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Uniform semiclassical approximations for umbilic bifurcation catastrophes
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Gutzwiller's trace formula for the semiclassical density of states diverges at the bifurcation points of
periodic orbits, and has to be replaced with uniform semiclassical approximations. We present a method to
derive these expressions from the standard representations of the elementary catastrophes, and to relate the
uniform solutions directly to classical periodic orbit parameters, thereby circumventing the numerical applica-
tion of normal form theory. The technique allows an easy handling of ungeneric bifurcations with corank 2
such as the umbilic catastrophes, and is demonstrated on a hyperbolic umbilic in the diamagnetic Kepler
problem.[S1063-651X98)15306-0

PACS numbgs): 05.45:+hb, 03.65.Sq, 32.66i

Gutzwiller's periodic orbit theory{1,2] has become the which is a scaling system, with=1/% 4=y~ ° the scaling

with underlying chaotic classical dynamics. The contribu- L . ~
tions of isolated periodic orbits to the periodic orbit sum aredynamlcs IS determlnec_j by the scgled endfg)but_do_es no_t
depend orw. We investigate the birth of four periodic orbits

given as ~
through two nearby bifurcations near the scaled ené&rgy
T @il Spo/fi—(12) ppol —0.096, where we search for both real and complex
Apo= Pl , (1) “ghost” orbits [8,13]. For the nomenclature of the real or-
Vlde(M =) bits, we adopt the symbolic code of Réfl4]. At scaled
energy E{Y=-0.09689, the two orbits 06— and

With Tpo, Spo, Mpo, and pp, the orbital period, classical ++——— are born in a tangent bifurcation. At energies
action, stability matrix, and Maslov index, respectively. _ =1) ] ) ) ) )
However, Eq.(1) diverges at the bifurcation points of peri- E<Ep ", @ prebifurcation ghost orbit and its complex conju-
odic orbits where orbits are not isolated, and Bg.must be ~ gate exist in the complex continuation of the phase space.
replaced with uniform approximations given in terms of dif- Orbit 00+ — is born unstable, and turns stable at the slightly
fraction catastrophe integrdl8,4]. The study of bifurcations higher energ)EE)Z)z —0.094 51. This is the bifurcation point
and uniform approximations is of fundamental importance toof two additional orbits, & +—— and its time reversal

a complete understanding and semiclassical treatment of syg--—— +, which also have ghost orbits as predecessors. The
tems with mixed regular-chaotic classical dynanjisk The  graphs of the real orbits at ener§y=0 are shown as insets
derivation of uniform solutions based on a canonical transin Fig. 1, and the classical periodic orbit parameters are pre-
formation of the coordinates and momenta to normal formsented as solid lines in Figs. 1 and 2. Figure 1 shows the
coordinate$6,7] and the construction of diffraction integrals difference in scaled actiorAS=AS/(27w), between the

in terms of the new variables, is usually a lengthy and nong,its  The action of orbit 8+—— (or its time reversal
trivial task [3-5,8, especially in the neighborhood of bifur- 0———+), which is also real for its prebifurcation ghost or-
cations of codimensioK =2, and for catastrophes of corank pits nas been taken as the reference action.

2 such as the umbilics. A simple scheme would be desirable -zt his point the usual procedure would be to investigate
to construct uniform approximations from classical perlod!cthe classical dynamics in the neighborhood of the periodic
orbits, and to relate the parameters of catastrophe diffractiog,pits by numerical application of normal form thed#;7].
integrals directly to the periodic orbit parameters, such as thge representation of the dynamics in normal form coordi-
classical actiors and the eigenvalues of the stability matrix ,5tes would finally lead to the correct type of catastrophe
M diffraction integral related to the uniform semiclassical ap-

In this paper we want to demonstrate that in practical,oximation with numerically well determined coefficients.
applications the derivation of uniform semiclassical approXi-jowever, the numerical procedure of local canonical trans-

mations can be considerably simplified, especially for ungesqrmations to normal form coordinates, e.g., by means of
neric bifurcations of codimensiok=2 and catastrophes of |oca| Fourier-Taylor series expansions with numerically ob-
corank 2 when starting directly from the standa.rd represengined coefficientg7], is rather lengthy and tedious, espe-
tation of the elementary catastrophi10]. We illustrate  cjqly for bifurcations related to catastrophes of higher codi-
our method by way of example of the diamagnetic Keplermension or corank. The main result of this paper is to
problem[11,12 given by the Hamiltoniariin atomic units,  gemonstrate that there is a shortcut to the usual procedure

y=B/(2.35¢10°T), andL,=m# =0] which allows one to circumvent the numerical application of
normal form theory. By our new method, an easy construc-

He }pz— 1.1, ()  tion of uniform semiclassical approximations for ungeneric

2 rog’f types of catastrophes, e.g., the umbilics, becomes feasible.
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0.0015 form S matrix approximations in semiclassical scattering
theory[15]. It is a corank 2 catastrophe, i.e., the diffraction
0.001 integral is two dimensional,
xg 0.0005 o . _ ‘
e vy [ dp[ agerean @
-0.0005 with
-0.001 3. 3 5
oot f '~ ' T T 3 P(p,a;x,y)=p°+q°+y(p+a)°+x(p+aq) . (4
0.0005 | 7 i For our convenience, the functich(p,q;x,y) slightly dif-
' fers from the standard polynomial of the hyperbolic umbilic
‘[ 0 given in Ref.[10], but the diffraction integral3) can be
E 5 easily transformed to the standard representation. The four
-0.0005 - stationary points of integrdB) are readily obtained from the
' ) conditionV®=0 as
0001 f . . . LM

— —Qn=[— ® - =
-0.104-0.102 -0.1 -0.098 -0.096 -0.094 -0.092 -0.09 Po= "o X/3=®(Po,Qo;x.y) =0 ®

|

scaled energy and
FIG. 1. DifferenceAS between the classical action of the four

periodic orbits involved in the bifurcations. Dashed lines: Analyti-

cal fits related to the hyperbolic umbilic catastrophe. Inset: Graphs

of periodic orbits 6-+—— and its time reversals-0——+ (solid

o 2 N X
Po=Go=~3¥Y="\g¥ ~3

line), 00+— (dashed ling and +++——— (dash-dotted line =®(Po,do;X,Y)
drawn in semiparabolical coordinates=(r+z)%? and v=(r
_2)1/2. 4 8 ) B 4 ) X 3/2
M R R
Choosing the elementary catastrophe diffraction integrals (6)

as the ansatz for the uniform semiclassical approximation,

we must be able to identify the stationary points of the ex-The function®(po,qo;X,y) must now be adapted to the
ponents with the periodic orbits; i.e., in our example, fourclassical action of the four periodic orbits, i.eAS
stationary points must exist. From the seven “elementary=27wAS~®(p,,q0;X,y), which is well fulfilled for
catastrophes” of Refd.9,1(], this is the case only for the

swallowtail and the elliptic and hyperbolic umbilic. The cor- x=aw’¥E-E?), y=bw'® , (7)

rect choice in our example turns out to be the hyperbolic

umbilic catastrophe, which is of importance, e.g., for uni-and constante.= —5.415 andb=0.096 65, as can be seen
from the dashed lines in Fig. 1. Note that the agreement
holds for both the real and complex ghost orbits.

The next step to obtain the uniform solution is to calculate
the diffraction integral(3) within the stationary phase ap-
proximation. ForE>EE)2), there are four real stationary
points (pg,q,) [see Eqgs(5) and (6)], and after expanding
®(p,q;x,y) around the stationary points up to second order
in p and q, the diffraction integral becomes the sum of
Fresnel integrals, viz.

x<0 2

‘I’(XyY) ~ \/—_3)(

re{(413Y1(819) Y2~ x5 4[(4/9) y*~ x/3132= m/2}
+2 . ®

- V(4y2—3x) 7 2y\/4y?— 3x

] The terms of Eq(8) can now be compared to the standard

periodic orbit contribution$l) of Gutzwiller’s trace formula.

In our example, the first term is related to the orbit-6——

(with a multiplicity factor of 2 for its time reversal
FIG. 2. Same as Fig. 1, but for the determinant Met(1) ofthe =~ 0———+), and the other two terms are related to the orbits

periodic orbits. 00+— and +++——— for the upper and lower signs, re-

Im det(M-1)
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oL ' S ' (@ expli[ Sy /% — (7/2) uo]) by plotting the absolute value of
® .5l ' A(E,w) instead of the real part. The dashed line in Fig. 3 is
E ' 9 ) the superposition of the isolated periodic orbit contributions
I 1} from the four orbits involved in the bifurcations. The modu-
§ / lations of the amplitude are caused by the constructive and
05 destructive interference of the real orbits at energies
0 : — . >E® and are most pronounced at low magnetic field
ar . (b) strength[see Fig. &)]. The amplitude diverges at the two
3 15 L i/ bifurcation points. For the calculation of the uniform ap-
2 i proximation (9), we numerically evaluated the catastrophe
‘_El r 7 diffraction integral(3) using a more simple and direct tech-
© 05 b / . nigue as described in Réfl6]. Details of our method, which
is based on Taylor series expansions will be given elsewhere
0 : ' ' ' [17]. The solid line in Fig. 3 is the uniform approximation
2r (9). It does not diverge at the bifurcation points, but de-
2 15l creases exponentially at energies E{". At these energies
2 no real orbits exist, and the amplitude in the standard formu-
£ Tr lation would be zero when only real orbits are considered.
© 05 | However, the exponential tail of the uniform approximation
. (9) is well reproduced by a ghost orljR,13] with a positive

imaginary part of the complex action. As can be shown, the
asymptotic expansion of the diffraction integ(8) has, for
x>0, exactly the form of Eq(1), but with complex actiors

FIG. 3. Semiclassical amplitudegabsolute valugs for and determinant def{ —1) [17]. The ghost orbit contribu-
magnetic-field strengthga) y=10"", () y=10"% and (©) ¥  tion is shown as dash-dotted line in Fig. 3.
=102 in units of the time period,. Dashed line: Amplitudes of To verify the hyperbolic umbilic catastrophe in quantum
the standard semiclassical trace formula. Dash-dotted line: Gho%ectra, we diagonalized the Hamiltonié®) in a complete
orbit contribution. Solid line: Uniform approximation for the hyper- basis set(for computational details see, e.g., REIS]) at

bolic umbilic catastrophe. ~ T
P constant scaled enerd@y= — 0.1, which is slightly below the

spectively. The phase shift in the numerators describe thRifurcation energies, and calculated 9715 eigenvagtor
differences of the actiodS and of the Maslov index\ the scaling parameter in the regian< 140. The scaled spec-
— 71 relative to the reference orbit-O- — —. The denomi- t'um was analyzed by the high-resolution method of Ref.
nators are, up to a fact@w®3, with c=0.1034, the square 19l i-€., the density of stateg(w) == ,5(w—w,) was fit-
root of [det(M —1)|, with M the stability matrix. Figure 2 ted by application of the harmonic inversion technique to the

presents the comparison for the determinants obtained frofiynctional form of the semiclassical trace formula
classical periodic orbit calculationsolid lineg and from
Egs.(7) and(8) (dashed lines The agreement is very good
for both the real and complex ghost orbits, similar to the

agreement found foA'S in Fig. 1. The constant introduced

above determines the normalization of the uniform semiclaswith complex parametera, and§k. For isolated returning
sical approximation for the hyperbolic umbilic bifurcation, orbits these parameters, obtained from the quantum spectra,
which is finally obtained as can directly be compared to the periodic orbit parameters of
the classical calculationg9]. The part of the complex ac-
tion plane which is of interest for the hyperbolic umbilic
catastrophe discussed above is presented in Fig. 4. The two

solid peaks mark the positiorg and the absolute values of
amplitudeg A,| obtained from the quantum spectrum. How-
ever, there is only one classical ghost orbit which is of physi-
with To, So, and s, denoting the orbital period, action, and cal relevancedash-dotted peak in Fig.)4The position of
Maslov index of the reference orbit-© + — —, and con- that peak is in good agreement with the quantum result, but
stantsa, b, andc as given above. Note that all parametersthe amplitude is enhanced, as is expected for isolated peri-
are readily determined by classical periodic orbit calcula-0dic orbit contributions near bifurcatiorisee Fig. 3. For
tions. comparison, we have analyzed the uniform approximation
The comparison between the conventional semiclassicab) at constant scaled ener§y= —0.1 and in the same range
trace formula(1) for isolated returning orbits and the uni- 0<w< 140, by applying the harmonic inversion technique of
form approximation(9) for the hyperbolic umbilic catastro- Ref.[19]. The results for the uniform approximation are pre-
phe is presented in Fig. 3 at the magnetic field strengths sented as dashed peaks in Fig. 4. The two peaks agree well
=107, 10 &, and 10°°. For graphical purposes we suppresswith the quantum results for both the complex actions and
the highly oscillatory part resulting from the function amplitudes. The enhancement of the ghost orbit peak and the

ow)=3 Age™ 2mSw, (10)

Auniform(EvW) = (C/W)TOW1/3
X W[aw?¥E-EY),bw]

X e [27SgW— (7/2) ) , (9)
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Al of states, and to relate the parameters of catastrophe diffrac-
tion integrals directly to periodic orbit parameters such as
classical action and eigenvalues of the stability matrix at en-
ergies near the bifurcation. The method is a shortcut to the
conventional procedure, i.e., it circumvents the analysis of
classical dynamics in the neighborhood of periodic orbits by
numerical application of normal form theory, and therefore

0 allows an easy handling of ungeneric bifurcations of several

”0.001 orbits related to catastrophes of higher codimension and
Im$S corank. This has been demonstrated, by way of example, for

: ) a hyperbolic umbilic catastrophe in the diamagnetic Kepler

0767 — -0.003 problem, but evidently the method may be applied to other

systems and catastrophe types as well. The technique will be

FIG. 4. High resolution recurrence spectra at scaled energyseful for a semiclassical quantization of systems with mixed

E=-0.1. Solid peaks: Part of the quantum recurrence spectrd€gular-chaotic classical dynamics, e.g., in combination with

Dash-dotted peak: Classical ghost orbit contribution. Dashed peakéhe method of harmonic inversion which has been success-

Uniform approximation for the hyperbolic umbilic catastrophe. ]Eu"ﬁl applied to systems with complete hyperbolic dynamics

20].

additional nonclassical peak observed in the quantum spec- We acknowledge stimulating discussions with F. Haake,
trum are therefore clearly identified as artifacts of the bifur-H. Schomerus, and T. Uzer, and thank K. Wilmesmeyer for
cation, i.e., the hyperbolic umbilic catastrophe. assistance with the classical calculations. This work was sup-

In conclusion, we have presented a simple method to corported by the Deutsche Forschungsgemeinsdiafihderfor-
struct uniform approximations for the semiclassical densityschungsbereich No. 237
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