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Distributions of transition matrix elements in classically mixed quantum systems
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The quantitative contributions of a mixed phase space to the mean characterizing the distribution of diagonal
transition matrix elements and to the variance characterizing the distributions of nondiagonal transition matrix
elements are studied. It is shown that the mean can be expressed as the sum of suitably weighted classical
averages along an ergodic trajectory and along the stable periodic orbits. Similarly, it is shown that the values
of the variance are well reproduced by the sum of the suitably weighted Fourier transforms of classical
autocorrelation functions along an ergodic trajectory and along the stable periodic orbits. The illustrative
numerical computations are done in the framework of a hydrogen atom in a strong magnetic field, for three
different values of the scaled energy.@S1063-651X~99!04709-1#
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I. INTRODUCTION

It is well known that random matrix theory is able
reproduce successfully statistical properties which charac
ize the semiclassical regime of quantum systems with a
freedoms having a fully ergodic classical phase space. Th
true for bound systems since the short-ranged spectral s
tics, those using energy levels which are separated by s
multiples of the mean level spacing, are well described
this approach~see, e.g., Ref.@1#!. This is also true for scat
tering systems since the fluctuations of theS-matrix elements
are well modeled with the help of random matrices@2#. The
predictions of random matrix theory are universal, that
they are independent of the microscopic details of the p
ticular system under study. It is classical mechanics wh
provides the ultimate justification for universality. For in
stance, the universal behavior of the spectral statistics is
tified by resorting to the principle that the very long unsta
periodic orbits of the underlying classical dynamics are u
formly distributed in phase space~see, e.g., Ref.@3#!. For
instance also, the universal energy dependence of
S-matrix autocorrelation function is explained by the fa
that the distribution in length of the very long unstable sc
tering trajectories has a generic functional form for class
ergodic systems~see, e.g., Ref.@4#!.

Another example of universal behavior has to do with
transition matrix elements associated to an operator pert
ing a quantum system with an ergodic phase space. Ind
random matrix theory predicts that these transition ma
elements are independent random variables distributed
normal way@5#. However, mean and variance characteriz
these distributions are free parameters and therefore la
physical meaning in this approach. In view of the previou
given examples, it appears natural to link this other unive
property to classical mechanics again. This can actually
done by means of the generalization of the semiclass
theory pioneered by Gutzwiller@6,7# to arbitrary ~well be-
haved! operators@8,9#, a generalization which allows us t
give a classical interpretation of mean and variance. Inde
PRE 601063-651X/99/60~3!/2831~14!/$15.00
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in the semiclassical limit of quantum mechanics, the leadi
order expression of the mean value of the diagonal transi
matrix elements is equal to the microcanonical average of
Weyl transform of the perturbing operator@8,9#. In the same
limit, the leading-order expression of the variance associa
to the Gaussian distributions generated with nondiago
transition matrix elements is proportional to the Four
transform of the classical autocorrelation function of t
Weyl transform of the perturbing operator@8,9#. The link
between classical variance and autocorrelation function
been studied numerically in three quantum systems with
ergodic phase space, a quartic oscillator@10#, an oval billiard
@11#, and a hydrogen atom in a strong magnetic field@12#. In
these systems and for several examples of perturbing op
tors, it has actually been found that the autocorrelation fu
tion of the Weyl transform of the perturbing operator det
mines with an excellent accuracy the local values of
classical variance. Moreover, it has been verified@11# that
the semiclassical corrections to the leading-order expres
of the variance, which are due to the shortest unstable p
odic orbits, are in very good quantitative agreement with
theoretical predictions of Refs.@8,9#. The autocorrelation
function has also been studied in the framework of a pur
regular billiard for two examples of perturbing operato
@13#. It has to be added that a method has been proposed@14#
to compute the variance associated to the distribution of
agonal transition matrix elements, a quantity which has
been considered in Refs.@8,9#. This method, which rests on
periodic orbit theory, has an interesting formal relationsh
with the supersymmetric methods used in the description
disordered systems@15#.

Generic quantum systems with a small number of fr
domsd do have a mixed regular-ergodic phase space. T
means that two different kinds of orbits appear in the und
lying classical dynamics. There are orbits which wind reg
larly round d-dimensional tori and there are orbits whic
explore densely (2d21)-dimensional regions of the energ
shell in a highly chaotic manner. Phase space is there
naturally partitioned into regular components, each includ
2831 © 1999 The American Physical Society
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2832 PRE 60DOMINIQUE BOOSÉAND JÖRG MAIN
infinitely many neighboring tori and ergodic componen
which are free of tori. These various components are mu
ally independent. Since random matrix theory appears to
relevant to quantum systems with a fully ergodic phase sp
exclusively, the previously listed universal properties do
hold anymore for quantum systems with a mixed ph
space. However, one may still wonder about the presenc
statistical properties pertaining to mixed quantum system
fingerprints related to the coexistence of regular and ergo
regions in phase space. Berry and Robnik@16# have been
among the first to tackle this question. Assuming that
semiclassical spectrum of a mixed quantum system is
superposition of statistically independent sequences of le
from each of the phase-space components, they have
duced a semiphenomenological closed formula for the le
spacing distribution. The formula makes use of the to
phase-space volume of all regular regions as well as of
individual phase-space volumes of all ergodic regions. Th
line of argument has been extended to other spectral stati
@17#. The validity of the semiphenomenological formulas o
tained for the spectral statistics has been supported by
merical computations@17#. Apart from the one of Berry and
Robnik @16#, two other parametrizations of the level spaci
distribution have been proposed to characterize a mi
quantum system. These are the parametrizations of Br
@18# and of Izrailev@19#, whose validity has also been su
ported by numerical computations. The link between
mixed character of phase space and statistical propertie
transition matrix elements has been studied by Robnik
Prosen@20,21#. Extending to eigenvectors the assumption
independent sequences originally proposed for energy lev
they have argued that the only transition matrix eleme
which have to be considered in the semiclassical limit
those whose initial and final states can be associated to
same component of phase space. Moreover, they have
eralized the results of Refs.@8,9# by showing that the expres
sion of the variance characterizing the distributions of n
diagonal transition matrix elements whose initial and fin
states can be associated to a given component of phase
~which is either an ergodic region or some set of quanti
tori lying closely together! always involves a microcanonica
average over this very component. Numerical computati
@20,21# have corroborated the validity of their results.

The purpose of the present paper is to provide a deta
study of the quantitative contributions coming from the va
ous components of a mixed phase space to the mean ch
terizing the distribution of diagonal transition matrix el
ments and to the variance characterizing the distribution
nondiagonal transition matrix elements. It means in parti
lar to complement the study of Robnik and Prosen on a s
cific aspect of the link between the mixed character of ph
space and statistical properties of transition matrix eleme
which was not considered by them. This aspect concerns
use of the stable periodic orbits in the computation of
quantitative contributions coming from the various regu
components of phase space to the values of mean and
ance. The study of this particular point is interesting beca
of the following two reasons. On the one hand, the meth
proposed in Refs.@20,21# to compute the variance is not ea
to use in practice since it requires the prior identification
phase space of the adequate neighboring quantized tori
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the other hand, a given stable periodic orbit is in a way a
all alone to account for the quantitative contribution of
associated regular component to the semiclassical densi
states@22,23,7#. Considering these two facts, one may wo
der whether stable periodic orbits~whose practical identifi-
cation is usually easier than the one of specific quanti
tori! cannot help to compute in a convenient way the qu
titative contributions of the regular regions to the values
mean and variance. The paper shows that this is indeed
case by providing closed formulas for mean and variance
which stable periodic orbits are involved. Such formul
generalize to the case of mixed quantum systems those s
ied in Refs.@8,9,11,12#. This work extends that of Ref.@24#,
where details have been omitted because of lack of sp
The illustrative numerical computations are again done in
framework of a hydrogen atom in a strong magnetic field

The paper is organized as follows. In Sec. II, some det
relating to the scaling property which characterizes a hyd
gen atom in a strong magnetic field are given and the cho
of the perturbing operator used for the numerical compu
tion of the transition matrix elements is justified. Section
deals with the mean value of the distribution of diagon
transition matrix elements, a quantity which was not cons
ered in Refs.@20,21#. The quantitative contributions of th
ergodic and regular regions making up the mixed ph
space are identified. The contributions of the various regu
components are calculated with the help of the associa
stable periodic orbits. The illustrative numerical compu
tions are done for three different values of the scaled ene
Section IV is concerned with the variance characterizing
distributions of nondiagonal transition matrix elements. Fir
the orders of magnitude of the transition probabilities who
initial and final states are referring or not to the same ph
space component are compared. The quantitative contr
tions to the variance of the ergodic and regular regions
then studied. The manner in which a given stable perio
orbit is used in the calculation of the contribution comin
from the associated regular component is discussed. Th
lustrative numerical computations are done for the same
ues of the scaled energy as in the preceding section. A C
clusion summarizes the main results of the paper.

II. SCALING AND TRANSITION MATRIX ELEMENTS

To begin with, it is not an easy task to study the quan
tative effect of the underlying classical dynamics on the s
tistical properties of transition matrix elements. This is d
to the fact that the structure of phase space changes
energy for most systems. Consequently, any diagonal tra
tion matrix element̂ muÂum& (um& being an eigenvector o
the system andÂ the perturbing operator! is usually going
with a different energy shell. The problem becomes ev
trickier when considering nondiagonal transition matrix e
ments^muÂun& since initial and final eigenstates are alwa
going with different energy shells. The study should the
fore be done using a set of transition matrix elements
which initial and final eigenenergies are restricted to an
ergy interval small enough for phase space to keep its st
ture practically unchanged. However, in order to get a s
nificant number of transition matrix elements, one sho
choose an energy region which is high enough in the sp



a
re
ce
a
er
t

of
ul
g

ut
di
th

en

to
t i

b
a

n
ld
o
ic
e

m
n

te

i
e

op
ha

f
m
o

s-

c

s

e
the
o-

ith
od,
tric
n-

ev-
a-

us
ator
. It

es

udy

ex-
s
n
t
ice
ma-

n-
pu-

ace
r

ad-
tant

PRE 60 2833DISTRIBUTIONS OF TRANSITION MATRIX ELEMENTS . . .
trum so that the density of states can make up for the sm
ness of the used energy interval. This would obviously
quire the diagonalization of very large matrices in practi
Such numerical difficulties can be avoided by studying sc
ing systems. These are systems possessing scaling prop
which imply that phase space has the same structure a
energies. A hydrogen atom in a strong magnetic field@25#
and the three-body Coulomb system@26# are physically in-
teresting examples of scaling systems. The Hamiltonian
scaling system depends on a scaling parameter. It is usef
follow the variation of the energy levels with the scalin
parameter@25,26# since one can extract information abo
the underlying classical dynamics from spectra taken at
ferent values of the scaling parameter by application of
so-called method of scaled energy spectroscopy@27,28#.

In atomic units, the quantum Hamiltonian of a hydrog
atom in a strong magnetic field reads@25#

Ĥg~ p̂, r̂ !5
1

2
p̂22

1

r̂
1

1

2
gL̂z1

1

8
g2~ x̂21 ŷ2!. ~1!

HereL̂z is the component of the angular momentum opera
along the direction of the magnetic field. This componen
conserved and, consequently, the azimuthal quantum num
m is a good quantum number. Numerical computations
restricted to the subspacem50 in this study. The Hamil-
tonian is invariant under reflection with respect to the pla
which is perpendicular to the direction of the magnetic fie
and thez parity pz is thereby a good quantum number to
The parameterg is the magnetic field strength in atom
units,g5B/(2.353105 T). When expressed in terms of th
scaled coordinatesr̃5g2/3r and scaled momentap̃5g21/3p,
the classical Hamiltonian scales as

H̃g51~ p̃, r̃ !5
1

2
p̃22

1

r̃
1

1

2
L̃z1

1

8
~ x̃21 ỹ2!

5g22/3Hg~p,r !5g22/3E5Ẽ, ~2!

with E the excitation energy. Therefore, the classical dyna
ics obtained from the scaled equations of motion does
depend onE andg independently but on a single parame
combining both physical quantities, the scaled energyẼ
5g22/3E. This implies that the structure of phase space
identical for any pair (E,g) leading to the same value of th
scaled energy.

If ẑ̃ and p̂̃z are the scaled coordinate and momentum
erators along the direction of the magnetic field, one

@ ẑ̃, p̂̃z#5 ig1/3\ by virtue of the previously given definition o
scaled variables. The dependence of the quantum dyna
on the magnetic field strengthg can thereby be taken int
account by means of an effective Planck’s constant\eff
5g1/3\ (\51 subsequently!. One approaches the semicla
sical limit at constant scaled energy\eff→0 by decreasing
the value ofg. The quantization of Eq.~2! in the subspace
m50 leads to a generalized eigenvalue equation for the s
ing parameterw5g21/35\eff

21 . The introduction of the

scaled semiparabolic coordinatesm̃5Ar̃ 1 z̃ and ñ5Ar̃ 2 z̃
allows us to write this generalized eigenvalue equation a
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F2Ẽ~m̃21 ñ2!2
1

4
m̃2ñ2~m̃21 ñ2!14GC~m̃,ñ !

5w22~ p̂̃m
2 1 p̂̃n

2!C~m̃,ñ !, ~3!

with the radial operatorsp̂̃m
2 and p̂̃n

2 defined as

p̂̃m
2 52

1

m̃

]

]m̃
S m̃

]

]m̃
D , p̂̃n

252
1

ñ

]

]ñ
S ñ

]

]ñ
D .

Equation ~3! can be written in matrix form by using th
complete set of basis functions, which is composed of
tensorial products of the eigenvectors of two uncoupled tw

dimensional harmonic oscillators with frequencyA22Ẽ
@25,29#. The generalized eigenvalue equation is solved w
the help of the Lanczos spectral transformation meth
which is adapted to the diagonalization of sparse symme
matrices@30#. One obtains in this way the spectrum of eige
vectors uCm& and corresponding eigenvalueswm
5(g21/3)m . The structure of phase space is the same at
ery eigenenergywm since the generalized eigenvalue equ
tion has been solved at constant scaled energyẼ. Conse-
quently, the matrix elements describing the vario
transitions caused in the spectrum by a perturbing oper
are all going with the same underlying classical dynamics
has to be noted that the eigenvectorsuCm& are not orthogo-
nal. However, the modified eigenvectors um&

5Ap̂̃m
2 1 p̂̃n

2uCm& ~with the same corresponding eigenvalu
wm) are orthogonal, i.e.,

^mun&5^Cmu p̂̃m
2 1 p̂̃n

2uCn&5dmn . ~4!

The perturbing operator which has been chosen for this st
is

Â5
1

2r p̂2
5

w2

p̂̃m
2 1 p̂̃n

2
. ~5!

The second expression in this equation is the effective
pression of the operatorÂ when acting onto eigenvector
belonging to the subspacem50. The same operator has bee
used in previous papers@12,24# already. The reason is tha
this particular operator is convenient to handle in pract
since the general expression of the associated transition
trix elements in the orthonormal basis$um&% of modified
eigenvectors is

^muÂun&5wmwn^CmuCn&. ~6!

The computation of the transition matrix elements at co
stant scaled energy amounts therefore merely to the com
tation of the various overlaps of the eigenvectors$uCm&%.
Moreover, this computation can be restricted to a subsp
which is labeled by a given value ofpz because the operato
Â connects only eigenstates of the samez parity. Numerical
computations are done here in the subspacemp501. This
special perturbing operator offers another computational
vantage. Indeed, it turns out that the average at cons
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2834 PRE 60DOMINIQUE BOOSÉAND JÖRG MAIN
scaled energy of the Weyl transformÃ of the operatorÂ
along a given trajectory in phase space has an analytic
pression, given in Eq.~10! below. This average, which i
important for the physical interpretation of the numerical
sults presented in this paper, can therefore be computed
curately. The Weyl transform of the perturbing operator
expressed most simply with the help of the scaled semip
bolic momentap̃m and p̃n , the conjugate variables of th
scaled semiparabolic coordinatesm̃ and ñ. These momenta
are defined as the derivatives of the coordinatesm̃ andñ with
respect to the so-called rescaled time variablet @25#. The
expression ofÃ is

Ã~ p̃m ,p̃n!5
1

p̃m
2 1 p̃n

2
. ~7!

The scaling parameterw5g21/3 and the scaled actions̃(Ẽ)
5*( p̃mdm̃1 p̃ndñ) are conjugate variables at consta
scaled energy. Since the variablew is an energy variable, the
variables̃ can be considered as a time variable which m
sures the length of trajectories in the four-dimensional ph
space spanned by the scaled semiparabolic varia
(m̃,ñ,p̃m ,p̃n) @31#. The infinitesimal scaled actionds̃ and the
infinitesimal rescaled timedt are linked together by the re
lation

ds̃5 p̃mdm̃1 p̃ndñ5~ p̃m
2 1 p̃n

2!dt. ~8!

This relation implies that the Weyl transformÃ can be ex-
pressed at constant scaled energy as the derivative o
variablet with respect to the variables̃, i.e.,

Ã~ p̃m ,p̃n!5
dt

ds̃
5Ã~ s̃!. ~9!

The average at scaled energyẼ of the Weyl transformÃ

along a trajectory with scaled actionS(Ẽ) corresponding to a
total rescaled timet is then simply

1

S~Ẽ!
E

0

S(Ẽ)
ds̃Ã~ s̃!5

1

S~Ẽ!
E

0

t

dt5
t

S~Ẽ!
. ~10!

III. DIAGONAL TRANSITION MATRIX ELEMENTS

This section studies the quantitative contributions com
from the ergodic and regular components of the mixed ph
space to the mean value characterizing the distribution
diagonal transition matrix elements associated to the pert
ing operatorÂ. The study is done for three successive valu
of the scaling energyẼ, which areẼ520.2, Ẽ520.316,
and Ẽ520.4. Figure 1 displays the Poincare´ surfaces of
section for these different cases in the scaled semiparab
representation (m̃,p̃m ; ñ50). In the caseẼ520.2 @Fig.
1~a!#, the surface of section has two islands of stable mot
which are embedded in a simply connected ergodic sea. B
islands belong to the same regular component since they
conjugate with respect to the linep̃m50. This regular com-
x-
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ponent is associated to a stable periodic orbit lying in
plane perpendicular to the direction of the magnetic fie
with scaled actionSr56.490 86. Figure 2~a! displays, for the
same value of the scaling energy, the distribution of valu
of the diagonal transition matrix elements as a function
the scaling parameterw5g21/35\eff

21 . This figure shows
clearly the presence of two different patterns. On the o
hand, there appears a statistical distribution built up w
diagonal transition matrix elements which are represented
‘‘ 3 ’’ symbols. A further analysis reveals that these mat
elements involve eigenstates whose Husimi distribution@32#
is essentially localized within the ergodic sea. Such eig
states are called ‘‘chaotic’’ in the sequel. They are gene
cally labeled asumc&, with corresponding eigenvalueswm

(c) .
These eigenvalues belong to a subset of the spectrum w
is characterized by a mean density of statesr0,c(w)
50.702w. On the other hand, one distinguishes in the low
part of Fig. 2~a! several sequences of diagonal matrix e
ments which are represented by ‘‘1 ’’ symbols. The Husimi
distributions of the corresponding eigenstates are well lo
ized within the two islands of stable motion in Fig. 1~a!.
Such eigenstates are called ‘‘regular’’ in the sequel. They
generically labeled asumr&, with corresponding eigenvalue
wm

(r ) . These eigenvalues belong to a subset of the spect
which is complementary to the previous one and who
mean density of states isr0,r(w)50.066w. The coexistence
of these two different patterns of diagonal transition mat

FIG. 1. Poincare´ surfaces of section of a hydrogen atom in
strong magnetic field in the scaled semiparabolic representa

(m̃,p̃m ; ñ50) for three different values of the scaled energyẼ. ~a!

Ẽ520.2; ~b! Ẽ520.316;~c! Ẽ520.4.
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elements illustrates well the fact that the spectrum of a mi
quantum system can be split into independent subset
eigenvectors, each of which goes with a different compon
of phase space@16#.

The quantitative interpretation of Fig. 2~a! is done with
the help of a scaled spectral functionD(w) which takes all
diagonal matrix elements of the perturbing operatorÂ into
account. It is defined as

D~w!5(
m

^muÂum&d~w2wm!. ~11!

According to Refs.@8,9#, the semiclassical expression
D(w) which is relevant to the fully ergodic case is

D~w!5
w4

~2p!2E
V

dp̃mdp̃ndm̃dñ~ m̃21 ñ2!

3Ã~ p̃m ,p̃n!d„H̃~ p̃m ,p̃n ,m̃,ñ !22…

1
1

p (
$p%

Ap(
s51

`
sin$s@wSp~Ẽ!2app/2#%

@det~M p
s2I !#1/2 ,

~12!

with

H̃~ p̃m ,p̃n ,m̃,ñ !5 1
2 ~ p̃m

2 1 p̃n
2!2~m̃21 ñ2!Ẽ

1 1
8 m̃2ñ2~m̃21 ñ2!. ~13!

FIG. 2. Distribution of values of the diagonal transition matr

elementŝ muÂum& corresponding to the operatorÂ51/2r p̂2 in the

case of the scaled energyẼ520.2. ~a! distribution of values of the
matrix elements associated to the chaotic (3) and regular (1)
states as a function of the scaling parameterw; ~b! distribution of
values of the matrix elements associated to the regular states
function of the inverse of the mean total density of statesr0,t(w).
d
of
nt

The expression ofD(w) is written here in the scaled sem
parabolic representation of phase space. The first term on
right-hand side of Eq.~12!, the so-called Weyl term, give
the classical contribution to the scaled spectral function
factorizes into two parts as a consequence of the use of
scaled semiparabolic representation. One part depends s
on the scaling parameterw, whereas the other part, whic
involves a phase space integration over the whole ene
shellV at constant scaled energyẼ, is independent of it. The
second term gives the leading-order corrections to the W
term in an asymptotic expansion ofD(w) into powers of\.
These corrections are generated by the periodic orbits of
underlying classical dynamics, which are all unstable. T
outer sum in the second term runs over the set$p% of all
primitive periodic orbits, whereas the inner sum runs over
repetitionss of every primitive periodic orbit. Each primitive
periodic orbitp is characterized by an amplitudeAp whose
expression is

Ap5 R ds̃Ã~ s̃!. ~14!

In this equation, the integration is done along the conside
periodic orbit and over one periodSp(Ẽ)5r( p̃mdm̃

1 p̃ndñ). The scaled actionSp(Ẽ) appears in the argumen
of the sine function together with the scaling parameterw

since it scales asSp(Ẽ)5w21Sp(E), Sp(E) being the usual
action computed at the excitation energyE5Ẽ/w2. Every
primitive periodic orbit is also characterized by its mon
dromy matrixM p and its Maslov indexap , which are both
independent of energy for scaling systems. The importa
of the correction due to thesth repetition of the primitive
periodic orbitp depends on the determinant of the differen
between thesth power ofM p and the unit matrixI. As Fig.
2~a! shows, the scaled spectral functionD(w) can be written
as the sum of two different contributions in the case o
mixed system, i.e.,

D~w!5Dc~w!1Dr~w! ~15!

with

Dc(r )5 (
mc(r )

^mc(r )uÂumc(r )&d~w2wm
c(r )!. ~16!

The semiclassical expression ofDc(w)@Dr(w)#, the scaled
spectral function which is associated to the ergodic~regular!
component of phase space, is similar to the one given in
~12!. The integration in the Weyl term is now done over t
corresponding part of the energy shell at constant scaled
ergy. The leading-order corrections to the Weyl term are d
to the unstable@Dc(w)# or stable@Dr(w)# periodic orbits of
the underlying classical dynamics.

The semiclassical expression ofDc(w) predicts that the
classical contribution to the mean value^Â&c which charac-
terizes the distribution of diagonal transition matrix eleme
corresponding to the chaotic eigenstates is given by the
crocanonical average of the operatorÂ over the ergodic part
Vc of the energy shell@8,9#, i.e.,

s a
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^Â&c5

E
Vc

dp̃mdp̃ndm̃dñ~ m̃21 ñ2!Ã~ p̃m ,p̃n!d„H̃~ p̃m ,p̃n ,m̃,ñ !22…

E
Vc

dp̃mdp̃ndm̃dñ~ m̃21 ñ2!d„H̃~ p̃m ,p̃n ,m̃,ñ !22…

, ~17!
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with H̃( p̃m ,p̃n ,m̃,ñ) defined in Eq.~13! @33#. This formula
is not easy to use in practice for the computation of
classical contribution since it requires the numerical calcu
tion of three-dimensional phase space integrals. Howe
just as in Refs.@11,12#, the ergodic theorem allows us t
replace the microcanonical average with a time~i.e., scaled
action! average of the Weyl transform of the perturbing o
erator along any trajectory exploring the ergodic part of
energy shell in a uniform way. With the help of Eq.~10!, the
classical contribution to the mean value^Â&c can be finally
expressed as

^Â&c5 lim
S→`

1

SE0

S

ds̃Ã~ s̃!5 lim
S→`

t~S!

S
, ~18!

t(S) being the total rescaled time corresponding to
scaled actionS. The ergodic theorem ensures that the lim
on the right-hand side of this equation is well defined a
unique. This formula is well suited for the numerical calc
lation of the classical contribution to the mean value. In
caseẼ520.2, it gives the valuê Â&c50.41, which is in
good agreement with the value 0.411 obtained from the
tistical distribution of Fig. 2~a!. Equation~18! can therefore
be used to compute with an excellent precision the m
value characterizing the distribution of diagonal matrix e
ments associated to the chaotic eigenstates.

Figure 2~a! suggests that all sequences of the diago
matrix which correspond to the regular eigenstates are c
verging towards the same limit as the scaling parametew
increases. This is indeed the case, as clearly shown by
2~b!. In this figure, the values of the diagonal matrix e
ments pertaining to the seven sequences of the previous
ure are represented as a function of the inverse of the m
total density of statesr0,t(w)5r0,c(w)1r0,r(w). Such a rep-
resentation is useful since it allows us to extrapolate the
ues of the individual diagonal matrix elements in the se
classical regime. This comes from the fact that the mean t
density of states is proportional tow in the case of a hydro
gen atom in a strong magnetic field (r0,t50.768w in the case
Ẽ520.2), and so its inverse is proportional to the effect
Planck’s constant\eff5g1/3 of this system. The semiclassic
limit at constant scaled energy\eff→0 is therefore reached
as 1/r0,t(w)→0. One sees that the values of the diago
matrix elements in the sequences are approximated all
better by a common limiting valuêÂ& r as one comes close
to the semiclassical regime. This behavior is in sharp c
trast with that of the diagonal matrix elements correspond
to the chaotic eigenstates, which are distributed statistic
around the mean valuêÂ&c . The limiting valuê Â& r can be
most easily computed by using an expression of the sc
spectral functionDr(w) which is obtained by resummin
e
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r,
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formally the leading-order corrections to the Weyl term ge
erated by the stable periodic orbit and all its repetitions in
following way @23,6,7#. The expression of these correction
for a particular stable periodic orbitr is @23,6,7#

2
i

p
Ar (

s51

`
exp$ is@wSr~Ẽ!2a rp/2#%

2sin~spg r !
. ~19!

Hereg r is the winding number of the stable orbit, which
independent of energy for scaling systems. After expans
of the sine function in the denominator and the subsequ
use of the Poisson summation formula, this expression
be rewritten as

Ar(
n,k

dFwSr~Ẽ!22pS n1
a r

4 D22pS k1
1

2Dg r G . ~20!

This is a formal expression of the scaled spectral funct
Dr(w) in the semiclassical regime. It predicts that the sem
classical spectrum of the regular states is similar to the sp
trum of a two-dimensional harmonic oscillator@23,6,7#. One
direction of harmonic motion is along the stable period
orbit, whereas the other direction of harmonic motion
transverse to it. This motion takes place on neighboring
surrounding the orbit. Each such torus is identified by t
quantized scaled actions, the actionĨ n52p(n1a r /4) which
is associated to the longitudinal motion and the actionĨ k
52p(k11/2)g r which is associated to the transverse moti
@34#. Every regular state is therefore labeled by two quant
numbersn andk. The range of values of both quantum num
bers is bounded in practice as a consequence of the finite
of the corresponding region of stable motion@35#. It has been
checked that all regular eigenstates building up a given
quence of diagonal matrix elements in Figs. 2~a! and 2~b! are
labeled by the same quantum numberk. This quantum num-
ber is even as a result of the parity symmetry with respec
the plane perpendicular to the direction of the magnetic fie
The lowest sequence corresponds tok50, the next one to
k52, and so on until the last identified sequence which c
responds tok512. Figure 2~b! shows that there are a few
diagonal matrix elements which do not belong to any
quence. It has been checked that all of them correspon
regular eigenstates which are involved in quasicrossings
so cannot be labeled by a fixed value ofk. The quantum
numbern differentiates the regular eigenstates which are
sociated to a given sequence. The previous formal expres
of the scaled spectral functionDr(w) predicts also that the
limiting value ^Â& r of the sequences is proportional to th
amplitudeAr of the stable periodic orbit, whose expression
given by Eq.~14!. The amplitudeAr has to be divided by the
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scaled actionSr of the orbit for the purpose of normalization
With the help of Eq.~10!, this limiting value can be ex-
pressed as

^Â& r5
1

Sr
R ds̃Ã~ s̃!5

t r

Sr
, ~21!

t r being the total rescaled time corresponding to the sca
actionSr . It has to be remarked that the classical contrib
tion ^Â&c to the mean characterizing the distribution of dia
onal matrix elements associated to the chaotic eigenst
Eq. ~18!, and the classical limiting valuêÂ& r of the se-
quences of diagonal matrix elements corresponding to
regular eigenstates, Eq.~21!, have similar expressions. Eac
expression makes use of the classical trajectory which is
lated to the component of phase space going with the stu
subset of diagonal matrix elements. In the caseẼ520.2, the
scaled action corresponds to a total rescaled timet r

52.4135. This gives the valuêÂ& r50.372, which, as seen
in Fig. 2~b!, agrees very well with the value obtained as t
common intersection of the dashed lines interpolating
values of the diagonal matrix elements as one goes tow
the semiclassical limit.

Since the total distribution of diagonal matrix elements
composed of two different subsets corresponding to the
different components of phase space, its mean value^Â& t is
expected to be the sum of two properly weighted contri
tions. The contribution which comes from the mean va

^Â&c ~limiting value ^Â& r) is weighted by the ratio of the
mean density of states of the subset of chaotic~regular! states
to the mean total density of states. Each weighting facto
roughly equal to the relative volume of the correspond
component of phase space. The expected expression of^Â& t
is therefore the following:

^Â& t5S r0,c~w!

r0,t~w! D ^Â&c1S r0,r~w!

r0,t~w! D ^Â& r . ~22!

In the caseẼ520.2, this formula gives the valuêÂ& t

50.407, which is very close to the value^Â& t50.409 ob-
tained from the whole distribution of Fig. 2~a!. Conse-
quently, Eq.~22! allows us to calculate with an excellen
precision the mean value characterizing the total distribu
of diagonal matrix elements. It generalizes to the case
scaled system with a mixed phase space the expression o
mean value given in Refs.@8,9# for a scaled system with a
ergodic phase space.

It is expected that there are as many limiting values^Â& r
as there are regular components in phase space. This im
tant point can be checked by studying the distribution
diagonal matrix elements for values of the scaled energy
which several stable periodic orbits are present in the un
lying classical dynamics. This is done in the casesẼ5

20.316, andẼ520.4. The Poincare´ surface of section cor
responding to the first case is displayed in Fig. 1~b!. There
are five islands of stable motion on both sides of the l
p̃m50, a central island surrounded by a chain of four islan
The two conjugate central islands belong to the same reg
d
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component, which, as in the caseẼ520.2, is associated to a
stable periodic orbit lying in the plane perpendicular to t
direction of the magnetic field. This orbit has a scaled act
Sr157.903 534, corresponding to a total rescaled timet r1
53.108 460. The shape of this orbit is depicted in the se
parabolic coordinate representation (m̃,ñ) in the lower inset
of Fig. 3~b!. The two conjugate chains of four islands
stable motion surrounding the central islands belong to
other regular component. The associated stable periodic o
has a scaled actionSr2512.158 133, corresponding to a tot
rescaled timet r255.028 604. The shape of this orbit is d
picted in the scaled semiparabolic coordinate representa
(m̃,ñ) in the upper inset of Fig. 3~b!. Figure 1~c! shows the
Poincare´ surface of section corresponding to the caseẼ5
20.4. As in the two previous cases, the two conjugate
lands of stable motion on both sides of the linep̃m50 belong
to a regular component with a stable periodic orbit lying
the plane perpendicular to the direction of the magnetic fie
This orbit has a scaled actionSr157.024 81 corresponding to
a total rescaled timet r152.866. The stable island in th
middle of the surface of section pertains to another regu
component, with a stable periodic orbit which is parallel
the direction of the magnetic field. This orbit has a sca
actionSr255.791 216, corresponding to a total rescaled ti
t r252.896.

Figure 3~a! @Fig. 4~a!# displays the distribution of value
of the diagonal matrix elements as a function of the scal
parameterw in the caseẼ520.316 (Ẽ520.4). Just as in
the caseẼ520.2, the whole distribution results from th
juxtaposition of a statistical distribution connected to the
godic component of phase space and a set of sequences
nected to the regular components of phase space. Thes

FIG. 3. Same as Fig. 2 but in the case of the scaled energẼ
520.316. The shapes of the two stable periodic orbits which
used in the analysis of this case are shown in the insets.
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quences fall into two different groups, as the fingerprint
the existence of two different stable periodic orbits. This
particularly clear in Fig. 4~a!, where each group of sequenc
is on a different side of the statistical distribution. In the ca
Ẽ520.4, the long streaks of diagonal matrix elements
pearing in the statistical distribution are presumably the m
of one or several other regular components, which are a
ciated to the small islands of stable motion surrounding
three main islands in Fig. 1~c!. As previously explained, the
identification of the group of sequences linked to a particu
regular component is most easily done by representing
values of the diagonal matrix elements in all sequences
function of the inverse of the mean total density of sta
r0,t(w). This is done in Fig. 3~b! @Fig. 4~b!# for the caseẼ
520.316 (Ẽ520.4). In Fig. 3~b!, one sees that the thre
lower and the five upper dashed lines interpolating the va
of the diagonal matrix elements as one goes towards
semiclassical limit have a common intersection. The value
the common intersection of the three lower sequences is
precisely equal to the limiting valuê Â& r15t r1 /Sr1
50.3933 of the stable periodic orbit lying in the plane pe
pendicular to the direction of the magnetic field. The regu
component which is related to these sequences is there
identified in a straightforward way. It is obviously the one
which the two conjugate central islands of stable motion
Fig. 1~b! pertain. As in the caseẼ520.2, the three lower
sequences are labeled by even values of the quantum nu
k, with the lowest sequence corresponding tok50. The
value of the common intersection of the five upper sequen
is very precisely equal to the limiting value^Â& r25t r2 /Sr2
50.4136 of the other stable periodic orbit. Consequently,
regular component which is associated with these seque
is the one whose fingerprint in Fig. 1~b! is constituted by the

FIG. 4. Same as Fig. 2 but in the case of the scaled energẼ
520.4.
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two conjugate chains of four islands of stable motion. Sin
this other orbit has no symmetry with respect to the pla
perpendicular to the direction of the magnetic field, the fi
upper sequences are labeled by both even and odd valu
the quantum numberk, with the uppermost sequence corr
sponding tok50. Similar results are obtained in the ca
Ẽ520.4. Indeed, one sees in Fig. 4~b! that the groups of
dashed interpolating lines corresponding to the sequen
above and below the statistical distribution each have a c
mon intersection. The value of the common intersection
the sequences below the statistical distribution is very p
cisely equal to the limiting valuêÂ& r15t r1 /Sr150.408 of
the stable periodic orbit lying in the plane perpendicular
the direction of the magnetic field. The regular compon
connected to these sequences is, as in the two previous c
the one to whom the two conjugate islands of stable mot
in the Poincare´ surface of section belong. This means that t
limiting value of a group of sequences readjusts itself to
change in length of the associated orbit as one moves fro
particular example of the mixed phase space to another.
sequences below the statistical distribution are labeled
even values ofk, with the lowest sequence corresponding
k50. As expected, the value of the common intersection
the sequences above the statistical distribution is~nearly!
equal to the limiting valuê Â& r25t r2 /Sr250.500 of the
stable periodic orbit which is parallel to the direction of th
magnetic field. By way of consequence, the regular com
nent which is linked to these sequences is the one wh
fingerprint in Fig. 1~c! is the central island of stable motion
These sequences are labeled by both even and odd valu
k, with the uppermost sequence corresponding tok50. Fi-
nally, the formula in Eq.~22! giving the mean value which
characterizes the complete distribution of diagonal ma
elements is generalized to the case of several regular c
ponents simply by adding as many weighted classical va

^Â& r as there are stable periodic orbits in the underly
classical dynamics.

IV. NONDIAGONAL TRANSITION MATRIX ELEMENTS

This section studies the quantitative contributions of
ergodic and regular components of the mixed phase spac
the variance characterizing the distributions of nondiago
transition matrix elements associated to the perturbing op
tor Â. This is done with the help of scaled spectral functio
which take the different types of nondiagonal transition m
trix elements into account, those coupling chaotic or regu
eigenstates together as well as those coupling a chaotic a
regular eigenstate together. Since they deal with n
diagonal matrix elements, these scaled spectral functions
pend necessarily on two energy scales, the scaled enerw
and the scaled energy differenceDw. The scaled total spec
tral function C(w,Dw) is defined to be the sum of thes
scaled spectral functions, i.e.,

C~w,Dw!5Ccc~w,Dw!1Crr ~w,Dw!1Ccr~w,Dw!

1Crc~w,Dw! ~23!

with
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Cab~w,Dw!5 (
ma ,nb

z^mauÂ2^Â&adabunb& z2

3dhS w2
wm

(a)1wn
(b)

2 D
3de„Dw2~wn

(b)2wm
(a)!… ~24!

anda5c,r ; b5c,r . The ~Lorentzian! smoothings of thed
functions, of widthsh ande, are introduced so that one ca
compute these spectral functions in practice in spite of
discreteness of the spectrum. The values of the widths w
have been chosen for the numerical computations arh
55.0 ande50.02, in units of the scaling parameterw. The
classical valueŝÂ&c , ^Â& r are subtracted from the appropr
ate spectral functions in order to eliminate the quantitat
contribution of the diagonal matrix elements in the semicl
sical regime. The local variancesc

2(w,Dw), which is asso-
ciated to the statistical distributions of nondiagonal mat
elements coupling chaotic eigenstates together, is relate
the spectral functionCcc(w,Dw) and to the mean density o
statesr0,c(w) by the formula@8#

sc
2~w,Dw!5

Ccc~w,Dw!

@r0,c~w!#2
. ~25!

By analogy with this formula, the local variances t
2(w,Dw),

which is associated to the distributions of all nondiago
matrix elements, is defined through the expression

s t
2~w,Dw!5

C~w,Dw!

@r0,t~w!#2
. ~26!

The quantitative contribution of each spectral function in E
~23! to the variances t

2(w,Dw) is studied in the sequel.
The spectral functionCcc(w,Dw) @Crr (w,Dw)# is con-

nected to the regular~ergodic! component of phase space
a manner which is detailed below. On the contrary, the sp
tral functionsCcr(w,Dw) andCrc(w,Dw) cannot be associ
ated to a particular component of phase space since they
both chaotic and regular eigenstates into account. Accord
to Refs.@20,21#, the quantitative contributions of these tw
last spectral functions toC(w,Dw) should therefore be sig
nificantly smaller than those of the two first spectral fun
tions. Figure 5 shows that this is indeed the case in prac
This figure displays the distribution of values of the tran
tion probabilitiesz^nuÂum& z2 from a given initial stateun& to
a subsetum& of final eigenstates corresponding to a fin
range of the energy spectrum at scaled energyẼ520.2. In
Fig. 5~a!, the chosen eigenstateun& ~the 575th state above th
ground state! is a regular eigenstate withk50 and eigen-
valuewn

(r ).38.5. On the contrary, the eigenstateun& in Fig.
5~b! ~the 944th state above the ground state! is a chaotic
eigenstate. In both figures, the diamonds~crosses! are record-
ing the values of the transition probabilities when the fin
eigenstateum& is a regular~chaotic! one. Each of the three
visible sequences of diamonds in Fig. 5~a! is associated to
regular eigenstates which are labeled by the same~even!
value ofk, with the uppermost sequence corresponding tk
e
ch

e
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to

l

.

c-

ke
g

-
e.
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l

50. This figure shows clearly that the probabilities of mo
transitions coupling regular eigenstates together are sev
orders of magnitude larger than those coupling regular
chaotic eigenstates together. This implies in return that
values of the spectral functionCrr (w,Dw) are much larger
that those of the spectral functionsCrc(w,Dw) and
Ccr(w,Dw). Two other observations in Fig. 5~a! are of in-
terest. The first is that the square of the diagonal ma
element^n5575uÂun5575& is at least one order of magn
tude larger than the probabilities of transitions coupling d
ferent regular eigenstates together. The second observati
that the probabilities of the transitions involving regul
eigenstates with the same value ofk are more than one orde
of magnitude larger than those involving regular eigensta
with different values ofk. Moreover, the larger the differenc
in k between two regular eigenstates, the smaller the co
sponding transition probability@34#. It has also been checke
that the values of the transition probabilities belonging to
sequence of diamonds withk50 are decaying exponentiall
as one goes away from the diagonal matrix element. T
type of decay is a universal feature of one-dimensional s
tems@36#. The system behaves therefore as an effective o
dimensional system at the level of the transition amplitud
which are connected to the first quantized torus surround
the stable orbit. Fig. 5~b! shows clearly that the probabilitie
of most transitions involving chaotic eigenstates are also s
eral orders of magnitude larger than those involving chao
and regular eigenstates. As a consequence, the values o
spectral functionCcc(w,Dw) are also much larger than thos
of the spectral functionsCrc(w,Dw) and Ccr(w,Dw). The
quantitative contribution of the last two spectral functions
the variances t

2(w,Dw) is therefore negligible.

FIG. 5. Distribution of values of the transition probabilitie

z^nuÂum& z2 as a function of the scaling parameterw in the case of

the scaled energyẼ520.2. ~a! Regular eigenstateun&; ~b! chaotic
eigenstateun&. The diamonds and crosses mark the transitions
regular and chaotic statesum&, respectively.
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As shown in Refs.@8,9#, the leading-order contribution to
the spectral functionCcc(w,Dw) is proportional to the Fou-
rier transform of the classical autocorrelation function of t
Weyl transform of the perturbing operator. By virtue of th
ergodic theorem, the microcanonical average over the
godic part of the energy shell appearing in the leading-or
contribution can be replaced by a time~i.e., scaled action!
average along any ergodic trajectory exploring this part i
uniform way. The resulting expression of the leading-ord
contribution to the local variancesc

2(w,Dw) is @12#

sc
2~w,Dw!5

1

pr0,c~w!
ReE

0

`

ds̃ei (Dw1 i e) s̃CÃ,c~ s̃!.

~27!

HereCÃ,c( s̃) is the classical autocorrelation function of th
Weyl transformÃ( s̃), as computed along an ergodic traje
tory of arbitrary large scaled actionS, i.e.,

CÃ,c~ s̃!5 lim
S→`

1

SE0

S

ds̃8„Ã~ s̃81 s̃/2!2^Â&c…

3„Ã~ s̃82 s̃/2!2^Â&c…. ~28!

The ergodic theorem ensures that the limit on the right-h
side of this equation is well defined and unique. The appe
ance in Eq.~27! of a damping factor containing the widthe
is a consequence of the smoothing of thed function which is
associated to differences in scaled energies in Eq.~24!. The
formula in Eq.~27! is well suited for the numerical compu
tation of the classical contribution to the local varian
sc

2(w,Dw). It shows that, at the level of the leading-ord
contribution, the rescaled variancesc

2(w,Dw)r0,c(w) is a
function which depends only on the scaled energy differe
Dw and no longer on the scaled energyw.

As a first numerical study, it is interesting to compare t
values of the rescaled variancess t

2(w,Dw)r0,t(w) and
sc

2(w,Dw)r0,c(w) over a large range of values of the scal

energy difference. This is done in Fig. 6 for the caseẼ5
20.2. The full ~dashed! curve corresponds to the first~sec-
ond! rescaled variance. One sees that both curves are m
lated by the periodSr of the stable orbit lying in the plane

FIG. 6. Rescaled variances of the distributions of nondiago
transition matrix elements as a function of the scaled energy dif

enceDw in the case of the scaled energyẼ520.2. Solid line:
s t

2(w,Dw)r0,t(w); dashed line:sc
2(w,Dw)r0,c(w).
r-
r

a
r

d
r-

e

e

u-

perpendicular to the direction of the magnetic field since th
exhibit peaks exactly at the integer multiples of the va
Dw52p/Sr50.968. This modulation effect of the loca
variance was already pointed out in Refs.@12,11#. One ob-
serves also that the two curves are only slightly differe
from each other. This observation simply reflects the f
that the number of transitions involving chaotic eigenstate
very much larger than the number of transitions involvi
regular eigenstates in the chosen example. Consequen
numerical analysis using the bare variances themse
would not allow us to get precise enough values for
quantitative contribution to the total variance coming fro
the regular part of the phase space. As seen below,
necessary to use the Fourier transform of the rescaled v
ances in order to extract quantitative precise results from
numerical data. In practice, the full curve in Fig. 6 has be
calculated with the help of the numerical data built up fro
the distributions of the nondiagonal matrix elemen
whereas the dashed curve has been computed by using

al
r-

FIG. 7. Fourier transform of the rescaled variances of the dis
butions of nondiagonal transition matrix elements as a function

the scaled actionS/2p in the case of the scaled energyẼ520.2.
~a! Solid line: Fourier transform ofsc

2(w,Dw)r0,c(w); dashed line:
autocorrelation functionCÃ,c . ~b! Solid line: Fourier transform of
s t

2(w,Dw)r0,t(w); dashed line: autocorrelation functionCÃ,c . ~c!
Solid line: Fourier transform ofs t

2(w,Dw)r0,t(w); dashed line:
weighted sum of autocorrelation functionsCÃ,c andCÃ,r .
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~27! and ~28!. It is therefore interesting to compare the pr
dictions of the expression of the leading-order contribut
to the local variancesc

2(w,Dw) with the numerical values
obtained from the distributions of nondiagonal matrix e
ments coupling chaotic eigenstates together. This is don
Fig. 7~a! for the caseẼ520.2 and in Fig. 8~a! for the case
Ẽ520.316. In both figures, the full curve represents t
Fourier transform C(S) of the rescaled varianc
sc

2(w,Dw)r0,c(w), i.e.,

C~S!5eeSE
2`

1`

d~Dw!cos~DwS!sc
2~w,Dw!r0,c~w!,

~29!

as calculated from the relevant numerical data. On the o
hand, the dashed curve represents the classical autoco
tion functionCÃ,c(S), Eq. ~28!, as computed along an arb
trary ergodic trajectory. Equation~27! predicts that both
curves are identical, i.e.,C(S)5CÃ,c(S̃) . Figures 7~a! and
8~a! show that they agree well with each other over t
whole range of values of the scaled actionS. The values of
the local variancesc

2(w,Dw) can therefore be reproduce
with an excellent precision by the leading-order contribut
alone.

FIG. 8. Same as Fig. 7 but in the case of the scaled energẼ
520.316.
-
n

-
in

e

er
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The expression of the spectral functionCrr (w,Dw) in the
semiclassical regime is obtained much in the same way
the expression of the spectral functionDr(w), Eq. ~20!. In-
deed, the contribution of a stable periodic orbit and all
repetitions toCrr (w) has an expression which is analogo
to the one given in Eq.~19!. The only difference is that the
amplitudeAr is now replaced with the Fourier transform o
the autocorrelation function of the Weyl transform of th
perturbing operator along the stable periodic orbit@8,9,11#.
The formal resummation of all contributions leads to t
semiclassical expression

Crr ~w,Dw!5
r0,r~w!

p
ReE

0

`

ds̃ei (Dw1 i e) s̃CÃ,r~ s̃!, ~30!

with the autocorrelation functionCÃ,r( s̃) given by the ex-
pression

CÃ,r~ s̃!5
1

Sr
R ds̃8„Ã~ s̃81 s̃/2!2^Â& r…„Ã~ s̃82 s̃/2!2^Â& r….

~31!

The autocorrelation function is a periodic function with th
same periodSr as the one of the orbit@8,11#. In order to
check the validity of the semiclassical expression
Crr (w,Dw), it is easier to take the Fourier transform wi
respect to the scaled energy differenceDw on both sides of
Eq. ~30! and to integrate subsequently with respect to
scaled energyw. If N is the number of regular states in th
used spectrum, one gets the following expression of the
tocorrelation function:

CÃ,r~S!5
1

N (
mr ,nr

z^mr uÂ2^Â& r unr& z2cos@~wm
(r )2wn

(r )!S#.

~32!

Figure 9 compares the values of the autocorrelation funct
as computed with the help of Eq.~32! ~full curve! and Eq.
~31! ~dashed curve!. The comparison is done in the caseẼ
520.2 (N5120) and over one period of the stable traje
tory. It is seen that the agreement between both curve
good, except in the vicinity of the valuesS50 andS5Sr for
which the expression in Eq.~31! is singular. The full curve
would reproduce this singular behavior all the better as
number of regular states used in the computation would

FIG. 9. Autocorrelation functionCÃ,r as a function of the scaled

actionS/2p in the case of the scaled energyẼ520.2. Solid line:
Computation with Eq.~32!; dashed line: computation with Eq.~31!.
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larger. The finite number of regular states is also respons
for the observed little discrepancies between both curve
the considered interval of values of the scaled action. In s
of these discrepancies, the general good agreement bet
the full and the dashed curve allows us to conclude that
semiclassical expression given in Eq.~30! can be used to
calculate the values of the spectral functionCrr (w,Dw). By
analogy with Eq.~25!, one can also introduce a local var
ances r

2(w,Dw) corresponding to the distributions of nond
agonal matrix elements coupling regular eigenstates toge
defined as

s r
2~w,Dw!5

Crr ~w,Dw!

@r0,r~w!#2
. ~33!

It is to be noted that the spectral functions which are ass
ated to the distributions of nondiagonal matrix elements
volving chaotic@Eqs. ~27! and ~28!# and regular@Eqs. ~30!
and~31!# states have similar classical expressions. As in
case of the diagonal matrix elements, each expression t
into account the classical trajectory which is related to
component of phase space connected to the studied sub
nondiagonal matrix elements.

It has been checked previously that a very close estim
of the values of the total spectral functionC(w,Dw) is ob-
tained through the sum of the two spectral functio
Ccc(w,Dw) and Crr (w,Dw). Consequently, by virtue o
Eqs.~26!, ~25!, and~33!, the rescaled variance which is a
sociated to the distributions of all nondiagonal matrix e
ments can be written as

s t
2~w,Dw!r0,t~w!5S r0,c~w!

r0,t~w! Dsc
2~w,Dw!r0,c~w!

1S r0,r~w!

r0,t~w! Ds r
2~w,Dw!r0,r~w!.

~34!

As in the case of the mean value^Â& t , Eq. ~22!, the contri-
bution to the rescaled variances t

2(w,Dw)r0,t(w) of the er-
godic ~regular! component of phase space is weighted by
ratio of the mean density of states of the subset of cha
~regular! states to the mean total density of states. Equi
lently, taking the Fourier transform on both sides of Eq.~34!
with respect to the scaled energy differenceDw, one obtains
the following formula with the help of Eqs.~27!, ~30!, and
~33!:

eeSE
2`

1`

d~Dw!cos~DwS!s t
2~w,Dw!r0,t~w!

5S r0,c~w!

r0,t~w! DCÃ,c~S!1S r0,r~w!

r0,t~w! DCÃ,r~S!. ~35!

The numerical comparison between both sides of this eq
tion is done in Figs. 7~b! and 7~c! for the caseẼ520.2. In
Fig. 7~b!, the full curve represents the Fourier transform
the rescaled variance whereas the dashed curve repre
the autocorrelation functionCÃ,c(S) alone. One sees tha
both curves do not agree so much with each other. One
le
in
te
een
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er,

i-
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e
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to compare Fig. 7~b! with Fig. 7~c! in order to appreciate the
quantitative improvement which is brought in the weight
sum by the contribution originating from the stable period
orbit. In this last figure, the full curve represents again
Fourier transform of the rescaled variance whereas
dashed curve represents now the weighted sum of the a
correlation functions on the right-hand side of Eq.~35!. Con-
trary to Fig. 7~b!, both curves now agree well with each oth
over the whole range of values ofS. The improvement is
especially noticeable in the immediate vicinity of the peak
structures located at positions which are multiple integers
Sr /2p51.033 05. This is due to the fact that the autocor
lation function CÃ,r(S) contributes mostly to the Fourie
transform in the immediate vicinity of these positions,
shown by Fig. 9. Figure 7~c! provides also another confirma
tion of the fact that the spectral functionsCcr(w,Dw) and
Crc(w,Dw) give really a negligible quantitative contributio
to the local variance. One can therefore conclude that
~34! is able to reproduce the values of the local variance w
an excellent precision. This equation generalizes to the c
of a scaled system with a mixed phase space the expres
of the local variance given in Refs.@8,9# for a scaled system
with an ergodic phase space. As in the case of the diag
matrix elements, the generalization of Eq.~34! to a situation
with several regular components in phase space is stra
forward. Indeed, one has to add as many weighted resc
variancess r

2(w,Dw)r0,r(w) as there are stable periodic o
bits in the underlying classical dynamics, as illustrated by
remaining figures. On the one hand, Fig. 8~b! @Fig. 10~a!#
compares the Fourier transform of the rescaled varia
s t

2(w,Dw)r0,t(w) ~full curve! with the autocorrelation func-

FIG. 10. Fourier transform of the rescaled varian
s t

2(w,Dw)r0,t(w) of the distributions of nondiagonal transition ma
trix elements as a function of the scaled actionS/2p in the case of

the scaled energyẼ520.4. ~a! Solid line: Fourier transform of
s t

2(w,Dw)r0,t(w); dashed line: autocorrelation functionCÃ,c . ~b!
Solid line: Fourier transform ofs t

2(w,Dw)r0,t(w); dashed line:
weighted sum of autocorrelation functionsCÃ,c andCÃ,r .
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tion CÃ,c(S) ~dashed curve! in the case Ẽ520.316
(Ẽ520.4). As in the previous case, there are many discr
ancies between both curves because the contributions c
ing from the stable periodic orbits are missing. On the ot
hand, Fig. 8~c! @Fig. 10~b!# compares the Fourier transform
of the rescaled variance~full curve! with the weighted sum
of autocorrelation functions~dashed curve! in the caseẼ5

20.316 (Ẽ520.4). The sum now contains the proper
weighted contributions originating from the stable period
orbits which have been identified in the preceding section
both cases, the very good agreement between the two cu
confirms the validity of the generalization of Eq.~34!.

V. CONCLUSION

This paper has been devoted to the study of the quan
tive contributions of the different components making up
mixed phase space to the value of the mean character
the distribution of diagonal transition matrix elements and
the value of the variance characterizing the distributions
nondiagonal transition matrix elements. With the help of n
merical computations done in the framework of a hydrog
atom in a strong magnetic field, it has been shown that th
contributions can be well identified in the semiclassical
gime. The computations have confirmed that the leadi
order contribution of the ergodic component to the mean
equal to the average of the Weyl transformÃ of the perturb-
ing operatorÂ along an arbitrary ergodic trajectory. The
have also confirmed that the leading-order contribution
the same component to the variance is proportional to
Fourier transform of the autocorrelation function ofÃ, this
autocorrelation function being also computed along an a
e
.
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trary ergodic trajectory. On the other hand, it has been fo
that the contribution of each regular component to the m
is equal to the average ofÃ around the corresponding stab
orbit. It has also been found that the contribution of ea
such component to the variance is proportional to the Fou
transform of the autocorrelation function ofÃ, this autocor-
relation function being again computed around the cor
sponding stable orbit. For each studied quantity, the con
butions coming from the ergodic and regular compone
have therefore similar expressions, each expression ta
into account the particular classical trajectory which is
lated to the considered component. The stable periodic or
provide a convenient method to compute the contributions
the various regular components to mean and variance
high accuracy. This method is different from the one whi
has been proposed by Robnik and Prosen for the same
pose. As a final step, it has been shown that mean and
ance can be expressed as a weighted sum of the contribu
of all different components belonging to the mixed pha
space. The weight appearing in front of a given contribut
has been identified as the ratio of the mean density of st
of the corresponding component to the mean total densit
states of the system. Although the study has been done
particular scaling system, the results presented in this pa
are relevant to all generic scaling systems with a small nu
ber of degrees of freedom having a mixed phase space.
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denominator of Eq.~1!.

@34# I.C. Percival, Adv. Chem. Phys.36, 1 ~1977!.
@35# O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep.223, 43

~1993!.
@36# L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-

mon Press, London, 1959!, Sec. 51.


