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Periodic orbit quantization of chaotic maps by harmonic inversion

Kirsten Weibert, Jörg Main∗, Günter Wunner
Institut für Theoretische Physik 1, Universität Stuttgart, D-70550 Stuttgart, Germany

Received 27 July 2001; accepted 26 September 2001
Communicated by B. Fricke

Abstract

A method for the semiclassical quantization of chaotic maps is proposed, which is based on harmonic inversion. The power
of the technique is demonstrated for the baker’s map as a prototype example of a chaotic map. 2001 Elsevier Science B.V.
All rights reserved.

The harmonic inversion method for signal process-
ing [1,2] has proven to be a powerful tool for the semi-
classical quantization of chaotic as well as integrable
dynamical systems [3–5]. Starting from Gutzwiller’s
trace formula for chaotic systems, or the Berry–Tabor
formula for integrable systems [6], the harmonic in-
version method is able to circumvent the conver-
gence problems of the periodic orbit sums and to di-
rectly extract the semiclassical eigenvalues from a rel-
atively small number of periodic orbits. The technique
has successfully been applied to a large variety of
Hamiltonian systems [4,5]. It has been shown that the
method is universal in the sense that it does not depend
on any special properties of the dynamical system.

In this Letter we demonstrate that the range of ap-
plication of the harmonic inversion method extends
beyond Hamiltonian systems also to quantum maps.
Starting from the analogue of Gutzwiller’s trace for-
mula for chaotic maps, we show that the semiclassi-
cal eigenvalues of chaotic maps can be determined by
a procedure very similar to the one for flows. As an
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example system we consider the well known baker’s
map. For this map we can take advantage of the fact
that the periodic orbit parameters can be determined
analytically.

We briefly review the basics of quantum maps that
are relevant to what follows (for a detailed account of
quantum maps see, e.g., Ref. [7]). We consider quan-
tum maps, acting on a finite-dimensional Hilbert space
of dimensionN , which possess a well-defined classi-
cal limit for N → ∞. The quantum dynamics is deter-
mined by the equation

(1)ψn+1 =Uψn,

whereU is a unitary matrix of dimensionN , andψn is
theN -dimensional discretized wave vector. The eigen-
valuesuk of U lie on the unit circle,uk = exp(−iϕk).
The density of eigenphasesϕk on the unit circle is
given by

(2)ρqm(ϕ)= N

2π
+ 1

π
Re

∞∑
n=1

TrUneinϕ,

which can be rewritten as

(3)ρqm(ϕ)= − 1

π
Imgqm(ϕ)
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with the response functiongqm given by

(4)gqm(ϕ)= g0(ϕ)− i

∞∑
n=1

TrUneinϕ.

In analogy with the periodic orbit theory for flows,
a semiclassical approximation to the response func-
tion (4) can be obtained in terms of the periodic orbits
of the corresponding classical system. (In the context
of maps, “periodic orbit” means a sequence of fixed
points periodic aftern iterations; cyclic shifts of the
same sequence correspond to the same periodic orbit.)
In the semiclassical approximation for maps, the traces
of Un are related to the periodic orbits of topological
lengthn,

TrUn ≈
∑
po(n)

n0

|det(Mpo − 1)|1/2e
i(Spo/h̄−µpoπ/2)

(5)=: iAn,

where the sum runs over all periodic orbits of topolog-
ical lengthn including multiple traversals of shorter
orbits. Here,Spo is the action associated with the pe-
riodic orbit,µpo is its Maslov index,Mpo is the mon-
odromy matrix of the orbit, andn0 is the topological
length of the underlying primitive orbit (i.e., the length
of the shortest subperiod). The value of the Planck
constant is related to the dimension of the Hilbert
space viah̄ = 1/(2πN). The accuracy of the semi-
classical approximation can therefore be expected to
improve with increasingN .

The central idea for applying harmonic inversion to
the periodic orbit quantization of maps now is to adjust
the semiclassical response function

(6)g(ϕ)= g0(ϕ)+
∑
n

Ane
inϕ

to the form of the exact quantum response function (4),
expressed in terms of the eigenphasesϕk and their
multiplicitiesmk,

(7)gqm(ϕ)=
∑
k

mk

ϕ − ϕk
.

It should be pointed out that for all maps by virtue
of (4) the semiclassical amplitudesAn are indepen-
dent of the phaseϕ. In analogy with the harmonic
inversion procedures for Hamiltonian flows [3,4], we
Fourier transform the oscillating part of the semiclas-
sical response function (6) to obtain the semiclassical

signal

(8)C(s)=
∑
n

Anδ(s − n).

The eigenphasesϕk can now be determined by adjust-
ing the semiclassical signal (8) to the form of the cor-
responding exact quantum signal (the Fourier trans-
form of the exact response function (7))

(9)Cqm(s)= −i
∑
k

mke
−isϕk

by harmonic inversion. Note that compared to the cor-
responding procedure for flows, the topological length
now plays the role of the scaled action, while the
actionsSpo of the orbits are included in the ampli-
tudesAn. Therefore, all orbits of the same topological
lengthn contribute to the same signal point. While for
flows the semiclassical signal takes on the simple form
of a sum overδ functions only if we assume a certain
scaling property [4,5], the form of the signal for maps
is always the same, as the amplitudesAn are for all
maps independent ofϕ.

We will now apply the general procedure discussed
above to the example of the baker’s map, which has
been used as a prototype example for studying the
semiclassics of chaotic maps in many investigations
in recent years [8–13]. The classical baker’s map acts
on points(p, q) of the unit square[0,1] × [0,1] ac-
cording to

(10)q ′ = 2q mod 1,

(11)p′ = (
p+ [2q])/2,

where[x] denotes the integer part ofx. The periodic
orbits of the map can be described by a complete
binary symbolic code. Each orbit is characterized by
a symbol string{ε1, . . . , εn}, whereεi ∈ {0,1}. The
action associated with a periodic orbit is given by [9]

(12)Sν = νν̄

2n − 1
mod 1

with the integersν andν̄ defined by

(13)ν =
n∑
k=1

εk2k−1, ν̄ =
n∑
k=1

εk2n−k.

Each orbit of lengthn has stability (i.e., largest eigen-
value of the monodromy matrix) 2n.

A quantized version of the baker’s map which pre-
serves the classical symmetries was derived by Sara-



K. Weibert et al. / Physics Letters A 289 (2001) 329–332 331

ceno [8]. For even dimensionN of the Hilbert space
the quantum map is given by the unitary matrix

(14)U(N)= F−1
N ×

(
FN/2 0

0 FN/2

)

with

(FN)nm = 1√
N

exp

[
−2πi

(
n− 1

2

)(
m− 1

2

)]
,

(15)n,m= 1, . . . ,N.

We will use the the exact quantum eigenvalues for
comparison with the semiclassical ones obtained by
harmonic inversion of the semiclassical signal (8).

For the baker’s map, the semiclassical amplitudes
An in signal (8) as defined in Eq. (5) read [11]

(16)An = −i
∑
po(n)

2n/2n0

2n − 1
exp

(
2πiN

νν̄

2n − 1

)

with ν and ν̄ given by Eq. (13). We have performed
calculations for dimensionsN = 6 andN = 12. The
caseN = 6 has also been examined in Ref. [11], where
the semiclassical eigenvalues were determined by a re-
summation of the Selberg zeta function of the map. For
the construction of the semiclassical signal, we calcu-
lated all orbits up to symbol lengthn= 20 for dimen-
sionN = 6 and up to lengthn= 38 forN = 12. Fig. 1
shows the results for the eigenvaluesuk = exp(−iϕk)
obtained by harmonic inversion of the semiclassical
signal ( � ), compared with the exact quantum re-
sults (∗) obtained by diagonalization of the quantum
matrix U (see Eq. (14)). For comparison, in the case
N = 6, we have also plotted the semiclassical results
from Ref. [11] (+).

Our semiclassical results are in good agreement
with the exact quantum eigenvalues. However, as was
also pointed out in Ref. [11], in the case of the baker’s
map the semiclassical error is relatively large, which
is probably due to the discontinuities inherent in this
map. In particular, a few of the semiclassical eigenval-
ues are located away from the unit circle at distances
on the order of 10−1. Although the accuracy of the
semiclassical approximation should improve in gen-
eral with increasingN , the doubling of the dimension
of the Hilbert space fromN = 6 toN = 12 on average
does not yet visibly lead the semiclassical eigenvalues
closer to the unit circle.

On the other hand, in the caseN = 6, the semi-
classical eigenvalues obtained by harmonic inversion

Fig. 1. Exact quantum (∗) and semiclassical (� ) eigenvalues
uk = exp(−iϕk) of the baker’s map obtained by harmonic inversion
for dimensions (a)N = 6 and (b)N = 12. In the caseN = 6 the
semiclassical results from Ref. [11] are also plotted (+).

are in excellent agreement with those from Ref. [11].
This implies that the deviations from the exact quan-
tum eigenvalues are indeed solely due to the semiclas-
sical error, and do not indicate any inaccuracies of the
individual methods applied. We add that the semiclas-
sical approximation for the baker’s map may even be
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improved by introducing non-semiclassical correction
factors to the amplitudesAn [11,12].

As for flows, the harmonic inversion method for
maps can also be used, vice versa, to analyze the quan-
tum spectrum in terms of the amplitudesAn [14]. This
is achieved by adjusting the quantum response func-
tion (7) to its semiclassical approximation (6). How-
ever, since for maps the amplitudesAn contain contri-
butions from all periodic orbits with topological length
n, it is not possible to extract information about single
periodic orbits from the quantum spectrum. Moreover,
since the traces TrUn do not depend on the quantity
ϕ which is to be quantized, the exact expression (4)
for maps already fulfills the ansatz of the harmonic in-
version procedure as a whole. This is in contrast to
scaling Hamiltonian systems, where the higher-orderh̄

corrections to the semiclassical approximation depend
on the scaling parameter (e.g., for billiard systems, the
wave number) and the harmonic inversion of the exact
quantum spectrum yields only the zeroth-orderh̄ con-
tributions to the response function, with the higher or-
ders acting as a kind of noise [4,5]. As a consequence,
the analysis of the quantum spectrum of maps will
simply yield the exact quantum values for the traces
TrUn rather than their semiclassical approximations
An (we have verified this for the baker’s map), and no
information about the semiclassics or single periodic
orbits can be obtained.

In conclusion, we have presented a method for the
periodic orbit quantization of chaotic maps, which
makes use of harmonic inversion. The procedure
works similar to the one for flows, and can in the same
way be applied to all chaotic maps, independent of any
special properties of the respective system. We have

demonstrated the power of the method by successfully
applying it to the baker’s map. Our results reproduce
the exact quantum eigenvalues of the baker’s map to
within the error of the semiclassical approximation,
and are in excellent agreement with those obtained by
other semiclassical methods.
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