinite set of equivalent Kepler ellipses with given quantum numbers n, l, m only four ellipses fulfill this additional condition (see also Ref. [12]). In experiments only molecules with the Rydberg atom in an s-state have been formed so far, therefore we will also restrict ourselves to the angular momentum quantum numbers $l = m = 0$. In this case always two of the four possible ellipses coincide, and we are left with only two Kepler orbits that can intersect with the ground state atom each of which is traversed in clockwise and counterclockwise direction. Thus the momenta $p^{(i)}$ of the Rydberg electron on the i-th Kepler ellipse at the point of intersection are opposite to each other,

$$p^{(1)} = -p^{(2)}, \quad p^{(3)} = -p^{(4)} \quad (5)$$
for \(m = 0 \). Their values can be easily calculated for each point on the orbit and, in particular, at the point of intersection, i.e., the position of the ground state atom.

To describe the process of the Rydberg electron orbiting on a Kepler ellipse being \(s \)-wave scattered at the ground state atom we make use of the fact that the extension of the highly excited Rydberg atom is, by far, larger than that of the ground state atom. Thus, we can assume the Coulomb potential \(V_C(r) \) of the Rydberg atom’s nucleus to be constant in a small vicinity of the ground state atom, i.e. \(V_C(r) \approx \text{const.} \) for \(r \approx R \), further allowing us to approximate the Rydberg electron on the \(i \)-th Kepler ellipse by a plane wave \(\psi_{\text{pw}}^{(i)}(r) = A^{(i)} \exp \left(i \mathbf{p}^{(i)} \cdot \mathbf{r} \right) \). The local approximation of the total wave function is consequently a superposition of four plane waves, corresponding to the four ellipses,

\[
\psi_{\text{Ry}}(r) \approx \sum_{i=1}^{4} \psi_{\text{pw}}^{(i)}(r) = \sum_{i=1}^{4} A^{(i)} \exp \left(i \mathbf{p}^{(i)} \cdot \mathbf{r} \right),
\]

which establishes the key link between the classical picture of the interaction and the quantum mechanical description of the scattering process: The momenta are identical to those of the electron on the Kepler orbit at the point of collision, and the amplitudes \(A^{(i)} \) are determined by fitting the wave function to the exact quantum mechanical Rydberg wave function. For \(m = 0 \) this wave function is real-valued and cylindrically symmetric, \(\psi_{\text{Ry}} = \psi_{\text{Ry}}(\rho, z) \), which implies that the complex amplitudes \(A^{(i)} \) come in complex conjugate pairs, \(A^{(1)} = A^{(2)} \) and \(A^{(3)} = A^{(4)} \). We are therefore left with four unknowns, the real and imaginary parts of \(A^{(1)} \) and \(A^{(3)} \).

To determine these we require that at the intersection point the values of the wave functions and their first derivatives coincide:

\[
\begin{align*}
\psi_{\text{pw}}^{(1)}|_{r=R} &= \psi_{\text{Ry}}|_{r=R}, \\
\Delta_{\rho} \psi_{\text{pw}}^{(1)}|_{r=R} &= \Delta_{\rho} \psi_{\text{Ry}}|_{r=R}, \\
\Delta_{z} \psi_{\text{pw}}^{(1)}|_{r=R} &= \Delta_{z} \psi_{\text{Ry}}|_{r=R}.
\end{align*}
\]

Requiring also the identity of the second derivatives would provide three more equations but render the total set of equations over-determined. To obtain a fourth equation we therefore only require that the sum of the moduli squared of the deviations of the second derivatives of the quantum-classical and the Rydberg wave function be a minimum

\[
(\Delta_{\rho}^2 (\psi_{\text{pw}} - \psi_{\text{Ry}})|_{r=R})^2 + (\Delta_{z}^2 (\psi_{\text{pw}} - \psi_{\text{Ry}})|_{r=R})^2 = \min.
\]

This leads to the best possible approximation of the Rydberg wave function by the four plane waves \(\psi_{\text{pw}}^{(i)} \).

To describe the scattering process in the quantum-classical picture, we first consider scattering of a single electron with a ground state atom in the latter’s rest frame. Because of the low temperatures in the experiment, only \(s \)-wave scattering occurs (note that \(p \)-wave scattering leading to internal quantum reflection [2] will be neglected and thus the energy potential curve allows classical treatment). Therefore the incoming Rydberg electron on the \(i \)-th Kepler ellipse, described by the plane wave \(\psi_{\text{pw}}^{(i)} \) with momentum \(p_{\text{in}}^{(i)} = m_e \mathbf{v}_e^{(i)} \), is scattered to an outgoing spherical wave

\[
\psi_{\text{out}}^{(i)} \sim \frac{\exp \left(i \mathbf{p}_{\text{out}}^{(i)} \cdot \mathbf{r} - R \right)}{|\mathbf{r} - R|},
\]

representing the electron being scattered under uniformly distributed angles. Since \(m_e \ll m_{\text{Rb}} \), of course, \(p_{\text{out}}^{(i)} = p_{\text{in}}^{(i)} \) holds, but averaging over several scattered electrons yields \(p_{\text{in}}^{(i)} = 0 \) because of the spherically symmetric angle distribution. Therefore on average the Rydberg electron transfers a momentum of \(\Delta \mathbf{P}_{\text{Rb}}^{(i)} = m_e \mathbf{v}_e^{(i)} \) to the target, i.e. the rubidium ground state atom.

A number of \(N^{(i)} \) colliding electrons consequently leads to a momentum transfer of

\[
\Delta \mathbf{P}_{\text{Rb}}^{(i)} = N^{(i)} m_e \mathbf{v}_e^{(i)},
\]

and if the scattering events occur in a time \(\Delta t \) this corresponds to a classical force

\[
\mathbf{F}_{\text{Rb}}^{(i)} = \Delta \mathbf{P}_{\text{Rb}}^{(i)}/\Delta t
\]

acting on the ground state atom. We now proceed from single but continuous scattering processes to a current density

\[
\mathbf{j}_e^{(i)} = n_e^{(i)} \mathbf{v}_e^{(i)} = \frac{N^{(i)}}{\sigma \Delta t} \mathbf{v}_e^{(i)},
\]
where \(n_{e}^{(i)} = |A^{(i)}|^2 \) is the electron density on the \(i \)-th Kepler ellipse, \(\sigma = 4\pi a^2(k) \) is the s-wave scattering cross-section, and \(\hat{e}_{v_{e}^{(i)}} \) is the unit vector in the direction of \(v_{e}^{(i)} \). Combining Eqs. (10)–(12) we end up with

\[
F_{\text{Rb}}^{(i)} = n_{e}^{(i)} m_e \sigma \left| v_{e}^{(i)} \right|^2 \hat{e}_{v_{e}^{(i)}}. \tag{13}
\]

We now switch to the laboratory frame, where the ground state atom, in general, moves with a velocity \(v_{\text{Rb}} \neq 0 \) relative to the ionic core of the Rydberg atom and, without loss of generality, assume the latter to be at rest. The transformation to the laboratory frame then results in the formal substitution \(v_{e} \rightarrow v_{e} - v_{\text{Rb}} \) in Eq. (13), which leads to

\[
F_{\text{Rb}} = \sum_{i=1}^{4} F_{\text{Rb}}^{(i)}, \tag{14a}
\]

\[
F_{\text{Rb}}^{(i)} = n_{e}^{(i)} m_e \sigma \left| v_{e}^{(i)} - v_{\text{Rb}} \right|^2 \hat{e}_{v_{e}^{(i)} - v_{\text{Rb}}}. \tag{14b}
\]

Note that by locally describing the four Kepler ellipses as independent plane waves we lose all interference terms and thus the nodal structure of the Rydberg wave function. Therefore the Eqs. (14) cannot catch the mean electron density distribution. Moreover, since \(F_{\text{Rb}}^{(i)} \sim n_{e}^{(i)} \) with the electron density \(n_{e}^{(i)} = |v_{\text{Rb}}^{(i)}(r)|^2 \), any phase-factor corrections which may occur when transforming from the ground state atom’s rest frame to the laboratory frame will cancel out.

For a simple discussion of the effect of the forces acting on the ground state atom described by the Eqs. (14) imagine the interaction with only the two coinciding Kepler ellipses \(i = 1, 2 \) (the same holds, of course, for \(i = 3, 4 \)) and the case where at the collision the ground state atom and the Rydberg electron fly in the same direction, \(\hat{e}_{v_{\text{Rb}}} = \hat{e}_{v_{e}^{(1)}} \). Since Eq. (5) then implies \(\hat{e}_{v_{e}^{(2)}} = -\hat{e}_{v_{e}^{(1)}} \), we obtain a net force on the ground state atom

\[
F_{\text{Rb}} = F_{\text{Rb}}^{(1)} + F_{\text{Rb}}^{(2)} = -4m_e \sigma n_{e}^{(1,2)} v_{e}^{(1,2)} v_{\text{Rb}} \hat{e}_{v_{\text{Rb}}}. \tag{15}
\]

which for any value of the modulus of its velocity \(v_{\text{Rb}} > 0 \) is directed opposite to its direction of flight, i.e., the ground state atom is decelerated. Note that in Eq. (15) always one contribution to the force is accelerating (here the one with \(\hat{e}_{v_{\text{Rb}}^{(1)}} = \hat{e}_{v_{e}^{(1)}} \)) and the other one is decelerating (here the one with \(\hat{e}_{v_{\text{Rb}}^{(2)}} = -\hat{e}_{v_{e}^{(2)}} \)), whereas the latter dominates since \(|v_{e}^{(1)} - v_{\text{Rb}}| < |v_{e}^{(2)} - v_{\text{Rb}}| \). The discussion can be generalized to the case of arbitrary flight directions \(\hat{e}_{v_{\text{Rb}}} \), and there always occurs a deceleration of the ground state atom as a net effect.

Taking into account both the potential Eq. (3) resulting from the mean electron density distribution and the dissipative correction terms due to the dynamical effects, Eqs. (14), one can write down the classical equations of motion for the dynamics of the ground state atom in the influence of the Rydberg atom:

\[
\frac{d^2 R}{dt^2} = - \frac{1}{m_{\text{Rb}}} \nabla V(R) + \frac{m_e}{m_{\text{Rb}}} \sum_{i=1}^{4} n_{e}^{(i)} \left| v_{e}^{(i)} - v_{\text{Rb}} \right|^2 \hat{e}_{v_{e}^{(i)} - v_{\text{Rb}}}. \tag{16}
\]

The second term is on the order of \(m_e/m_{\text{Rb}} \approx 6 \times 10^{-6} \) and therefore small but, as will be shown below, can have drastic effects on the motion of the ground state atom. Note that in the limit \(m_e/m_{\text{Rb}} \rightarrow 0 \) we recover the original model of Greene et al. [3].

III. RESULTS

We obtain the following results solving the differential equation (16) for initial values \(\mathbf{R} \) and \(v_{\text{Rb}} \). The physical parameters are chosen in such a way that they cover the experiment in Ref. [1], in which \(^{87}\text{Rb}\) atoms have been excited to Rydberg s-states \(n' \geq 34 \). Including quantum defect corrections of \(\delta = 3 \) for rubidium [13], we therefore use quantum numbers \(n = n' - \delta = 31, \ l = 0, \ m = 0 \), a zero-energy scattering length of \(a_0 = -18.5 \) and a polarizability \(\alpha = 319 \) [1, 14].

Since we assume the Rydberg atom to be in the spherically symmetrical s-state, there are only three quantities which determine the dynamics of the ground state atom, namely the absolute value of the initial velocity of the ground state atom, \(v_{\text{Rb}} \), the initial internuclear distance
R_0 and the angle ϕ between the direction of the initial velocity and the line connecting the ground state atom and the centre of the Rydberg atom, $\cos \phi = \nu_{\text{Rb}} R/(\nu_{\text{Rb}} R)$. Throughout this section we choose $R_0 = 2500$ a.u. which is outside the range of the Rydberg electron including the tail of the Fermi pseudopotential.

To demonstrate the effect of the finite-mass correction term in Eq. (16) we compare the trajectories of the ground state atom obtained with and without the correction. Fig. 3 shows the internuclear distance between the Rydberg and the ground state atom for initial values $\nu_{\text{Rb}} = 1 \times 10^{-9}$ a.u. and $\phi = 0$, i.e. a central collision. If only the conservative potential is considered (dashed line), the ground state atom approaches the Rydberg atom, reaches some minimum distance and then leaves it again. Taking into account the finite-mass correction term (solid line), the ground state atom initially shows a similar behaviour, but on its way out from the Rydberg atom, it begins to oscillate around a distance of $R \approx 1100$ a.u. and no longer leaves the Rydberg atom. The physical meaning is that the ground state atom has been captured in one of the potential wells, i.e. the total energy of the ground state atom has decreased below zero and it cannot leave the Rydberg atom any more:

$$E_{\text{g.a.}} = \frac{m_{\text{Rb}}}{2} \nu_{\text{Rb}}^2 + V(R) < 0. \quad (17)$$

We emphasize that the formation of the molecule occurs after the excitation of the Rydberg atom and not, as usual, by excitation with a detuned laser.

In the example shown in Fig. 3 the ground state atom enters the environment of the Rydberg atom at $t \approx 3 \mu s$. The total energy $E_{\text{g.a.}}$ of the ground state atom becomes negative at $t \approx 5.5 \mu s$, which means that the Rydberg molecule is formed within about $2.5 \mu s$. Note, that this time is significantly smaller than the lifetime of the Rydberg molecule of about 15μs [1].

Since the system of the ionic Rydberg core, the Rydberg electron, and the ground state atom is closed, an important issue of the process described here is conservation of energy. In order to observe a deceleration of the ground state atom, its initial kinetic energy has to be transferred to its scattering partner, i.e. the Rydberg electron. To satisfy Eq. (17) for the initial velocity $\nu_{\text{Rb}} = 1 \times 10^{-9}$ a.u., in total, a kinetic energy of $E_{\text{kin}} = 525$ Hz has to be absorbed. However, this amount of energy is small compared to the level spacing between the quantum state considered and a neighbouring one, so that the excitation of a higher quantum state would be highly off-resonant and, thus, quantum mechanically forbidden. Nevertheless, the process remains allowed due to the very exotic conditions in the ultra-cold Rydberg gas: The quantum state n of the Rydberg electron is not sharp, but has a natural linewidth of $\Gamma/2\pi \approx 21$ kHz resulting from the $15 \mu s$ lifetime of the Rydberg molecule. The extremely small amount of kinetic energy will, therefore, not be deposited into an excitation of a higher quantum state but is absorbed at resonance within the linewidth of the same state.

After the point of capturing, the classical computations show a further decrease of the ground state atom’s energy, which is, within the lifetime of the Rydberg molecule, however, small compared to the depth of the potential and thus the molecule will have dissociated long before reaching binding energies of the quantized stationary vibrational states of the molecule. In addition, the latter has to be excluded because of physical reasons, since the required amount of energy cannot be deposited in the excitation of the Rydberg electron within the natural linewidth of the Rydberg state.

Moreover, we find a crucial dependence of the minimum of the potential in which the ground state atom is captured on the initial angle ϕ (see Fig. 4 for some exemplary trajectories). In fact, for each potential well there is a corresponding range of angles ϕ leading to the formation of a molecule with an internuclear distance associated to the particular well.

To generally determine for which initial conditions the ground state atom will be captured by the Rydberg atom, we calculate collisions for angles ϕ between 0° and 90° and initial velocities ν_{Rb} from 1×10^{-9} a.u. to 1×10^{-8} a.u. corresponding to kinetic energies of about 525 Hz to 52.5 kHz. As a reference for the velocity we take the mean velocity $\bar{\nu} \approx 1.3 \times 10^{-8}$ a.u. of an ideal gas at the temperature of $T = 3.5 \mu K$ at which the experiment of Bendkowsky et al. [1] was performed, i.e., this range of velocity corresponds to “slow” ground state atoms.

Fig. 5 shows the domains of initial values ϕ and ν_{Rb} where capture occurs. The colours indicate in which of the local potential minima the ground state atom is captured, and the colour assignment is the same as in Fig. 1. It can be seen from Fig. 5 that it strongly depends...
on the initial conditions whether or not the ground state atom is captured. For “slow” atoms there is a broad range of angles ϕ in which a molecule is formed while this range quickly shrinks with increasing velocity of the ground state atom. The areas with branches reaching to $v_{Rb} \gtrsim 1 \times 10^{-8}$ a.u. correspond to situations where the ground state atom is directly captured when approaching the Rydberg atom. For small angles $\phi \lesssim 20^\circ$ and velocities $v_{Rb} \lesssim 1.5 \times 10^{-9}$ a.u. we also find situations where the ground state atom is captured on its way out from the Rydberg atom after a reflection at some minimum internuclear distance. For $v_{Rb} \lesssim 1 \times 10^{-9}$ a.u. (not shown) almost all angles ϕ lead to capture. However, initial velocities of $v_{Rb} \gtrsim 0.5 \bar{v}$ corresponding to energies above the natural linewidth of the Rydberg molecule would lead to off-resonant absorption and are thus forbidden.

To compute probabilities with which a ground state atom of the velocity v_{Rb} is captured in the i-th potential minimum, we regard a uniform current of N ground state atoms and a diameter of at least the extension of the Rydberg atom interacting with it. Considering that the different angles then occur with a weighting factor of $4\pi \sin^2 \phi$, integrating over the cross-section of this current and dividing by all N ground state atoms, yields the probability of being captured in the i-th minimum. This fraction N_i/N is shown in Fig. 6 (colours again correspond to those in Fig. 1). As can be seen, the predominant part will be captured in the outermost minimum ($i = 1$), in which also the vibrational ground state of the Rydberg molecule is located (see Refs. [1, 3]). Capturing in other minima also happens, but by far more rarely.

IV. CONCLUSION AND OUTLOOK

Investigating the interaction between a Rydberg electron and a ground state atom in Rydberg excited gases within a quantum-classical framework, we were able to derive a dissipative finite-mass correction term to the classical equations of motion describing the dynamics of a ground state atom interacting with a Rydberg atom.

Considering this correction term of order $\mathcal{O}(m_e/m_{Rb})$ we have shown that a free ground state atom can, for suitable initial conditions, be captured by the Rydberg atom and thus form a Rydberg molecule. According to our calculations, this process takes place for “slow” ground state atoms, and capturing is most likely in the outermost potential minimum, where the vibrational ground state of the Rydberg molecule is located.

However, in contrast to the already proven mechanism of forming Rydberg molecules by direct laser excitation, it will be an experimental challenge to verify this process of capturing a ground state atom by a Rydberg atom because the latter will not happen until the Rydberg atom exists and the laser, used for the excitation, is switched off. On the other hand the observation of a Rydberg molecule in a Rydberg excited gas which has been generated using non-detuned lasers would give a clear hint on the observation of the capturing process described here.

