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Distributions of transition matrix elements in classically mixed quantum systems
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The quantitative contributions of a mixed phase space to the mean characterizing the distribution of diagonal
transition matrix elements and to the variance characterizing the distributions of nondiagonal transition matrix
elements are studied. It is shown that the mean can be expressed as the sum of suitably weighted classical
averages along an ergodic trajectory and along the stable periodic orbits. Similarly, it is shown that the values
of the variance are well reproduced by the sum of the suitably weighted Fourier transforms of classical
autocorrelation functions along an ergodic trajectory and along the stable periodic orbits. The illustrative
numerical computations are done in the framework of a hydrogen atom in a strong magnetic field, for three
different values of the scaled ener@$1063-651X99)04709-1

PACS numbsefs): 05.45-a, 03.65.Sq, 32.6@.i, 32.70.Cs

I. INTRODUCTION in the semiclassical limit of quantum mechanics, the leading-
order expression of the mean value of the diagonal transition
It is well known that random matrix theory is able to matrix elements is equal to the microcanonical average of the
reproduce successfully statistical properties which characteid/eyl transform of the perturbing operaf@,9]. In the same
ize the semiclassical regime of quantum systems with a fedimit, the leading-order expression of the variance associated
freedoms having a fully ergodic classical phase space. This i® the Gaussian distributions generated with nondiagonal
true for bound systems since the short-ranged spectral statitansition matrix elements is proportional to the Fourier
tics, those using energy levels which are separated by sonteansform of the classical autocorrelation function of the
multiples of the mean level spacing, are well described inWeyl transform of the perturbing operatf,9]. The link
this approachsee, e.g., Ref.1]). This is also true for scat- between classical variance and autocorrelation function has
tering systems since the fluctuations of imatrix elements  been studied numerically in three quantum systems with an
are well modeled with the help of random matri¢@s The  ergodic phase space, a quartic oscilldfd¥], an oval billiard
predictions of random matrix theory are universal, that is[11], and a hydrogen atom in a strong magnetic f[@]. In
they are independent of the microscopic details of the parthese systems and for several examples of perturbing opera-
ticular system under study. It is classical mechanics whichiors, it has actually been found that the autocorrelation func-
provides the ultimate justification for universality. For in- tion of the Weyl transform of the perturbing operator deter-
stance, the universal behavior of the spectral statistics is jusnines with an excellent accuracy the local values of the
tified by resorting to the principle that the very long unstableclassical variance. Moreover, it has been verifigd] that
periodic orbits of the underlying classical dynamics are unithe semiclassical corrections to the leading-order expression
formly distributed in phase spadsee, e.g., Refl3]). For  of the variance, which are due to the shortest unstable peri-
instance also, the universal energy dependence of thedic orbits, are in very good quantitative agreement with the
Smatrix autocorrelation function is explained by the facttheoretical predictions of Refd8,9]. The autocorrelation
that the distribution in length of the very long unstable scatfunction has also been studied in the framework of a purely
tering trajectories has a generic functional form for classicategular billiard for two examples of perturbing operators
ergodic systemssee, e.g., Ref4]). [13]. It has to be added that a method has been prodd<gd
Another example of universal behavior has to do with theto compute the variance associated to the distribution of di-
transition matrix elements associated to an operator perturlgonal transition matrix elements, a quantity which has not
ing a quantum system with an ergodic phase space. Indeebeen considered in Refg8,9]. This method, which rests on
random matrix theory predicts that these transition matrixperiodic orbit theory, has an interesting formal relationship
elements are independent random variables distributed in &ith the supersymmetric methods used in the description of
normal way[5]. However, mean and variance characterizingdisordered systen{45].
these distributions are free parameters and therefore lack a Generic quantum systems with a small number of free-
physical meaning in this approach. In view of the previouslydomsd do have a mixed regular-ergodic phase space. This
given examples, it appears natural to link this other universaineans that two different kinds of orbits appear in the under-
property to classical mechanics again. This can actually blying classical dynamics. There are orbits which wind regu-
done by means of the generalization of the semiclassicdarly round d-dimensional tori and there are orbits which
theory pioneered by Gutzwilld6,7] to arbitrary (well be-  explore densely (@—1)-dimensional regions of the energy
haved operatorg8,9], a generalization which allows us to shell in a highly chaotic manner. Phase space is therefore
give a classical interpretation of mean and variance. Indeedaturally partitioned into regular components, each including
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infinitely many neighboring tori and ergodic componentsthe other hand, a given stable periodic orbit is in a way able
which are free of tori. These various components are mutuall alone to account for the quantitative contribution of its
ally independent. Since random matrix theory appears to bassociated regular component to the semiclassical density of
relevant to quantum systems with a fully ergodic phase spacgtates22,23,7. Considering these two facts, one may won-
exclusively, the previously listed universal properties do notder whether stable periodic orbitahose practical identifi-
hold anymore for quantum systems with a mixed phasé:ation is usually easier than the one of specific quantized
space. However, one may still wonder about the presence M) cannot help to compute in a convenient way the quan-
statistical properties pertaining to mixed quantum systems dftative contributions of the regular regions to the values of
fingerprints related to the coexistence of regular and ergodif’€an and variance. The paper shows that this is indeed the
regions in phase space. Berry and Robfik] have been CaS€ by prowdlng_ ck_)sed fprmulas_for mean and variance in
among the first to tackle this question. Assuming that theWhICh s_table periodic orblt_s are involved. Such formulas
semiclassical spectrum of a mixed quantum system is thgenerallze to the case of mixed quantum systems those stud-

superposition of statistically independent sequences of Ievef§d in Refs[8,9,11,12. This work extends that of Ref24],

from each of the phase-space components, they have df_here details have been omitted because of lack of space.

duced a semiphenomenological closed formula for the leve he illustrative numerical compu_tations are again d(_)ne_ in the
spacing distribution. The formula makes use of the total raprwﬁwork of a hydroger:j ato:cn”ln a s}rogg mﬁgnetlc fljektj'.l
phase-space volume of all regular regions as well as of the 1€ paper IS organized as follows. in Sec. 1l, Some details
individual phase-space volumes of all ergodic regions. TheiFeIatlng to.the scaling property V.Vh'Ch cha_racterlzes a hydrp—
line of argument has been extended to other spectral statisti rt1hatom ln g_strong m?gnet'CJ'?ld ?r:e given a}ndl the chotlce
[17]. The validity of the semiphenomenological formulas ob-9' the perturbing operator used for the numerica’ computa-
tained for the spectral statistics has been supported by nl5|_c>n of the transition matrix elements is justified. Section Il
merical computation§17]. Apart from the one of Berry and deals with the mean value of the distribution of diagonal
Robnik[16], two other parametrizations of the level spacingtrans't'on matrix elements, a quantity which was not consid-

distribution have been proposed to characterize a mixeSer in Refs[20,21]. The quantitative contributions of the

guantum system. These are the parametrizations of Bro godic aqd re'g'ular regions makmg up the rmxed phase
[18] and of Izrailev[19], whose validity has also been sup- pace are identified. The contributions of the various regular

ported by numerical computations. The link between thecomponents are calculated with the help of the associated

mixed character of phase space and statistical properties ;able periodic orbits. The lllustrative numerical computa-
fransition matrix elements has been studied by Robnik an ons are done for three different values of the scaled energy.

Proser{20,21]. Extending to eigenvectors the assumption of ection 1V is concerned with the variance characterizing the
L istributions of nondiagonal transition matrix elements. First,

independent sequences originally proposed for energy level : . o
they have argued that the only transition matrix element e orders (.)f magnitude of the transition probabilities whose
nitial and final states are referring or not to the same phase

which have to be considered in the semiclassical limit aré i d Th titati b
those whose initial and final states can be associated to tr&é)ace component are compared. The guantitative contribu-

same component of phase space. Moreover, they have ge Qns to the variance of the. ergodic and. regular regions are
then studied. The manner in which a given stable periodic

orbit is used in the calculation of the contribution coming
Ifrom the associated regular component is discussed. The il-
‘Jj‘lé%trative numerical computations are done for the same val-
es of the scaled energy as in the preceding section. A Con-

clusion summarizes the main results of the paper.

eralized the results of Refg8,9] by showing that the expres-
sion of the variance characterizing the distributions of non
diagonal transition matrix elements whose initial and fina
states can be associated to a given component of phase sp
(which is either an ergodic region or some set of quantize
tori lying closely togethgralways involves a microcanonical
average over this very component. Numerical computations

[20,21] have corroborated the validity of their results. Il. SCALING AND TRANSITION MATRIX ELEMENTS

The purpose of the present paper is to provide a detailed 14 pegin with, it is not an easy task to study the quanti-
study of the quantitative contributions coming from the vari-; +ive effect of the underlying classical dynamics on the sta-

ous components of & mixed phase space to the mean charggical properties of transition matrix elements. This is due
terizing the distribution of diagonal transition matrix ele- (5 the fact that the structure of phase space changes with

ments and to the variance characterizing the distributions Oénergy for most systems. Consequently, any diagonal transi-
nondiagonal transition matrix elements. It means in particu-. '

lar to complement the study of Robnik and Prosen on a spetlon matrix elenjen(m|A|m> .(|m> being a.m elgenvectqr of
cific aspect of the link between the mixed character of phasé€ system andh the perturbing operatpis usually going
space and statistical properties of transition matrix elementdVith a different energy shell. The problem becomes even
which was not considered by them. This aspect concerns tHeckier WhAen considering nondiagonal transition matrix ele-
use of the stable periodic orbits in the computation of thements(m|A|n) since initial and final eigenstates are always
guantitative contributions coming from the various regulargoing with different energy shells. The study should there-
components of phase space to the values of mean and vafére be done using a set of transition matrix elements in
ance. The study of this particular point is interesting becauswhich initial and final eigenenergies are restricted to an en-
of the following two reasons. On the one hand, the methoekrgy interval small enough for phase space to keep its struc-
proposed in Ref§20,21] to compute the variance is not easy ture practically unchanged. However, in order to get a sig-
to use in practice since it requires the prior identification innificant number of transition matrix elements, one should
phase space of the adequate neighboring quantized tori. Gifhoose an energy region which is high enough in the spec-
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trum so that the density of states can make up for the small- ooy ey A o
ness of the used energy interval. This would obviously re- 2E(u %) = gu i (p v +4 W (p,v)
quire the diagonalization of very large matrices in practice.
Such numerical difficulties can be avoided by studying scal- =222 LN T T
y ying =W (pLtp)V(w,v), ()

ing systems. These are systems possessing scaling properties
which imply that phase space has the same structure at all. _ o, oy
energies. A hydrogen atom in a strong magnetic figg]  With the radial operatorp), andp;, defined as
and the three-body Coulomb systé@6| are physically in-

teresting examples of scaling systems. The Hamiltonian of a c2_ E i ;i

scaling system depends on a scaling parameter. It is useful to Py Tav\ avl’

follow the variation of the energy levels with the scaling

parametei{25,26 since one can extract information about Equation (3) can be written in matrix form by using the
the underlying classical dynamics from spectra taken at difcomplete set of basis functions, which is composed of the
ferent values of the scaling parameter by application of theensorial products of the eigenvectors of two uncoupled two-

19

mdu

~ 0
M=

—-.’.‘,2:
© o

so-called method of scaled energy spectrosd@dy28. dimensional harmonic oscillators with frequenof— 2E
In atomic units, the quantum Hamiltonian of a hydrogen|25 29|, The generalized eigenvalue equation is solved with
atom in a strong magnetic field read5] the help of the Lanczos spectral transformation method,
1 11 1 which is adapted to the diagonalization of sparse symmetric
N (PP = 2p2— =+ =Lt = 2(2+ V7). matriceq 30]. One obtains in this way the spectrum of eigen-
Hy(p1) 2p P2 e g” OHY?) @ vectors |¥,) and corresponding eigenvaluesw,,

=(y 9),,. The structure of phase space is the same at ev-

HereL, is the component of the angular momentum operatofy €igenenergw, since the generalized eigenvalue equa-
along the direction of the magnetic field. This component igion has been solved at constant scaled en&gyonse-
conserved and, consequently, the azimuthal quantum numbguently, the matrix elements describing the various
m is a good quantum number. Numerical computations aréransitions caused in the spectrum by a perturbing operator
restricted to the subspaae=0 in this study. The Hamil- are all going with the same underlying classical dynamics. It
tonian is invariant under reflection with respect to the planehas to be noted that the eigenvectpbs,) are not orthogo-
which is perpendicular to the direction of the magnetic field,nal. ~ However, the modified eigenvectors|m)

and thez parity 7, is thereby a good quantum number too. oo 2, . . .

The parametery is the magnetic field strength in atomic pM+pV|‘I’m> (W'th the same corresponding eigenvalues
units, y=B/(2.35<10° T). When expressed in terms of the Wm) are orthogonal, i.e.,

scaled coordinates= y?% and scaled momenia= y~ *3p, Y S S
the classical Hamiltonian scales as (mfn) =W Py, + Pl W) = G- )
The perturbing operator which has been chosen for this study
o o(B)= 55 = + 5Lt 5 (247) s
y=URE TR otz g

2/3 23 _F A _1 w (5)

:'y7 Hy(pir):77 E:Ev (2) = "2:4\. P

2rP° 2+ p?

with E the excitation energy. Therefore, the classical dynam-
ics obtained from the scaled equations of motion does nothe second expression in this equation is the effective ex-

depend orE and y independently but on a single parameter pression of the operatoh when acting onto eigenvectors
combining both physical quantities, the scaled enekgy belonging to the subspace=0. The same operator has been
=y~ 2BE. This implies that the structure of phase space isused in previous papefd 2,24 already. The reason is that
identical for any pair E, y) leading to the same value of the this particular operator is convenient to handle in practice
scaled energy. since the general expression of the associated transition ma-

If 7 and, are the scaled coordinate and momentum oplfiX elements in the orthonormal basfgm)} of modified

erators along the direction of the magnetic field, one ha§'9envectors is

[z,p,]1=iv"%% by virtue of the previously given definition of (M Al =Wy (W | W) 6)
scaled variables. The dependence of the quantum dynamics mem e me

on the magnetic field strength can thereby be taken into The computation of the transition matrix elements at con-
account by means of an effective Planck’s constagt  stant scaled energy amounts therefore merely to the compu-
=" (=1 subsequently One approaches the semiclas- tation of the various overlaps of the eigenvectéf¥ )}.

sical limit at constant scaled enerdys— O by decreasing Moreover, this computation can be restricted to a subspace
the value ofy. The quantization of Eq2) in the subspace which is labeled by a given value af, because the operator
m=0 leads to a generalized eigenvalue equation for the scal ~onnects only eigenstates of the sararity. Numerical

ing parameterw=y~*=fioi . The introduction of the compytations are done here in the subspace-0". This
scaled semiparabolic coordinatgs= \r+z and 7= \r—z special perturbing operator offers another computational ad-
allows us to write this generalized eigenvalue equation as vantage. Indeed, it turns out that the average at constant
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scaled energy of the Weyl transforf of the operatorA (a)
along a given trajectory in phase space has an analytic ex-
pression, given in Eq(10) below. This average, which is
important for the physical interpretation of the numerical re-
sults presented in this paper, can therefore be computed ac-
curately. The Weyl transform of the perturbing operator is
expressed most simply with the help of the scaled semipara-

bolic momentaf)# andp,, the conjugate variables of the
scaled semiparabolic coordinatgesand v. These momenta

are defined as the derivatives of the coordinatesd with
respect to the so-called rescaled time variablg25]. The

expression ofA is

~ o~ o~ 1
A(pﬂ'py)=52?- (7

o v

The scaling parametav=y~ 3 and the scaled actios(E)

=[(p,du+p,dv) are conjugate variables at constant
scaled energy. Since the variallés an energy variable, the

variable’s can be considered as a time variable which mea-
sures the length of trajectories in the four-dimensional phase
space spanned by the scaled semiparabolic variables
(., v,p,,.p,) [31]. The infinitesimal scaled actiafs and the
infinitesimal rescaled time 7 are linked together by the re-
lation

T AT T AT (T2 T2
ds= pMd,qu pvdv—(plﬁ p)dr. ®) FIG. 1. Poincaresurfaces of section of a hydrogen atom in a
strong magnetic field in the scaled semiparabolic representation
w.p,;v=0) for three different values of the scaled enefgy(a)

=-0.2; () E= —0.316;(c) E=—0.4.

This relation implies that the Wey! transforf can be ex-
pressed at constant scaled energy as the derivative of t

variable r with respect to the variabis, i.e.,

o o ponent is associated to a stable periodic orbit lying in the
APy Py =—==A(S). (99  plane perpendicular to the direction of the magnetic field,
ds with scaled actiors, =6.490 86. Figure @) displays, for the

h | Eof th | formi same value of the scaling energy, the distribution of values
The average at scaled energyof the Weyl transformA ¢ yhe giagonal transition matrix elements as a function of

along a trajectory with scaled acti®E) corresponding to a the scaling parametev= 7*1/3=ﬁ;ﬁ1_ This figure shows

total rescaled time- is then simply clearly the presence of two different patterns. On the one
_ hand, there appears a statistical distribution built up with
1 JS(E)dEZ\ 3= 1 Tdr= T (10 diagonal transition matrix elements which are represented by

S(E)Jo S(E)Jo S(E)' * X symbols. A further analysis reveals that these matrix

elements involve eigenstates whose Husimi distribut&j

is essentially localized within the ergodic sea. Such eigen-

states are called “chaotic” in the sequel. They are generi-
This section studies the quantitative contributions comingeally labeled agmc), with corresponding eigenvaluegs .

from the ergodic and regular components of the mixed phaséhese eigenvalues belong to a subset of the spectrum which

space to the mean value characterizing the distribution ofs characterized by a mean density of stafeg.(w)

diagonal transition matrix elements associated to the perturl>=0.702v. On the other hand, one distinguishes in the lower

ing operatorA. The study is done for three successive valued®@rt of Fig. 2a) several sequences of diagonal matrix ele-

of the scaling energ, which areE=—0.2, E= —0.316 ments which are represented by* symbols. The Husimi
9 g% - 7 distributions of the corresponding eigenstates are well local-

and E=—0.4. Figure 1 displays the Poincaseirfaces of ;o4 within the two islands of stable motion in Fig(al
section for these different cases in the scaled semiparabolig,ch, gigenstates are called “regular” in the sequel. They are
representation 4,p,;»=0). In the caseE=—-0.2 [Fig.  generically labeled aBn,), with corresponding eigenvalues
1(a)], the surface of section has two islands of stable motiorq,vg)_ These eigenvalues belong to a subset of the spectrum
which are embedded in a simply connected ergodic sea. Botjhich is complementary to the previous one and whose
islands belong to the same regular component since they affean density of states js,, (w)=0.066w. The coexistence
conjugate with respect to the ling,=0. This regular com-  of these two different patterns of diagonal transition matrix

Ill. DIAGONAL TRANSITION MATRIX ELEMENTS
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(@) 0.5 The expression ob(w) is written here in the scaled semi-
0.48 parabolic representation of phase space. The first term on the
0.46 right-hanc_i side of _Eq(_12), the so-called Weyl term, gi_ves
A ‘ the classical contribution to the scaled spectral function. It
(E 0.44 factorizes into two parts as a consequence of the use of the
T 042 scaled semiparabolic representation. One part depends solely
v 04 on the scaling parametev, whereas the other part, which
s involves a phase space integration over the whole energy
0.38 shell) at constant scaled energy is independent of it. The
0.36 second term gives the leading-order corrections to the Weyl
term in an asymptotic expansion Bf(w) into powers offi.
These corrections are generated by the periodic orbits of the
(b) 0.384 underlying classical dynamics, which are all unstable. The
0.382 outer sum in the second term runs over the {gp¢tof all
primitive periodic orbits, whereas the inner sum runs over all
0.38 " > L . >
2 repetitionss of every primitive periodic orbit. Each primitive
< 0378 periodic orbitp is characterized by an amplitude, whose
£ 0376 expression is
0.374 . ]
0372 e m————— T 1 A,= ¢ dsA(s). (14)
0.37 : . . -
0 001 002 003 004 005
lp In this equation, the integration is done along the considered

FIG. 2. Distribution of values of the diagonal transition matrix P€riodic orbit and over one periodS,(E)=$(p,du
elementsm|A|m) corresponding to the operatde=1/2rp? in the ~ +P,dv). The scaled actios,(E) appears in the argument
case of the scaled ener§y= —0.2.(a) distribution of values of the ~ Of the sine funCtiorL together with the scaling parameter
matrix elements associated to the chaoti¢)(and regular ¢) since it scales aSp(E)=W718p(E), S,(E) being the usual
states as a function of the scaling parametetb) distribution of  action computed at the excitation energy= E/w?. Every
values of the matrix elements associated to the regular states ass@imitive periodic orbit is also characterized by its mono-
function of the inverse of the mean total density of staiggw). dromy matrixM o and its Maslov inde)@zp, which are both
) . _independent of energy for scaling systems. The importance
elements illustrates well the fa.ct.that Fhe spectrum of a mixe the correction due to theth repetition of the primitive
quantum system can be split into independent subsets ’_‘geriodic orbitp depends on the determinant of the difference
eigenvectors, each of which goes with a different compone etween thesth power of M, and the unit matrix. As Fig.

of grr:ase spapE&_G]. . . ¢ Fi i d ith 2(a) shows, the scaled spectral functiDifw) can be written
e quantitative interpretation of Fig(a is done wit as the sum of two different contributions in the case of a

the help of a scaled spectral functi@{w) which tal<es all mixed system, i.e.,
diagonal matrix elements of the perturbing operatomto

account. It is defined as D(w)=D¢(w)+D,(w) (15)
D(w) =2 (m|A|m)s(w—wpy). (1y  with
m
According to Refs.[8,9], the semiclassical expression of D)= 2 (Mgl AlMg(ry) S(w—weD)., (16)
D(w) which is relevant to the fully ergodic case is Me(r)
w4 ~ e e ey ey The semiclassical expression bf,(w)[D,(w)], the scaled
D(w)= (Zﬂ)zfndpud pydpdy(p”+v7) spectral function which is associated to the ergdcégula)
component of phase space, is similar to the one given in Eq.
XA(BM p,) 8(H (E,M D, 0)—2) (12). The integration in the Weyl term is now done over the
corresponding part of the energy shell at constant scaled en-
sin{s[wSp(E)— a,ml2]} ergy. The leading-order corrections to the Weyl term are due
T P & Trey [de(MS—1)]72 ; to the unstabléD.(w)] or stable D, (w)] periodic orbits of
P - P the underlying classical dynamics.
(12 The semiclassical expression bf.(w) predicts that the
with classical contribution to the mean val(#), which charac-
terizes the distribution of diagonal transition matrix elements
F'(Bu D) = %(Bi“LBE)_(:‘z“L;z)E corresponding to the chaotic eigenstates is given by the mi-

~ o crocanonical average of the operaﬁonver the ergodic part
+ 20T (wP+02). (13) Q. of the energy shell8,9], i.e.,
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| dBucip (54 TR, B 6 (B, o) -2)
(Aye=— — : (17)
| b, b, (52472 6B, B ) -2)

with H(p,.p,.x, ) defined in Eq(13) [33]. This formula  formally the leading-order corrections to the Weyl term gen-
is not e;sy to use in practice for the computation of theerated by the stable periodic orbit and all its repetitions in the
classical contribution since it requires the numerical calculafollowing way [23,6,7. The expression of these corrections
tion of three-dimensional phase space integrals. Howevefor a particular stable periodic orhitis [23,6,7

just as in Refs[11,12, the ergodic theorem allows us to

replace the microcanonical average with a tithe., scaled i o explisfwS(E) — a,7/2]}
action average of the Weyl transform of the perturbing op- - —A,E 2sin(smy) .
erator along any trajectory exploring the ergodic part of the mostl ™

energy shell in a uniform way. With the help of E40), the

(19

expressed as independent of energy for scaling systems. After expansion
of the sine function in the denominator and the subsequent
~ 1(S __ 7(S) use of the Poisson summation formula, this expression can
(A)e=lim< | dsA(s)= lim—, (18)  be rewritten as
S—»scS 0 S—w S
. . . - 1
7(S) belng the total reS(_:aIed time corresponding to_the AY SWS(E)-27 n+% —on k+§ %}- (20)
scaled actiorS. The ergodic theorem ensures that the limit nk

on the right-hand side of this equation is well defined and

Unique. This formula is well suited for the numerical Ca'CU-ThiS is a formal expression of the scaled Spectra] function
lation of the classical contribution to the mean value. In thep (w) in the semiclassical regime. It predicts that the semi-
caseE=—0.2, it gives the value{A>c=0.41, which is in  classical spectrum of the regular states is similar to the spec-
good agreement with the value 0.411 obtained from the starum of a two-dimensional harmonic oscillai®3,6,7]. One
tistical distribution of Fig. 2a). Equation(18) can therefore direction of harmonic motion is along the stable periodic
be used to compute with an excellent precision the meaorbit, whereas the other direction of harmonic motion is
value characterizing the distribution of diagonal matrix ele-transverse to it. This motion takes place on neighboring tori
ments associated to the chaotic eigenstates. surrounding the orbit. Each such torus is identified by two

Figure 2a) suggests that all sequences of the diagonahyantized scaled actions, the acfigr=27(n+ a,/4) which
matrix which correspond to the regular eigenstates are CON3 associated to the longitudinal motion and the aclign

verging towar.ds. the same limit as the scaling paramater .=2m(k+ 1/2)y, which is associated to the transverse motion
Increases. Th.|s is indeed the case, as c_:learly showr] by F'?34]. Every regular state is therefore labeled by two quantum
2(b). In th|s_f|_gure, the values of the diagonal matrix ele-_ numbersn andk. The range of values of both quantum num-
ments pertaining to the seven sequences of the previous fi ers is bounded in practice as a consequence of the finite size
ure are re'presented as a function of the inverse of the me the corresponding region of stable moti@). It has been
total den_5|ty_ of Stateﬁor.t(w).=p0vC(W)+p0vf(W)' Such arep- checked that all regular eigenstates building up a given se-
resentation is useful since it allows us to extrapolate the VaIQUence of diagonal matrix elements in Fig&)2and 2b) are

ues of the individual diagonal matrix elements in the semi-l beled by the same quantum numkehis quantum num-
class.ical regime. This comes from t.he fact that the mean tot er is even as a result of the parity symmetry with respect to
density of_states IS proportlo_nal_ Win the case _Of a hydro- the plane perpendicular to the direction of the magnetic field.
gen atom in a strong magnetic field;=0.768v in the case 1o o yest sequence correspondskte0, the next one to
E=-0.2), and so its inverse is proportional to the effectivex=2 and so on until the last identified sequence which cor-
Planck’s constant = y*** of this system. The semiclassical responds tck=12. Figure 2b) shows that there are a few
limit at constant scaled energyeﬁ—>0 is therefore reached diagona| matrix elements which do not be|ong to any se-
as 1po(w)—0. One sees that the values of the diagonalquence. It has been checked that all of them correspond to
matrix elements in the sequences are approximated all thegular eigenstates which are involved in quasicrossings and
better by a common limiting valugA), as one comes closer so cannot be labeled by a fixed value lof The quantum

to the semiclassical regime. This behavior is in sharp conaumbern differentiates the regular eigenstates which are as-
trast with that of the diagonal matrix elements correspondingociated to a given sequence. The previous formal expression
to the chaotic eigenstates, which are distributed statisticallpf the scaled spectral functidb,(w) predicts also that the

around the mean valud). . The limiting value(A), can be  limiting value (A), of the sequences is proportional to the
most easily computed by using an expression of the scaleamplitudeA, of the stable periodic orbit, whose expression is
spectral functionD,(w) which is obtained by resumming given by Eq.(14). The amplitudeA, has to be divided by the
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scaled actiorg, of the orbit for the purpose of normalization. @ 0.49
With the help of Eq.(10), this limiting value can be ex- 0.48
pressed as 0.47
0.46
N G g o
- —- < .
B-5 § G-, @ = ou
0.42
7, being the total rescaled time corresponding to the scaled 0.41 |t
actionS; . It has to be remarked that the classical contribu- 04 | _
tion (A), to the mean characterizing the distribution of diag- 0'390 50 40 60 80 100 120 140
onal matrix elements associated to the chaotic eigenstates, w
Eq. (18), and the classical limiting valuéA), of the se- ) 0.42
guences of diagonal matrix elements corresponding to the
. - ) 0.415
regular eigenstates, ER1), have similar expressions. Each +
expression makes use of the classical trajectory whichisre- ~ ~ 0.41
lated to the component of phase space going with the studied <§ 0.405
subset of diagonal matrix elements. In the cBse— 0.2, the § '
scaled action corresponds to a total rescaled time 0.4
=2.4135. This gives the valugd), =0.372, which, as seen 0.395
in Fig. 2b), agrees very well with the value obtained as the W
common intersection of the dashed lines interpolating the 039 001 o002 o003 o004 005
values of the diagonal matrix elements as one goes towards ' T ' '

the semiclassical limit. B
Since the total distribution of diagonal matrix elements is  FIG. 3. Same as Fig. 2 but in the case of the scaled eriergy
composed of two different subsets corresponding to the twa —0.316. The shapes of the two stable periodic orbits which are

different components of phase space, its mean v(a&)eis used in the analysis of this case are shown in the insets.
expected to be the sum of two properly weighted contribu-

tions. The contribution which comes from the mean valugcomponent, which, as in the cae= —0.2, is associated to a
<A>c (limiting value <A>r) is weighted by the ratio of the stable periodic orbit lying in the plane perpendicular to the

mean density of states of the subset of chaotigula) states direction of the magnetic field. This orbit has a scaled action

; 2 . S;1=7.903534, corresponding to a total rescaled time
to the mean total density of states. Each weighting factor iS"% . o . ) .
roughly equal to the relative volume of the corresponding 3.108 460. The shape of this orbit is depicted in the semi-

o parabolic coordinate representation, ¢) in the lower inset
icsotmhgf(;‘g?é ?rf] (f ?cz)a"séawsir?g.ce. The expected expressioh)of of Fig. 3(b). The two conjugate chains of four islands of
' stable motion surrounding the central islands belong to an-
other regular component. The associated stable periodic orbit
)<A>r ) (22)  has a scaled actiof ,=12.158 133, corresponding to a total
rescaled timer,,=5.028 604. The shape of this orbit is de-
picted in the scaled semiparabolic coordinate representation

In the caseE=—0.2, this formula gives the valuéA),  (7.7) in the upper inset of Fig.(®). Figure 1c) shows the
=0.407, which is very close to the valyé\);=0.409 ob-  poincaresurface of section corresponding to the cise
tained from the whole distribution of Fl_g.(@. Conse-  —0.4. As in the two previous cases, the two conjugate is-
quently, Eqg.(22) allows us to calculate with an excellent lands of stable motion on both sides of the Iﬁg:O belong
precision the mean value characterizing the total distributioq0 a regular component with a stable periodic orbit lying in
of diagonal matrix elements. It generalizes to the case of o plane perpendicular to the direction of the magnetic field.

scaled system with'a mixed phase space the expressjon of t'ﬁis orbit has a scaled acti@;=7.024 81 corresponding to
mean value given in Ref$8,9] for a scaled system with an a total rescaled timer,;=2.866. The stable island in the

ergodic phase space. A middle of the surface of section pertains to another regular
It is expected that there are as many limiting val@@s.  component, with a stable periodic orbit which is parallel to
as there are regular components in phase space. This impqfre direction of the magnetic field. This orbit has a scaled
tant point can be checked by studying the distribution ofactions,,=5.791 216, corresponding to a total rescaled time
diagonal matrix elements for values of the scaled energy for. ,—2 gge.
which several stable periodic orbits are present in the under- Figure 3a) [Fig. 4(a)] displays the distribution of values
lying classical dynamics. This is done in the cades of the diagonal matrix elements as a function of the scaling
—0.316, ancE= —0.4. The Poincarsurface of section cor- parametemw in the caseE=—0.316 E=—0.4). Just as in
responding to the first case is displayed in Fib)1There  the caseE=—0.2, the whole distribution results from the
are five islands of stable motion on both sides of the linguxtaposition of a statistical distribution connected to the er-
p,.=0, a central island surrounded by a chain of four islandsgodic component of phase space and a set of sequences con-
The two conjugate central islands belong to the same regularected to the regular components of phase space. These se-

PO,r(W)
poi(W)

(= 222

por(W)
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@ 0.5 two conjugate chains of four islands of stable motion. Since
0.49 this other orbit has no symmetry with respect to the plane
048 r # perpendicular to the direction of the magnetic field, the five
L 0ATTE upper sequences are labeled by both even and odd values of
£ 046y fe the quantum numbek, with the uppermost sequence corre-
< 045 [ F A4 : o "y . ;
E 044 1ot Epondmg tok=0. Similar results are obtained in the case
043 | %% E=—0.4. Indeed, one sees in Fig(b# that the groups of
0.42 dashed interpolating lines corresponding to the sequences
0.41 above and below the statistical distribution each have a com-
0-40 20 40 80 80 100 150 1;0 mon intersection. The value of the common intersection of
W the sequences below the statistical distribution is very pre-
cisely equal to the limiting valuéA), ;= 7,,/S,;=0.408 of
() 05p the stable periodic orbit lying in the plane perpendicular to
0.48 the direction of the magnetic field. The regular component
' connected to these sequences is, as in the two previous cases,
2 oue the one to whom the two conjugate islands of stable motion
% in the Poincaresurface of section belong. This means that the
Vo 044 . limiting value of a group of sequences readjusts itself to the
ﬁ change in length of the associated orbit as one moves from a
0.42 o particular example of the mixed phase space to another. The
04 . M sequences below the statistical distribution are labeled by
o 0.01 0.02 0.03 0.04 even values ok, with the lowest sequence corresponding to
p k=0. As expected, the value of the common intersection of
the sequences above the statistical distributiorinisarly)

FIG. 4. Same as Fig. 2 but in the case of the scaled erér . ~
—_0a. g o equal to the limiting valugA),,=7,,/S,,=0.500 of the

stable periodic orbit which is parallel to the direction of the
magnetic field. By way of consequence, the regular compo-
nent which is linked to these sequences is the one whose
fingerprint in Fig. 1c) is the central island of stable motion.
These sequences are labeled by both even and odd values of

qguences fall into two different groups, as the fingerprint of
the existence of two different stable periodic orbits. This is
particularly clear in Fig. &), where each group of sequences

is on a different side of the statistical distribution. In the casq( with the uppermost sequence corresponding 4. Fi-

E=—0.4, the long streaks of diagonal matrix elements apy iy, the formula in Eq(22) giving the mean value which
pearing in the statistical distribution are presumably the marlgharacterizes the complete distribution of diagonal matrix
of one or several other regular components, which are assgjements is generalized to the case of several regular com-

ciated to the small islands of stable motion surrounding th‘i)onents simply by adding as many weighted classical values

three main islands in Fig.(&). As previously explained, the  x . o .
identification of the group of sequences linked to aparticular<A>r as there are stable periodic orbits in the underlying
(élassmal dynamics.

regular component is most easily done by representing th
values of the diagonal matrix elements in all sequences as a
function of the inverse of the mean total density of states|v. NONDIAGONAL TRANSITION MATRIX ELEMENTS

pog(w). This is done in Fig. @) [Fig. 4b)] for the case= This section studies the quantitative contributions of the

=—0.316 E=-0.4). In Fig. 3b), one sees that the three grgodic and regular components of the mixed phase space to
lower and the five upper dashed lines interpolating the valueghe variance characterizing the distributions of nondiagonal
of the diagonal matrix elements as one goes towards thgansition matrix elements associated to the perturbing opera-

tsr(]amlclassma[ limit ha\(e a (;ohmm;)n |nt|ersect|on. The vallue O{or A. This is done with the help of scaled spectral functions
€ c.ommon Intersection o t et ree Iower SequUeNCes IS Vei¥hich take the different types of nondiagonal transition ma-

precisely equal to the limiting value(A)1=711/S1  trix elements into account, those coupling chaotic or regular

=0.3933 of the stable periodic orbit lying in the plane per-gjgenstates together as well as those coupling a chaotic and a

pendicular to the direction of the magnetic field. The regularregmar eigenstate together. Since they deal with non-

component which is related to these sequences is therefoggagonal matrix elements, these scaled spectral functions de-

identified in a Straightfor\Nard way. Itis ObViOUSly the one to end necessar”y on two energy scales, the scaled energy

which the two conjugate central islands of stable motion ot};nd the scaled energy differendev. The scaled total spec-

Fig. 1(b) pertain. As in the cas&=—0.2, the three lower tral function C(w,Aw) is defined to be the sum of these

sequences are labeled by even values of the quantum numtsaled spectral functions, i.e.,

k, with the lowest sequence correspondingkie 0. The

value of the common intersection of the five upper sequences ¢ (w, Aw)=C.(w,Aw)+C,, (W,Aw)+ C¢,(W,Aw)

is very precisely equal to the limiting valy@\),,= 7,,/S»

=0.4136 of the other stable periodic orbit. Consequently, the +Cre(w,Aw) (23

regular component which is associated with these sequences

is the one whose fingerprint in Fig(kd is constituted by the with
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CaB(W,AW) maZnB |<ma|A <A>a6aﬁ|nﬁ>| 102 -000000000060000000 °°°°°°°°°°eooooooeo¢¢_,
-4 .
W(a) + W(B) NE ° '-?E—oooooio?'ooeeo 000000000"000000000006
XS | wW— _m_n < 10® Ef*'ﬁ***ﬁ': 2o oee®°°°°°°w2
n 2 u:: 10-8 %J, +-. 1+ *
ul? 10 ++++4¢:HL -
X S (Aw— (WP —wi)) (24) AL R
102 '
anda=c,r; B=c,r. The (Lorentzian smoothings of the5 1014 | _
functions, of widthsy ande, are mtr_oduced.so Fhat one can %0 25 30 85 40 45 50 55 60
compute these spectral functions in practice in spite of the w
discreteness of the spectrum. The values of the widths which ®) 1 I—
. . +
have been chosen for the numerical computations sare 102 | _
=5.0 ande=0.02, in units of the scaling parametsr The 104 it gt i ? ot s ,
. ~ ~ ) NT Rk i - T, R P
classical valuegA)., (A), are subtracted from the appropri- E 100 P A N ;:: : ek
. N .. . . b + + +
ate spectral functions in order to eliminate the quantitative < o8t 8 e el gt et 3
. . . . . . +
contribution of the diagonal matrix elements in the semiclas- & qgrof %o, o e o F feo ool
. . . . . +
sical regime. The local vananoeg(w,Aw), which is asso- ¥ 102 °° o (PR
ciated to the statistical distributions of nondiagonal matrix ol °° © e e ® o6 ]
elements coupling chaotic eigenstates together, is related to 1076 | ° o i

the spectral functiol©,.(w,Aw) and to the mean density of Lt
40 42 44 46 48 50 52 54 56 58 60

statespg(w) by the formula[8] W
FIG. 5. Distribution of values of the transition probabilities
5 Ceco(w,Aw) .
_ 5 . . )
oo(w,Aw)= 5 (250 |(n]AJm)|? as a function of the scaling parameteiin the case of
[poc(W)] the scaled energi=—0.2. (a) Regular eigenstatg); (b) chaotic

. . . eigenstatgn). The diamonds and crosses mark the transitions to
By analogy with this formula, the local varlanoé(w,Aw), regular and chaotic statési), respectively.
which is associated to the distributions of all nondiagonal

matrix elements, is defined through the expression =0. This figure shows clearly that the probabilities of most
transitions coupling regular eigenstates together are several
5 C(w,Aw) orders of magnitude larger than those coupling regular and
o (W,Aw) = 5 (26)  chaotic eigenstates together. This implies in return that the
[por(W)] values of the spectral functio@,, (w,Aw) are much larger

that those of the spectral function€,.(w,Aw) and
‘Cer(w,Aw). Two other observations in Fig.(& are of in-
terest. The first is that the square of the diagonal matrix

element(n=5759A|n=575) is at least one order of magni-
tude larger than the probabilities of transitions coupling dif-
Yerent regular eigenstates together. The second observation is
kréat the probabilities of the transitions involving regular
eigenstates with the same valuekadre more than one order

of magnitude larger than those involving regular eigenstates
with different values ok. Moreover, the larger the difference

nificantly smaller than those of the two first spectral func-" k between two regular eigenstates, the smaller the corre-

. ; L . - sponding transition probability34]. It has also been checked
tions. Figure 5 shows that this is indeed the case in practh?hat the values of the transition probabilities belonging to the

This figure displays the distribution of values of the transi- . . ) .

) . A 5 ) o sequence of diamonds with=0 are decaying exponentially
tion probabilitiesi(n|A|m)|* from a given initial stat¢n) o 4q gne goes away from the diagonal matrix element. This
a subsetm) of final eigenstates corresponding to a finite tyhe of decay is a universal feature of one-dimensional sys-
range of the energy spectrum at scaled ené&gy—0.2. In tems[36]. The system behaves therefore as an effective one-
Fig. 5(@), the chosen eigenstate) (the 575th state above the dimensional system at the level of the transition amplitudes
ground stateis a regular eigenstate witk=0 and eigen- which are connected to the first quantized torus surrounding
valuew!)=38.5. On the contrary, the eigenstémg in Fig.  the stable orbit. Fig. ®) shows clearly that the probabilities
5(b) (the 944th state above the ground statea chaotic  of most transitions involving chaotic eigenstates are also sev-
eigenstate. In both figures, the diamoitd®ssesare record-  eral orders of magnitude larger than those involving chaotic
ing the values of the transition probabilities when the finaland regular eigenstates. As a consequence, the values of the
eigenstatgm) is a regular(chaotio one. Each of the three spectral functiorC..(w,Aw) are also much larger than those
visible sequences of diamonds in Figabis associated to of the spectral function€,.(w,Aw) and C.,(w,Aw). The
regular eigenstates which are labeled by the s#&even guantitative contribution of the last two spectral functions to
value ofk, with the uppermost sequence corresponding to the variancertz(w,Aw) is therefore negligible.

The quantitative contribution of each spectral function in Eq
(23) to the variancertz(w,Aw) is studied in the sequel.

The spectral functiorC..(w,Aw) [C,,(w,Aw)] is con-
nected to the regulaergodio component of phase space in
a manner which is detailed below. On the contrary, the spe
tral functionsC,(w,Aw) andC,.(w,Aw) cannot be associ-
ated to a particular component of phase space since they tal
both chaotic and regular eigenstates into account. Accordin
to Refs.[20,21], the quantitative contributions of these two
last spectral functions t€(w,Aw) should therefore be sig-
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0.07 . . . . 0.05
0.06 | _ 0.04
0.05 | i 0.03 |
© 0.02 |
Q —
3 ) 0.01 |
5 1)
> 0
001 |
-0.02 |
-0.03
0.04
FIG. 6. Rescaled variances of the distributions of nondiagonal 0.03 r
transition matrix elements as a function of the scaled energy differ- 0.02 |
enceAw in the case of the scaled ener§y=—0.2. Solid line: @ 0.01 |
a2(W,Aw) po(W); dashed lineo(w,Aw) po(W). o .
As shown in Refs[8,9], the leading-order contribution to -0.01 ¢
the spectral functiol©..(w,Aw) is proportional to the Fou- -0.02 |
rier transform of the classical autocorrelation function of the 0,03
Weyl transform of the perturbing operator. By virtue of the
ergodic theorem, the microcanonical average over the er- 0.04
godic part of the energy shell appearing in the leading-order 0.03 |
contribution can be replaced by a tinfiee., scaled action 0.02 |
average along any ergodic trajectory exploring this part in a & 001 |
uniform way. The resulting expression of the leading-order & '
contribution to the local variance?(w,Aw) is [12] 0
001 |
2 _ P iAWt igse (X -0.02 |
o (W,AW)——RGJ dse Ca ().
C moos(W) " Jo . 00 05 1 15 2 25 3 35 4 45 5
@ ST R g s s e

Here Cl,c(g) is the classical autocorrelation function of the  FIG. 7. Fourier transform of the rescaled variances of the distri-
Wey! transformﬂ(g), as computed along an ergodic trajec- butions of nondiagonal transition matrix elements as a function of
tory of arbitrary large scaled actid® i.e., the scaled actioi®/2 in the case of the scaled energy —0.2.
(a) Solid line: Fourier transform of2(w,Aw)po(w); dashed line:
1(s autocorrelation functiorCz . (b) Solid line: Fourier transform of
Cic(s)= |im—J ds' (A(s' +5/2)— (A),) o2(W,Aw) po,(W); dashed line: autocorrelation functi@y, .. (c)
s-=SJo Solid line: Fourier transform oﬁrf(w,Aw)pm(w); dashed line:

I . weighted sum of autocorrelation functio@g . andCsz ; .
X (A(S' —s/2) = (A).). (28

The ergodic theorem ensures that the limit on the right-hané‘l)(:“rp(:"_ndiCUIar to the direction .Of the magngtic field since they
side of this equation is well defined and unique. The appear‘?Xh'blt peaks exactly a't the mteggr multiples of the value
ance in Eq(27) of a damping factor containing the width AW_ZZW/SVZO'?GS'd This mzdulatl_onReffezctl ofothe Itl))cal
is a consequence of the smoothing of thiinction which is variance was already pointed out in Ref52,11). One ob-

associated to differences in scaled energies in(E4). The serves also that the.two curves are only slightly different
formula in Eq.(27) is well suited for the numerical compu- from each other. This ppseryat|on_3|mply r.eﬂe.cts the faqt
tation of the classical contribution to the local variancethat the number of transitions involving chaot!q e|g§nstat§s IS
crg(w,Aw). It shows that, at the level of the Ieading-ordervery muqh larger thgn the number of transitions involving
contribution, the rescaled varian(zfﬁ(w,Aw)pOC(w) s 4 regular eigenstates in the chosen example. Consequently, a

: ; . numerical analysis using the bare variances themselves
function which depends only on the scaled energy dlfferencgvould not allow us to get precise enough values for the
Aw and no longer on the scaled enengy

. . L . uantitative contribution to the total variance coming from
As a first numerical study, it is interesting to compare theq g

. the regular part of the phase space. As seen below, it is
values of the rescaled variances'(w,Aw)po(w) and necessary to use the Fourier transform of the rescaled vari-

a2(W,AW) poo(W) over a large range of values of the scaledances in order to extract quantitative precise results from the
energy difference. This is done in Fig. 6 for the cdse numerical data. In practice, the full curve in Fig. 6 has been
—0.2. The full(dashedl curve corresponds to the fir&tec- calculated with the help of the numerical data built up from
ond) rescaled variance. One sees that both curves are modthe distributions of the nondiagonal matrix elements,
lated by the period, of the stable orbit lying in the plane whereas the dashed curve has been computed by using Egs.
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-0.02 | ]
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- 0 02 04 06 08 1 1.2
0.06 b) S/2r
FIG. 9. Autocorrelation functiol€3 , as a function of the scaled
0.04 ‘ actionS/2 in the case of the scaled energy —0.2. Solid line:
& 0.02 I Computation with Eq(32); dashed line: computation with E(B1).
\ f-% | y The expression of the spectral functi@p (w,Aw) in the
or \Ju U’\\/ U | semiclassical regime is obtained much in the same way as
/ W = the expression of the spectral functibn(w), Eq. (20). In-
0.02 ] deed, the contribution of a stable periodic orbit and all its
i repetitions toC,,(w) has an expression which is analogous
0.04 () i ] to the one given in Eq19). The only difference is that the
0.03 | L amplitudeA, is now replaced with the Fourier transform of
0.02 i the autocorrelation function of the Weyl transform of the
— e k perturbing operator along the stable periodic ofBi9,11.
z 0.01 | \ \ ‘ 1 The formal resummation of all contributions leads to the
0 \ / semiclassical expression
-0.01 | v oV % \\// ]
' AN i N Por(W) ® o~ ~
002 \ ] C, (W,Aw) = ‘”TRe f dsel@wHidscy (5), (30)
0
-0.03

0 05 1 15 2 25 3 35 4 45 5 _ ' _ -
S/2m with the autocorrelation functio€; ((s) given by the ex-

. . ~ ression
FIG. 8. Same as Fig. 7 but in the case of the scaled erergy P

=—0.316. 1 o L R
Cir®)= 5 § ¥ (G +32- (ARG ~32- ().
(27) and (28). It is therefore interesting to compare the pre- 31)

dictions of the expression of the leading-order contribution

to the local variancerZ(w,Aw) with the numerical values The autocorrelation function is a periodic function with the
obtained from the distributions of nondiagonal matrix ele-same periodS, as the one of the orbii8,11]. In order to

ments coupling chaotic eigenstates together. This is done igheck the validity of the semiclassical expression of
Fig. 7(a) for the caseE=—0.2 and in Fig. &) for the case C,,(w,Aw), it is easier to take the Fourier transform with

E=-0.316. In both figures, the full curve represents thefespect to the scaled energy differenioe on both sides of

Fourier transform C(S) of the rescaled variance EQ. (30) and to integrate subsequently with respect to the
Ug(W,AW)pO’C(W), ie., scaled energw. If N is the number of regular states in the

used spectrum, one gets the following expression of the au-

. tocorrelation function:

C(S)=e*S f xd(AW)cos(AWS)ag(W,AW)pO’C(W),

—o0

1 PO

(29  CaA9=g 2 Km|A=(A)In;)Pcod(w—w)s].
MmNy

as calculated from the relevant numerical data. On the other 32
hand, the dashed curve represents the classical autocorreRigure 9 compares the values of the autocorrelation function,
tion functionCj ((S), Eq. (28), as computed along an arbi- as computed with the help of E¢32) (full curve) and Eq.
trary ergodic trajectory. Equatio(QZ) predicts that both (31) (dashed curve The comparison is done in the caSe
curves are identical, i.eC(S)=Ca ((S) . Figures 7Ta) and =-0.2 (N=120) and over one period of the stable trajec-
8(a) show that they agree well with each other over thetory. It is seen that the agreement between both curves is
whole range of values of the scaled act@nThe values of good, except in the vicinity of the valu&-=0 andS=S; for
the local variancecrg(w,Aw) can therefore be reproduced which the expression in Eq31) is singular. The full curve
with an excellent precision by the leading-order contributionwould reproduce this singular behavior all the better as the
alone. number of regular states used in the computation would be
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larger. The finite number of regular states is also responsible -

for the observed little discrepancies between both curves in 0.08 @ 1
the considered interval of values of the scaled action. In spite
of these discrepancies, the general good agreement betwee 0.04

the full and the dashed curve allows us to conclude that the ~ 00z |

semiclassical expression given in E®0) can be used to & M A /\M

calculate the values of the spectral function (w,Aw). By K '\

analogy with Eq.(25), one can also introduce a local vari- W W
anceof(w,Aw) corresponding to the distributions of nondi- 002 | v v

agonal matrix elements coupling regular eigenstates together '

defined as L R B R B
0.04 (b) |
C, (w,Aw 0.03 | 1
oP(w,Aw) = ”(—2) (33
[pos(W)] 0.02 | ]
0.01 ]

o

[
It is to be noted that the spectral functions which are associ-©
ated to the distributions of nondiagonal matrix elements in- 0 \j \j Y U \
volving chaotic[Egs. (27) and (28)] and regulafEgs. (30) -0.01
and(31)] states have similar classical expressions. As in the -0.02 | ]
case of the diagonal matrix elements, each expression take: -0.03 s
into account the classical trajectory which is related to the 0 05 1 15 2 25 3 35 4 45 5
component of phase space connected to the studied subset or Sf2n
nondiagonal matrix elements. FIG. 10. Fourier transform of the rescaled variance

It has been checked previously that a very close estimatg?(w,Aw)po(w) of the distributions of nondiagonal transition ma-
of the values of the total spectral functi@(w,Aw) is ob-  trix elements as a function of the scaled act®¥8 in the case of
tained through the sum of the two spectral functionsthe scaled energ=—0.4. (a) Solid line: Fourier transform of
Ceo(w,Aw) and C,(w,Aw). Consequently, by virtue of o2(w,Aw)po.(w); dashed line: autocorrelation functia®y, . . (b)
Egs.(26), (25), and(33), the rescaled variance which is as- Solid line: Fourier transform oirZ(w,Aw)pg,(w); dashed line:
sociated to the distributions of all nondiagonal matrix ele-weighted sum of autocorrelation functiofis . andCj , -

ments can be written as ) o ) )
to compare Fig. (b) with Fig. 7(c) in order to appreciate the

Poc(W) guantitative improvement which is brought in the weighted
M) a(W,AW)po (W) sum by the contribution originating from the stable periodic

’ orbit. In this last figure, the full curve represents again the

por(W) Fourier transform of the rescaled variance whereas the
+(m o (W,AW) pg(W). dashed curve represents now the weighted sum of the auto-
’ correlation functions on the right-hand side of E8f). Con-

(34 trary to Fig. 1b), both curves now agree well with each other

) A _over the whole range of values & The improvement is
As in the case of the mean val(),, Eq.(22), the contri-  ggpecially noticeable in the immediate vicinity of the peaked
bution to the rescaled varianeef (w,Aw)po,(wW) of the er-  structures located at positions which are multiple integers of
godic (regulaj component of phase space is weighted by thes /2-=1.03305. This is due to the fact that the autocorre-
ratio of the mean density of states of the subset of ChaOtlranon function CAr(S) contributes mosﬂy to the Fourier
(regulay states to the mean total density of states. Equivatransform in the immediate vicinity of these positions, as
lently, taking the Fourier transform on both sides of Bf)  shown by Fig. 9. Figure(¢) provides also another confirma-
with respect to the scaled energy differerdom, one obtains  tion of the fact that the spectral functio,,(w,Aw) and
the following formula with the help of Eq427), (30), and  C,_(w,Aw) give really a negligible quantitative contribution

a2 (W, AW) po (W) =

(33: to the local variance. One can therefore conclude that Eg.
Y (34) is able to reproduce the values of the local variance with

eeSf d(Aw)cos(AwS)otz(w,Aw)pm(w) an excellent precision. This gquation generalizes to the case

—w ' of a scaled system with a mixed phase space the expression

of the local variance given in Refk8,9] for a scaled system

(S)+(P0r( ))C (S). (35 with an ergodic phase space. As in the case of the diagonal
pog(w) | AT matrix elements, the generalization of E84) to a situation

with several regular components in phase space is straight-
The numerical comparison between both sides of this equdorward. Indeed, one has to add as many weighted rescaled
tion is done in Figs. () and 7c) for the caseE=—0.2. In  variancess2(w,Aw) po, (W) as there are stable periodic or-
Fig. 7(b), the full curve represents the Fourier transform ofbits in the underlying classical dynamics, as illustrated by the
the rescaled variance whereas the dashed curve represergsaining figures. On the one hand, Figb)8[Fig. 10@)]
the autocorrelation functiol€3 .(S) alone. One sees that compares the Fourier transform of the rescaled variance
both curves do not agree so much with each other. One hag?(w, Aw) pos(w) (full curve) with the autocorrelation func-

POC( )
POt(W)
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tion Ci(S) (dashed curve in the case E=-0.316 trary ergodic trajectory. On the other hand, it has been found

(E=—0.4). As in the previous case, there are many discrept_hat the contribution of each regular component to the mean

ancies between both curves because the contributions cort equal to the average @ around the corresponding stable
ing from the stable periodic orbits are missing. On the othePrbit. It has also been found that the contribution of each
hand, Fig. &) [Fig. 10b)] compares the Fourier transform such component to the variance is proportional to the Fourier

of the rescaled variandgdull curve) with the weighted sum transform of the autocorrelation function Af this autocor-

of autocorrelation functiongdashed curvein the caseE = relation function being again computed around the corre-
~0.316 E=-0.4). The sum now contains the properly sponding stable orbit. For each studied quantity, the contri-

weighted contributions originating from the stable periodicbm'ontsh corfnlng f_rOT the ergoc_zllc and rerz]gular cor_npor:e;_ts
orbits which have been identified in the preceding section. “pave erefore similar expressions, each expression taxing

both cases, the very good agreement between the two cuerEo account thel particular classical trajectory wh.ich_ is re-
confirms th,e validity of the generalization of E@®4) ated to the considered component. The stable periodic orbits
' provide a convenient method to compute the contributions of

the various regular components to mean and variance with
high accuracy. This method is different from the one which
This paper has been devoted to the study of the quantittas been proposed by Robnik and Prosen for the same pur-
tive contributions of the different components making up apose. As a final step, it has been shown that mean and vari-
mixed phase space to the value of the mean characterizir@iCe can be expressed as a weighted sum of the contributions
the distribution of diagonal transition matrix elements and toof all different components belonging to the mixed phase
the value of the variance characterizing the distributions ofpace. The weight appearing in front of a given contribution
nondiagonal transition matrix elements. With the help of nu-has been identified as the ratio of the mean density of states
merical computations done in the framework of a hydrogerPf the corresponding component to the mean total density of
atom in a strong magnetic field, it has been shown that thesgfates of the system. Although the study has been done for a
contributions can be well identified in the semiclassical refarticular scaling system, the results presented in this paper
gime. The computations have confirmed that the leadingare relevant to all generic scaling systems with a small num-
order contribution of the ergodic component to the mean ider of degrees of freedom having a mixed phase space.

equal to the average of the Weyl transfofrrof the perturb-
ing operatorA along an arbitrary ergodic trajectory. They
have also confirmed that the leading-order contribution of ACKNOWLEDGMENTS

the same component to the variance is proportional to the e thank B. Mehlig and K. Miler for discussions. This
Fourier transform of the autocorrelation functionf this ~ work was supported in part by the Deutsche Forschungsge-
autocorrelation function being also computed along an arbimeinschaftSonderforschungsbereich No. 237

V. CONCLUSION

[1] O. Bohigas, inChaos and Quantum Physics, Les Houches[12] D. Boose J. Main, B. Mehlig, and K. Mller, Europhys. Lett.

1989, Session Llledited by M. J. Giannoni, A. Voros, and J. 32, 295(1995.
Zinn-Justin(North-Holland, Amsterdam, 1990p. 87. [13] B. Mehlig, Phys. Rev. B5, R10 193(1997.
[2] J.J.M. Verbaarschot, H.A. Weidenltar, and M.R. Zirnbauer, [14] E.B. Bogomolny and J.P. Keating, Phys. Rev. L&, 1472
Phys. Rep129 367 (1985. (1996.
[3] M. V. Berry, in Chaos and Quantum Physics, Les Houches[15] A.V. Andreev and B.L. Altshuler, Phys. Rev. Left5 902
1989, Session LI(Ref.[1]), p. 251. (1995.
[4] U. Smilansky, inChaos and Quantum Physics, Les Houches[16] M.V. Berry and M. Robnik, J. Phys. A7, 2413(1984).
1989, Session LI(Ref.[1]), p. 371. [17] T.H. Seligman and J.J.M. Verbaarschot, J. Phys. A: Math.
[5] C. E. Porter, Statistical Theories of Spectra: Fluctuations Gen.18, 2227(1985.
(Academic, New York, 1965 [18] T.A. Brody, Lett. Nuovo Ciment@, 482 (1973.
[6] M.C. Gutzwiller, J. Math. Phys8, 1979 (1967; 10, 1004  [19] F.M. Izrailev, Phys. Lett. AL25 250 (1987); 134, 13 (1988.
(1969; 11, 1791(1970; 12, 343(1971). [20] T. Prosen and M. Robnik, J. Phys.26, L319 (1993.
[7] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics [21] T. Prosen, Ann. PhygN.Y.) 235 115(1994).
(Springer, New York, 1990 [22] A. Voros, inCollogues InternationaufCNRS, Paris, 1975p.
[8] M. Wilkinson, J. Phys. A20, 2415(198%; 21, 1173(1988; 277.
see also M. Feingold and A. Peres, Phys. Rev34\ 591 [23] W.H. Miller, J. Chem. Phys63, 996 (1975.
(1986. [24] D. Booseand J. Main, Phys. Lett. 17, 253(1996.
[9] B. Eckhardt, S. Fishman, K. Mier, and D. Wintgen, Phys. [25] H. Friedrich and D. Wintgen, Phys. Rep83 37 (1989.
Rev. A 45, 3531(1992. [26] D. Wintgen, K. Richter, and G. Tanner, Cha®sl9 (1992.
[10] E.J. Austin and M. Wilkinson, Europhys. Lef0, 589(1992. [27] A. Holle, J. Main, G. Wiebusch, H. Rottke, and K.H. Welge,
[11] B. Mehlig, D. Boose and K. Muler, Phys. Rev. Lett75, 57 Phys. Rev. Lett61, 161 (1989; J. Main, G. Wiebusch, and

(1995. K.H. Welge, Commun. At. Mol. Phy5, 233(1991).



2844 DOMINIQUE BOOSEAND JORG MAIN PRE 60

[28] J. Main, G. Wiebusch, K.H. Welge, J. Shaw, and J.B. Delos, pression by replacing the scaling paramétehnich is calledz

Phys. Rev. A49, 847 (1994. in Ref. [24]) by the scaled energ§ in the numerator and
[29] J. Main and G. Wunner, J. Phys. &, 2835(1994. denominator of Eq(1).
[30] T. Ericsson and A. Ruhe, Math. Comp@6, 1251(1980. [34] I.C. Percival, Adv. Chem. Phy86, 1 (1977).
[31] D. Wintgen and H. Friedrich, Phys. Rev. 36, 131(1987). [35] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. R2g3 43
[32] K. Mliller and D. Wintgen, J. Phys. B7, 2693(1994. (1993.

[33] Equation(1) of Ref.[24] does not give the accurate expression[36] L. D. Landau and E. M. LifshitzQuantum Mechanic&erga-
of the microcanonical average. One obtains the accurate ex- mon Press, London, 195%ec. 51.



