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Abstract

A method is proposed for the calculation of diffusion constants for one-dimensional maps exhibiting deterministic diffusion.
The procedure is based on harmonic inversion and uses a known relation between the diffusion constant and the periodic orbits
of a map. The method is tested on an example map for which results calculated by different other techniques are available for
comparison. 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Deterministic diffusion plays an important role in a
variety of physical phenomena and applications, e.g.,
particle confinement in magnetic fields [1], conductiv-
ity in metals [2], etc. A general theory of diffusion for
systems with continuous time is presented in [3]. In
systems with periodic phase-space structure, diffusion
may be induced by chaotic dynamics inside the ele-
mentary cells, causing an irregular jumping between
the cells. The investigation of deterministic diffusion
is an interesting task both from the theoretical point
of view, concerning the question of how the typical
stochastic properties arise from a purely deterministic
dynamics, as well as with regard to its various appli-
cations in different physical contexts.

It has been observed that even the simplest model
systems—one-dimensional maps—which exhibit de-
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terministic diffusion are capable of explaining the be-
haviour of relevant physical systems [4,5]. For such
maps, it has been demonstrated that the diffusive prop-
erties are related to the periodic orbits of the map re-
stricted to an elementary cell [4–7]. In particular, the
diffusion constant characterizing the diffusive spread-
ing can be obtained from the leading zero of a zeta
function consisting of a product over contributions
from all periodic orbits of the reduced map. Similar
to the dynamical zeta functions which appear in semi-
classical quantization problems, this product usually
does not converge. In former work [4–6], the conver-
gence problem was handled by the application of cy-
cle expansion techniques. However, cycle expansion
strongly depends on the existence of a symbolic dy-
namics and the shadowing of long orbits by combina-
tions of short ones.

On the other hand, it has been demonstrated [8,9]
that the convergence problems of the zeta functions
and corresponding response functions arising in semi-
classical quantization problems can be circumvented
by the application of harmonic inversion, which is a
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universal method in the sense that it does not rely
on a symbolic code or other special properties of
the system. The method has recently been extended
from Hamiltonian systems to maps [10]. In this Letter
we demonstrate that harmonic inversion can also be
used for the calculation of diffusion constants of one-
dimensional maps. In analogy with the procedure for
semiclassical quantization, we rewrite the zeta func-
tion as a response function, from which we construct
a periodic orbit signal including a finite set of peri-
odic orbits. The analysis of the signal by harmonic in-
version yields the zeros of the underlying zeta func-
tion, from which the diffusion constant is calculated.
We apply this technique to an example map for which
the periodic orbits can easily be calculated, and which
has already been examined with the help of cycle ex-
pansion techniques [11], rendering a comparison with
previous results possible.

We start by describing the general procedure. We
consider one-dimensional mapsf̂ :R → R defined by
an anti-symmetric function̂f ,

(1)x̂n+1 = f̂
(
x̂n

)
, f̂ (−x̂)= −f̂ (x̂),

for points x̂ inside the elementary cell[−1/2,1/2),
and a discrete translational symmetry outside the
elementary cell,

(2)f̂ (x̂ + n)= f̂ (x̂)+ n, n ∈ Z.

From this map, a reduced mapf : [−1/2,1/2) →
[−1/2,1/2) can be constructed by restricting the
dynamics to the elementary cell via the definition

(3)x = x̂ − [x̂ + 1/2],
(4)f (x)= f̂ (x)− [

f̂ (x)+ 1/2
]
,

where[ · ] denotes the integer part of the quantity in
the brackets. Each periodic orbit of the reduced map
f (x), consisting of a sequence of fixed points{x1,

x2, . . . , xn}, corresponds to an orbit of the full map
f̂ (x̂) which returns to an equivalent point,

(5)f̂ n(xj )= xj + σp, σp ∈ Z.

The diffusion constant associated with the map is de-
termined by the lattice translationσ after n applica-
tions of the map, averaged over initial conditions in
the elementary cell:

(6)D = lim
n→∞

1

2n

〈
σ 2〉

n
.

As was shown in Ref. [6], for hyperbolic or almost
hyperbolic maps, the diffusion constant can be deter-
mined from the periodic orbits of the reduced map (4)
by considering the zeta function

(7)Z(z,β)=
∞∏
m=0

∏
p

(
1− znpeσpβ

|Λp|Λm
p

)
,

where the second product runs over all primitive
periodic orbits of the reduced map;np and Λp =∑n

i=1f
′(xi) are the topological length and the sta-

bility of the orbit, respectively,σp denotes the lattice
translation of the corresponding orbit of the full map,
andβ is a free parameter. According to Ref. [6], the
diffusion constantD can be expressed in terms of the
leading zeroz0(β) of the zeta function as a function
of β :

(8)D ≈ −1

2

[
∂2

∂β2z0(β)

]
β=0

.

Additionally, from the symmetry of the map, it fol-
lows that[∂z0/∂β]β=0 = 0. Using these relations, an
expansion of lnz0(β) for smallβ yields

(9)ln z0(β)≈ −β2D,

which can directly be used to calculate the diffusion
constant from the leading zero for smallβ .

The problem that remains is how to actually calcu-
late the leading zero, since expression (7) for the zeta
function usually diverges. In past works, this prob-
lem has been tackled by application of cycle expan-
sion techniques. As an alternative, we demonstrate in
the following how the zeta function can be expressed
in terms of a response function, and how the leading
zero can then be obtained by harmonic inversion of
a periodic orbit signal constructed from this response
function.

2. Harmonic inversion for maps

We start by defining the quantityw = −i ln z and
rewriting the zeta function (7) as a function ofw:

(10)Z(w,β)=
∞∏
m=0

∏
p

(
1− eiwnpeσpβ

|Λp|Λm
p

)
.
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The density of zeros of the zeta function (10) can be
written in the form

(11)ρ(w,β)= − 1

π
Img(w,β),

where the response functiong(w,β) is given by

(12)g(w,β)= g0(w,β)+ ∂

∂w
lnZ(w,β)

with g0(w,β) a smooth, slowly varying function ofw.
Using the definition

(13)t(m)p = eiwnpeσpβ

|Λp|Λm
p

,

we rewrite the second term of the response function as

∂

∂w
lnZ(w,β)

(14)=
∞∑
m=0

∑
p

(−inp) t
(m)
p

1− t
(m)
p

(15)=
∞∑
m=0

∑
p

∞∑
r=1

(−inp)
(
t(m)p

)r

(16)=
∞∑
m=0

∑
p

∞∑
r=1

(−inp)e
iwrnperσpβ

|Λr
p|Λrm

p

(17)=
∑
po

(−in0)
eiwnpoeσpoβ

|Λpo|
∞∑
m=0

Λ−m
po ,

where the first sum in (17) now runs overall periodic
orbits (po) including multiple traversals of primitive
orbits, andn0 denotes the topological length of the
underlying primitive orbit. After carrying out the sum
overm, the response function finally reads

(18)

g(w,β)= g0(w,β)+
∑
po

(−in0)
eσpoβ

|1−Λpo|e
iwnpo.

On the other hand, the response function can be writ-
ten in terms of the zeroswk of the zeta function (10)
and their multiplicitiesdk :

(19)g(w,β)=
∑
k

dk

w −wk(β)
.

Like the zeta function (10), expression (18) for the
response function will usually not converge in those
regions of the complex variablew, where the poles of

g(w,β) are located, and the zeros of the zeta function
cannot directly be calculated from (18). Instead, we
apply harmonic inversion to obtain an analytical con-
tinuation [8,9]. The poleswk(β) of the analytical con-
tinuation ofg(w,β) in (18) are the zeros of the analyt-
ical continuation of the zeta functionZ(w,β) in (10).
To apply harmonic inversion, we now construct a pe-
riodic orbit signal by Fourier transformation of the re-
sponse function (18):

(20)C(s,β)= 1

2π

∞∫
−∞

g(w,β)e−isw dw.

Considering only the second, oscillating part ofg(w,

β), this results in

(21)C(s,β)=
∑
po

−in0e
σpoβ

|1−Λpo| δ(s − npo).

The corresponding signal resulting from Fourier trans-
formation of Eq. (19) reads

(22)C(s,β)= −i
∑
k

dke
−iswk(β),

which contains the zeroswk(β) of the zeta func-
tion (10) as frequencies. The zeroswk(β) can now
be determined by adjusting the periodic orbit signal
(21)—including all orbits up to a maximum topologi-
cal lengthnmax—to the form of the corresponding sig-
nal (22) by harmonic inversion. According to Eq. (9)
and with the relationw = −i ln z, the diffusion con-
stant can be obtained from the leading frequencyw0
using the relation

(23)D ≈ −i
β2w0(β),

which for smallβ should be independent ofβ .

3. Results

As an example, we consider the following map,
which has also been examined in Ref. [11]: For points
x̂ inside the interval[−1/2,1/2] the map is defined by

(24)f̂ (x̂)= x̂
(
1+ 2|2x̂|α),

whereα is a free parameter with the restrictionα >

−1. Outside the elementary cell, the map is continued
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according to Eq. (2). Using Eqs. (3) and (4), a cor-
responding reduced mapf (x) can be constructed.

As was discussed in Ref. [11], the periodic orbits of
the reduced mapf (x) can be described by a complete
symbolic dynamics with a three-letter alphabet. For
−1 < α � 0 the dynamics is completely hyperbolic.
The 0 orbit (corresponding to the fixed pointx = 0)
is infinitely unstable (i.e.,Λp = ∞) and does not
contribute to the response function (18). Forα > 0, the
0 orbit becomes marginally stable withΛp = 1, and
the dynamics becomes intermittent. Furthermore, it
was shown in [11] that atα = 1 the system undergoes
a phase transition from normal to anomalous diffusion,
and the diffusion constant as defined by Eq. (6) equals
0 for α � 1.

For α > 0, the marginally stable 0 orbit would
give a diverging contribution to the zeta function (7)
as well as to the periodic orbit signal (21). As was
discussed in Ref. [7], it is appropriate to simply omit
this orbit from the zeta function, as was also done in
Ref. [11]. In Ref. [11], the diffusion constant of map
(24) as a function ofα was determined using explicit
cycle expansion expressions for the average in Eq. (6)
rather than making use of Eq. (8). In the following,
we will determine the diffusion constant by harmonic
inversion as outlined above.

We calculated the diffusion constant for different
values of the parameterα in the region−0.5 � α � 2
using the periodic orbits up to topological lengthN =
13 (but omitting the 0 orbit). For each value ofα, we
performed calculations for different small values of
β and checked the convergence of the results for the
diffusion constant forβ → 0. The results for the dif-
fusion constant are presented in Fig. 1. In the region
α � 0.5, our results are in excellent agreement with
those from Ref. [11] obtained with the periodic orbits
up to topological lengthN = 10. Forα > 0.5, the dif-
ferent techniques applied in Ref. [11] yielded quantita-
tively different values for the diffusion constant; here,
our results show a good qualitative agreement with
the different cycle expansion results. This is even true
when we used the reduced set of orbits up to topolog-
ical lengthN = 10 in our calculations: The function
D(α) in Fig. 1 becomes slightly more flat, but still
shows a good qualitative agreement with the results of
Ref. [11]. As in [11], it was not possible to reproduce
the theoretical valueD = 0 for α � 1, but one only
obtains an asymptotical convergence to this value.

Fig. 1. Results for the diffusion constant of map (24) as a function
of the parameterα, calculated by harmonic inversion of the periodic
orbit signal (21) including all periodic orbits up to topological length
13 (with the exception of the 0 orbit).

In our calculations, we observed that the condi-
tion that for givenα expression (23) for the diffusion
constant should become independent ofβ for β → 0
was well fulfilled for α < 0. However, with increas-
ing α > 0, the results became numerically unstable if
β was too close to zero, so that we had to extrapolate
from the results forβ around 0.5. The convergence of
the frequencies and amplitudes in the harmonic inver-
sion procedure itself was also very good forα < 0, but
convergencewas increasingly hard to obtain forα > 0.
A criterion for the reliability of the results for a given
value ofα is the closeness of the leading frequency
for β = 0 to its theoretical valuew0 = 0, as well as
the closeness of the corresponding amplituded0 (see
Eq. (22)) obtained by harmonic inversion to its theo-
retical value 1 (the multiplicity of the leading zero of
the zeta function). The absolute value of the leading
frequency forβ = 0 and the corresponding amplitude
as a function ofα are presented in Fig. 2. The absolute
value of the leading frequency was smallest forα < 0
but stayed below|w0| ≈ 10−3 for all values ofα. The
corresponding amplitudes were nearly exactly equal to
their theoretical value 1 forα < 0, but began to deviate
from their theoretical value forα � 0.3, indicating that
the harmonic inversion results became less well con-
verged. A possible reason for the deviations may be
that the density of frequencies becomes too large for
the signal length chosen. It can be expected that the
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Fig. 2. Test of the convergence of the harmonic inversion procedure:
Absolute value of the leading frequencyw0 for β = 0 and the
corresponding amplitudesd0 obtained by harmonic inversion, as a
function of the parameterα. The closeness of these values to their
theoretical valuesw0(β = 0)= 0 andd0(β = 0) = 1 are a measure
for the reliability of the results for the diffusion constant obtained
for the respective value ofα.

accuracy of the results will be improved by including
longer orbits.

In Ref. [11] it was proposed to truncate the peri-
odic orbit sum by introducing a stability cutoff and to
use the stability as an ordering parameter for the cy-
cle expansion. It is worth noting that the harmonic in-
version procedure has the advantage that no discrete
ordering parameter is needed at all. However, a sta-
bility cutoff can also be used with the harmonic in-
version technique because very unstable orbits give
only a small contribution to the signal which can be
neglected.

4. Conclusion

In conclusion, we have demonstrated how the diffu-
sion constant of one-dimensional diffusive maps can
be determined from a finite set of periodic orbits using
harmonic inversion techniques. Starting from a zeta
function whose leading zero possesses a known rela-
tion to the diffusion constant, we have constructed a
periodic orbit signal which was analysed by harmonic
inversion. The diffusion constant could then be deter-
mined from the leading frequency of the signal. Since,
in contrast to other methods such as cycle expansion,
harmonic inversion does not depend on any special
properties of the map, the general procedure should
work in the same way for all chaotic maps. We have
tested the method for a simple map whose periodic
orbits can easily be determined and for which results
for the diffusion constant obtained by cycle expansion
techniques are available in the literature. Our results
are in excellent agreement with the ones from cycle
expansion.
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