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Abstract. We present the first purely semiclassical calculation of the resonance spectrum in the
diamagnetic Kepler problem (DKP), a hydrogen atom in a constant magnetic field.wihO.

The classical system is unbound and completely chaotic for a scaled energyE B—2/3

larger than a critical value, > 0. The quantum mechanical resonances can in semiclassical
approximation be expressed as the zeros of the semiclassical zeta function, a product over
all the periodic orbits of the underlying classical dynamics. Intermittency originating from
the asymptotically separable limit of the potential at large electron—nucleus distance causes
divergences in the periodic orbit formula. Using a regularization technique introduced in
(Tanner G and Wintgen D 199Bhys. Rev. Lett75 2928) together with a modified cycle
expansion, we calculate semiclassical resonances, both position and width, which are in good
agreement with quantum mechanical results obtained by the method of complex rotation. The
method also provides good estimates for the bound state spectrum obtained here from the classical
dynamics of a scattering system. A quasi-Einstein—Brillouin—Keller (QEBK) quantization is
derived that allows for a description of the spectrum in terms of approximate quantum numbers
and yields the correct asymptotic behaviour of the Rydberg-like series converging towards the
different Landau thresholds.

PACS numbers: 0545, 0365, 3115, 3230

The hydrogen atom in a uniform magnetic field has become one of the most important
examples for studying the correspondence between quantum mechanics and classical chaos.
The Hamiltonian is known to a high accuracy and furthermore, the system is experimentally
accessible in the laboratory. The angular momentum in the direction of the magnetic field
is conserved, which reduces the classical system to a problem with two degrees of freedom.
The classical flow in phase space covers a wide range of Hamiltonian dynamics reaching
from bound, nearly integrable behaviour to completely chaotic and unbound motion by
varying one parameter, the scaled enekgy,

In the 1980s, the system served as a catalyst for quantum chaos. Modulations in the
absorption spectra of highly excited hydrogen atoms in a magnetic field, the so-called quasi-
Landau levels [1, 2], could be assigned to classical trajectories [3, 4] and could be understood
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in the framework of the semiclassical periodic orbit theory [5, 6, 7]. This strikingly simple
answer to a long outstanding question led to a completely new viewpoint in analysing
guantum spectra in general. We refer the reader to the review articles and article collections
[8-12].

So far, the main interest in the literature laid enderstandingyuantum manifestations
of the system such as the quantum spectra or the wavefunctions, in terms of the underlying
classical mechanics. Effective numerical techniques to solved8itger’s equation directly
(neglecting relativistic and finite mass effects) have been developed in the recent years,
both for the bound state spectra [13—-17] and resonances in the continuum [18-21]. Periodic
or closed orbits appear in the Fourier transformed energy- or photo-ionization—spectra
obtained from experiments or from full quantum calculations. Classical orbits can in some
cases be identified as ‘scars’ in quantum eigenfunctions [22] and as prominent peaks in the
corresponding Husimi distributions [23].

Less effort has been undertaken in the opposite direction, i.e. in quantizing hydrogen in
a magnetic field directly in terms of classical entities only. The density of quantum states
[24], photo-absorption spectra [25, 26] or the evolution of Rydberg wave packets [27] can
formally be written as sum over periodic or closed orbits. A brute force application of the
orbit sums using the shortest classical orbits only yields the coarse-grained structure of the
spectrum [28] or the time evolution of Rydberg wave packets on short time scales [27],
respectively. To resolve the fine structure of the spectrum and individual highly excited
guantum states, the information of the classical dynamics on long time scales is needed.
The classical orbit sums, however, diverge due to the exponential growth of the number of
orbits in chaotic systems and appropriate resummation techniques have to be developed to
overcome this problem.

The starting point is here the spectral determin@(E) = [[,(E — E,), which can in
semiclassical approximation be written as product over all periodic orbits of the system, the
so-called semiclassical zeta function [29]. An analytic continuation of the product formula
may be given by expanding the product and regrouping terms with the help of a symbolic
description of the flow in form of a cycle expansion [30, 31]. This method has been shown
to work for strictly hyperbolic classical dynamics, where all periodic orbits are unstable
and the Lyapunov exponents of the orbits, i.e. the logarithm of the largest eigenvalue of the
Monodromy matrix divided by the period, are strictly bound away from zero.

The diamagnetic Kepler problem (DKP) corresponding to conserved angular momentum
L, = 0, (with the magnetic field iy direction), is known to be completely chaotic in
the sense that all periodic orbits are unstable for values of the scaled energy, =
0.328782.. [32]. The classical motion is unbound in this regime and the flow in phase
space can be described in form of a complete ternary symbolic dynamics [33, 32]. The DKP
is, however, not hyperbolic even for energies- ¢.. The potential becomes separable in
the limit where the classical electron is far from the nucleus, causing regular, but unstable,
dynamics in this phase space region. As a consequence, the Lyapunov exponents of periodic
orbits extending far into the regular region of phase space tend to zero. This behaviour,
known asintermittencyin the chaos-literature, is typically for the neighbourhood of marginal
stable orbits or stable islands and is thus generic in Hamiltonian systems.

The regular limit of the classical motion causes divergences in the semiclassical periodic
orbit expressions. This kind of divergence is different from the well known convergence
problem of semiclassical expressions due to the exponential growth of the number of
periodic orbits. Divergences introduced through intermittency can be regularized by first
summing over periodic orbit contributions in the regular classical regime alone. An analytic
continuation of each of the various sums can be given explicitly [34]. This procedure is
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equivalent to a cycle expansion of the zeta function in terms of an infinite alphabet [31]. We
can finally present the first purely semiclassical quantization of the resonance spectrum of
DKP at fixede > €.. The regular limit of the dynamics can be identify to cause the Rydberg
series structure at the various Landau thresholds. The high excited Rydberg resonances can
be well described by a modified Einstein—Brillouin—Keller quantization.

The article is written self-consistently in such a way that it contains all the information
needed to understand the classical, the quantum and the semiclassical aspects of the problem.
The classical system together with the symbolic dynamics is introduced in section 1.
Asymptotic expressions for the actions and stability exponents in the separable limit of
the potential are derived here. In section 2, we explain the method of complex rotation,
which is an efficient tool to treat the full quantum problem in cases of resonances in the
continuum. In the last section, we present our new semiclassical quantization, and results
are compared with full quantum calculations.

1. Classical dynamics

The non-relativistic classical Hamiltonian for the hydrogen atom in a uniform magnetic field
with field strengthB along thez-axis is given as
2 2

2218 -+ %mewz(xz +5%) + L. @)
The z-component of the angular momentum, is conserved and we will restrict ourselves
to the probleni, = 0 in the following. We work in the infinite nucleus mass approximation
andm, denotes the mass of the electron. The frequemey e B/2m.c is half the cyclotron
frequency. The Hamiltonian (1) in atomic units and for= 0 has the form

H =

2 2

p; | Pp 1 1,5

H = E = Iz - —

2 + 2 /p2 + Z2 + 8y p
with the magnetic field strength = B/ B, written in units of By = m2e3c/h = 2.35- 10°
T. The radial distance from theaxis is given by the coordinate. The system is bounded
for E < 0, while for E > 0 almost all trajectories escapede= +oo with non-zero kinetic

@)

energy.
Introducing the scaling transformation
r=y 2%, p=y"3, 3)
yields the new Hamiltonian
- pa 2 1 1
A=e=y2Pu="lr 0o 52 4

2 2 /52 + 72 T’
which is independent of. The classical dynamics is now controlled by one parameter

only, the scaled energy= Ey~%3. The classical action along a trajectory scales with the
magnetic field like

S:/pdq:y_l/sg (5)

with e fixed.

The Hamiltonian (4) is singular & = 0 yielding singular equations of motions at this
point. For solving the equations of motion numerically, it is more convenient to switch to
semiparabolic coordinates and momenta [8]

V2=F-z uwr=F+z py = dv/dr pu = du/dz, (6)
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with a new rescaled time
dr = dt/2F = (V2 + ) dr. (7)
The Hamiltonian (4) in semiparabolic coordinates is

1, 1 1
h = épf + épi — (V2 + )+ évzuz(vz +u? =2 )

and the scaled energyenters as a parameter here.

The structure of the dynamics of the Hamiltonian (8) depends on the value of the scaled
energye alone. TheE-y parameter plane can be partitioned into five distinct regions [8, 32]
(see also figure 1):
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Figure 1. The five main dynamical regions in the-y parameter space reaching from bound
and almost integrable dynamics (1) to unbound completely chaotic dynamics (V). See also the
explanation in the text.

(i) € < —0.5: bounded almost integrable motion;

(i) —0.5 < € < —0.13: bounded motion with mixed chaotic and regular motion;

(i) —0.13 < € < 0.0: the last large stable island disappear; the dynamics is mostly chaotic;

(iv) 0.0 < € < 0.328782 ... unbounded mostly chaotic motion; the symbolic dynamic is
not complete;

(v) 0.328782.. = ¢, < e: unbounded chaotic motion with a complete symbolic
description.

In the following, we will always work in the regiom > ¢, = 0.32878..., where a
simple and complete symbolic description can be assigned to flow in phase space [32].
Furthermore, all periodic orbits are unstable in this parameter regimee Falues below
the critical energy., the symbolic dynamics become incomplete and stable islands appear.
Stable classical motion implies additional complications in the semiclassical description in
section 3, which will not be included in the work presented here.

1.1. Symbolic dynamics and periodic orbits

We can motivate the structures of the classical motion and the underlying symbolic
description by first studying the dynamics of a symmetric four-disk scattering billiard [35].
The similarity between the DKP and the four-disk system becomes obvious, when looking



Semiclassical resonance spectrum of hydrogen 1645

at the shape of the potential in the regularized coordinates, see figure( In the four-

disk billiard, a trajectory may after a bounce with one disk either hit one of the other three
disk or escape from the system. A trajectory bouncing two times after leaving the first disk
may bounce in nine different ways. We find that there drp@&sible sequences of disks for

n bounces. This set of non-escaping starting points:fes co is called a Cantor set. We
label each disk with a number € {1, 2, 3, 4} and a strings; - - - 5, assigned to a trajectory
represents one of the® dossible sequences. A particle cannot bounce twice off the same
disk, which is the only restriction in the four-letter symbolic dynamics as long as the distance
between the disks is sufficiently large compared to the disk radius. The orbits remaining
in the system both forward and backward infinitely long in time form a two dimensional
Cantor set and are uniquely described by bi-infinite symbol strings os_ 1505152 - - -.

Figure 2. Periodic orbits in thed) (z, p) plane and %) (v, 1) plane. The full line denotes the
boundary of the potential for = 0.5.

Since the Cantor set is ternary we can reduce the number of symbols to three with no
restrictions on the sequence of symbols. The reduction can be done in several possible ways
[33, 35]. In appendix A, we construct a ternary alphabet closely related G4hgymmetry
of our system, which will be used throughout the paper. A trajectory is now characterized
by a symbol string - - g_1g0g1 - - - With g; € {0, 1, 2} defined in appendix A.

In appendix B, we introduce a so called well ordered symbolic dynamics
-~w_qwows - - - With w; € {0, 1, 2}, which is in particular useful for finding periodic orbits
numerically [36].

The structure of the Cantor set is similar for the DKP and for the four-disk scattering
system. We can associate a four-letter symbol string to every trajectory also in the DKP,
and the symbols can be understood as a smooth ‘bounce’ with one of the steep hills in
the potential (8). At this bounces, a trajectory has a caustic, and we can determine the
symbolic dynamics either by determining the number of caustics [33] or by making a
suitable partition curve in a Poin@plane [37]. A detailed discussion of this method will
be given elsewhere [38].

The symbolic dynamics is complete, i.e. each possible symbol stringl 1g0g1 - - -
corresponds to a non-escaping orbit in the symmetric four-disk system, if and only if the
gap between two disks are larger than 0.205 times the disk radius [39]. If the disks come
closer to each other certain paths between the disks are forbidden. These paths lie now in
the ‘shadow’ of a disk in between. The corresponding symbol strings cannot be related to
a physical orbit and the symbolic dynamics is said to be pruned [40, 41, 39].

We find an analogous situation in the DKP. Here, each possible symbol string
corresponds to an orbit if the scaled energy is larger than 0.32878. .. [32]. For energies
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below the critical value, the hills of the potential will shadow some of the trajectories which
exist for largere and the symbolic dynamics becomes pruned. The valuetbfis plays

in the DKP the same role as the distance between the disks in the four-disk system. Note
that pruning in the DKP is introduced through bifurcations and stable islands appear and
disappear with varying < ¢.. In the disk system, however, periodic orbits are always
unstable and disappear immediately at a bifurcation point.

The periodic orbits are a subset of all non-escaping orbits existing in the system, (i.e.
of the repellor). A periodic orbit is described by an infinite repetition of a finite symbol
string G = gig2--- g, In the following, we focus mainly on periodic orbits, which we
characterize by the shortest non-repeating symbol string directly.

Four short periodic orbits of the DKP are drawn in figure 2, both in the coordinate
space(z, p), and in the semiparabolic coordinates 1). Note that the two orbits labelled
G=2 andG=20 in figure 2¢) collide with the nucleus. In figure 8 we have indicated the
labelling of the four hills used to construct the four-letter symbolic dynamics. A translation
from the four-letter to the three-letter alphabet can now be read off directly with the help
of appendix A. The orbits labelled 1, 2, 10, and 20 in figure) Zre given the symbolic
descriptionsS = 1234, 13, 1232, and 1324, respectively, in the four-letter code, figaje 2(

1.2. Asymptotic in the classical Landau channel

In this section, we will study the dynamics of the Hamiltonian (2) for positive enérgy
the limit |z| — oco. The coupling between the and p coordinates vanishes in that limit
and the Hamiltonian (2) has the asymptotic form

2

H = %pﬁ + %pf + %pz - |71I +0(p*/z%) =E >0, 9)
with w = y /2. The motion separates for lar@ig values in a pure Coulomb part along the
z-axis and an harmonic oscillator perpendicular to the magnetic field. The energies

1 2 1 1

Eh=5p5+%p2 and Ec=§p§+|7| (10)
become adiabatic constants of motion fef/p — oo. The regular region far from the
nucleus is always coupled to the chaotic motion near the core due to the attractive Coulomb
force inz-direction. The classical motion of the electron in the DKP thus alternates between
strong chaotic motion fop =~ |z| and regular time intervals out in the channgl > p.
Almost all trajectories escape finally to infinity with non-zero momentum ingtd@ection.
Orbits which go further and further out in the regular channel but return to the origin,
approach a marginally stable periodic orhit = oo, p, = 0. In the symbolic description
explained in the appendix A, this marginally stable orbit is labelled 0. Escaping trajectories
which continue travelling along the-axis can be separated from returning once by a plane,
that is part of the stable manifold of the marginal stable orbit. This plane is in the asymptotic
limit given by the conditiont, = p§/2—1/|z| = 0. Returning trajectories can be associated
with bound motion in the-direction andE,. < 0.

Periodic orbits that go far out in the regular regien>> p pick up regular contributions

to the actions and stability exponents, which can be given in analytic form to leading order.
In the ternary symbolic description the channel orbits are characterized by a long string of
consecutive symbols ‘0’ in the symbol code. Of particular interest are periodic orbits with
a symbol code of the forn 0", i.e. periodic orbits with a common head stri6gand a tail
of n symbols ‘0’. We will call these orbits a periodic orbit family. The orbits in a family
have approximately the same behaviour before entering and after leaving the regular region.
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Figure 3. Three members of the periodic orbit family"1@ith (a) n = 25, () n = 50, and ¢)
n = 100 in the fundamental domajm > v > 0 of the regularizeq, v coordinates.

They differ only in the ‘0’-tail string, i.e. in the numbaer of half-oscillations perpendicular
to thez-axis in the regular region. In figure 3, some members of the periodic orbit families
with head stringG = 1 are shown explicitly.

The leadingn-dependent behaviour in the actions and stability exponents is universal,
i.e. it does not depend on the past or the future of the periodic orbits before entering and
after leaving the regular phase. Non-universal contribution approaches a constant for orbits
with the same head string, but increasing number of oscillations in the regular regime.

To obtain the leading contributions to the actions, we start with the Hamiltonian (9)
written in action-angle variable§/;,, ¢y, J;, ¢c),

1
Hrep = 2(1)-//1 - 27.]2 (11)

c
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and omitting the coupling terms. The action variables are given as

1 1
= — =_—E 12
hh= 5 Prado= 5 E (12
1 1
Jo=—0qp.dz = . 13
T (13

The integration is taken over a single revolution of a trajectory in the potential of the one
dimensional Hamiltonians in (10). (Note, that> 0 in (12)). The angle variables propagate
linearly in time with frequencies

0 H, dH,
op = —2L =2, w,=—L = JC_?’. (14)
aJ, 0J.
60 T T 12
50 — 10
40 — 8
S 30 . A 6
20 — 4
10 = 2
0 ! ! ! ! ! 0
20 40 60 80 100 20 40 60 80 100
n n
(a) (»)

Figure 4. The actions ) and stability exponentsJ of the periodic orbit families 0(¢0) and
20" (+) plotted with respect to the numberof zeros in the symbol code (far = 0.5); the
full lines correspond to the asymptotic expressiSps~ n(e + 3/2n~%/3) andx, = 5/3log(n),
respectively.

The surface of constank,, J. form a two dimensional torus in the four-dimensional
phase space. The total action of a trajectory on a torus after theftime2r /w,, i.e. after
one oscillation inz-direction, is

J(,E)=J.(a, E) + aJy(a, E), (15)
where the winding number = w;, /w,. is given as

a=2wJ3 (16)
Inserting (12), (13) and (16) in (15), we can write the total action as function of the energy
E ande,

3 (20\?®
JwEy=2(e+2(22) ). 17)
2w 2\ «

In terms of the scaled energy= Ey~%° andy = 2w, we obtain

3
J(a,€) =ay Y3 (6 + 2a_2/3> . (18)
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The symbol ‘0’ corresponds to one oscillation perpendicular to the field axis inpothe
coordinates or half an oscillation in the origin@l, y) coordinates. A trajectory with
consecutive zeros in the symbol code has an approximate winding number

a(n) ~n—+ag for n> 1 (29)

Contributions due to the non-integrable part of the dynamics are collected here in the shift
term «p, which approaches a constant in the limit> oo for periodic orbits in the same
family. Inserting (19) in (18), the asymptotic dependent behaviour of the (un-scaled)
action of a channel trajectory can be written as

3
Sn) =2y Y3 |:n <e + 2n2/3> + So + Spjan~ 3 + (’)(nl)i| ) (20)

The coefficientsSp, So/3, ... depend one and explicitly on the head string or on the
past and future of the orbit before entering and after leaving the regular phase. Figure 4(
shows results for the periodic orbit families”1@nd 20 up torn = 100. The constant
family dependent term in (20) i§y = —0.6483 for the 10 family and Sy = —0.1440 for
the 20 family, (see also table 1).

The asymptotic behaviour of the stability exponents for periodic orbits with long
sequences of symbols ‘0’ can be extracted from the trace of the stability- or Jacobi-matrix
of the classical flow,

M (1) = 9(q @), p(1) (21)
d(qo, po)
This matrix describes the evolution of the classical dynamics in the neighbourhood of a
given trajectory (q(t),p(t)) in linear approximation.
The asymptotic behaviour of W for a large number of symbols ‘0’ is derived in

appendix C and we state only the final result here,
TM = kyn®3 + kon + O(n?3). (22)

The termsky, k, depend ore and on the past and future of the periodic orbit before entering
the regular region. The largest eigenvalue of the stability matrix grows approximately like
the trace ofM. The stability exponent of a periodic orbit, i.e. the logarithm of the largest
eigenvalue of the stability matrix, scales thus asymptotically like

5
1) = 2 logn + 1o + lyan™3 + O(n™b). (23)

The logarithmic behaviour and the factor 5/3 is universal, i.e. independent of the scaled
energye and of the head string:. In figure 4¢), we compare periodic orbit data of the
families 10 and 20 with the leading term Blogn. The curves deviate not more than
a constant in the large limit. This constant is again family dependent and we obtain
lo = 1.696 for the 10-family andly = 3.675 for the 20-family (see table 1). It is the
slow logarithmic increase in the stability exponents, which reflects the regularity of the
dynamic in the separable limit of the potential. The DKP shows the typical behaviour of
intermittency, i.e. the the Lyapunov exponent= A(n)/ T (n) — 0 for n — oo.

The discussion above is strictly valid only for scaled energi¢arger than the critical
valuee.. The symbolic dynamics becomes pruneddot €. and long strings of ‘0’'s tend to
be forbidden below the critical value. The actual pruning rules depend on the past and future
of the ‘0’ code strings. The maximal possible length of the ‘0’ string in a periodic orbit
family, which becomes pruned, decreases withThe 10 family is an example showing
this behaviour. There are also families, as e.g. the fafily, where the limitn — oo
exists for alle > 0. A detailed analysis of these pruning rules will be presented elsewhere
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[38]. Note, however, that periodic orbit families with an infinitely long ‘0’ tail allowed wiill
have the same asymptotic behaviour as discussed above. In the semiclassical analysis in
section 3, we choose = 0.5 to avoid problems due to the incomplete symbolic dynamics.

2. The quantum spectrum

The starting point of our quantum calculations is the Hamiltonian of a hydrogen atom in
a uniform magnetic field, where we neglect relativistic corrections and effects of the finite
nuclear mass recently discussed in [42, 43]. These effects occur on extremely long time
scales, and correspondingly narrow energy spacings, which are accessible neither to present
laboratory experiments nor to our numerical quantum calculations. They are also ignored
in the classical and semiclassical calculations. The quantum Hamiltonian reads in atomic
units and settingy = B/ By
1, 1 1 1,,
SPT = ovLled oot (24)
in analogy with its classical counterpart (2). Exact quantum numbers of the Hamiltonian
(24) are the parity with respect to tlie = 0)-plane,r,, and the magnetic quantum number,
m, but the system remains non-separablégdnz) coordinates. Eigenvalues and eigenstates
of Schibdinger’s equation can be calculated in each subspace separately.

Introducing dilated semiparabolic coordinates similar to (6)

1 1
M=B~/V+Z ; v= -z, (25)

whereb is a free length scale parameter, Satinger’s equation is transformed to

H =

1
[A# + Ay + 2Eb*(u? +1?) — styz u2(u? +v?) + 4b2] v=0 (26)
whereA, and A, are the Laplace operators for the radial coordinates i.e.

A 139 ( 9 ) m? ( or v)

=P )= 5, (p=por,

" pdp " p?

The paramagnetic terr%n/Lz at constant magnetic field strength results in a constant energy
shift Epara= my /2, which is already omitted in (26).

The Schédinger equation (26) depends on the two physical paramedieend y .
Eigenvalues can now be calculated along various cuts in this plane, e.g. at constant
magnetic field strengthr, along linesEy = const or along lines of constant scaled energy
e = Ey~?/3. For example at constant magnetic field strength we introduce

A= —(1+42EbY),

and obtain a generalized eigenvalue equation for the pararneter

1
[Ho - zbgyzuzvzwz +v%) + ‘”’2] W= (1 +v%) v (27)
with
Ho = (A, — 1®) + (A, =), (28)

Due to scaling laws of the classical Hamiltonian (2), the structure of the classical
dynamics depends only on the scaled energy Ey ~%/3. For comparison with semiclassical
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theories, it is therefore most convenient to evaluate the quantum spectra along lines
constant. Choosing

s=y 3 b = Bs = const

with 8 a new free parameter, (26) can be transformed into a generalized eigenvalue
expression fow

[—ZG(MZ +v?) + %58 w?(u? +v?) — 4,82} U=s52(0,+4)) W (29)

Both (27) and (29) can now be represented in matrix form as a generalized eigenvalue
problem with sparse symmetric matrices in terms of the complete set of basis functions
given by products of the eigenstat@8,m) of the two-dimensional harmonic oscillator
(28), namely

IN,Nym) = |N,ym) ® |N,m) N, N,=012... . (30)

Eigenvalues. = —(1+ 2b*E) or s = y /2 and the corresponding eigenstates are obtained
by numerical diagonalization of matrices.
Because the basis states (30) are square integfatilenctions, scattering wavefunctions
of open systems cannot be expanded in this basis and the method is usually restricted to
the calculation obound statesit energies below the ionization threshold, i.e.

E<Ep= g<|m| +1)

or for constant scaled energy> 0

-1/3 - |m| +1

2¢
Note, that the spectrum of hydrogen in a magnetic field exhibits bound states at energies
even above the classical thresha@d= 0, i.e. when the classical motion is already unbound
in z direction. The continuum wavefunctions are (fat — oo) still quantized in the
p-coordinate and the quantum threshold is thus shifted by the zero point energy of the
harmonic oscillator in the classical Landau channel. To accountifibound resonances
in the continuum we adopted the complex-rotation method [44, 45], which is based on the
replacement

s=Yy

r—sré

in the Hamiltonian and in the wavefunctions. By this transformation, hidden resonances of
the Hamiltonian in the continuum, associated with complex eigenvalues, are exposed, while
the resonance wave functions can still be described byCthéntegrable basis functions
(30), but with complex arguments. In our approach, the complex rotation by the @éngle

is reflected in the replacement éfand g8 in equations (27) and (29) with the complex
dilatation parameter

b=1|blé? and B=|B|€?,

respectively. Representing (27) and (29) with complex rotated coordinates in matrix form,
this results in a generalized eigenvalue problem for complex symmetric, non-Hermitian
matrices. Numerically, the eigenvalue equations were solved by extending the Lanczos
algorithm [46] to complex matrices.

If the scale parameteb or 8 and the complex rotation angke are appropriately
chosen and a sufficiently high number of basis functions (30) is considered in the numerical
diagonalization isolated bound states along the real axis as well as resonances in the lower
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complex half plane can be obtained to high numerical precision. The method fails close to
the Landau thresholds

m|+1
EN:y<N+| . ) (31)
or, for constant scaled energy> 0
1 1
=1 (w4 ) (32)
€ 2
with N = 0,1, 2, ..., the Landau quantum number. To each Landau channel belongs an

infinite number of Rydberg like bound stat@$ = 0) or resonanceéN > 0) converging to

the threshold. Obviously such infinite series of states cannot be obtained from a calculation
with a finite basis size. The numerical convergence of resonances close to the thresholds is
extremely slow if all basis functions up to a given oscillator quantum number, i.e.

Nu+Nv+|m| < Nmax

are considered in the calculation because the total basis size increases quadratically with
growing Nmax. TO improve the convergence we chose a different method to truncate the
basis. In coordinate space sta&s N,m) with N, ~ N, are localized close to thg = 0)-
plane. In this direction the classical motion is bound and there is no need to complete the
basis with states of this type. On the other hand states Mjth« N, or N, < N, are
oriented along the-axis, i.e. where the potential is open. These states are important for the
representation of Rydberg like resonances reaching far into the Landau channels. We have
now optimized our basis by taking into account only those states which cover the physically
important region. With this choice the numerical efficiency in the calculation of Rydberg
like resonances could be considerably improved.

Results for a quantization along constarlines will be presented in the next section
in comparison with the semiclassical calculations.

3. Semiclassical quantization

In the following, we will present a method for a semiclassical quantization of hydrogen
in a constant magnetic field fak, = 0, i.e. with azimuthal quantum number = 0.

The quantization will be performed with respect to the magnetic field variabtey ~/3
introduced in the last section along constant scaled energydine€y %2 > ¢..

The starting point of our semiclassical calculation is the zeroth order Gutzwiller—\oros
zeta function [29], which is the leading term in a semiclassical approximation of the spectral
determinant dét — 19[). The zeta function can be derived from the periodic orbit trace
formula [24, 47] and has for the scale invariant classical Hamiltonian (2) with fixed scaled
energye the form

o) =[]@-10)).  with 1,(s) = &S0z, (33)
P

The product runs over single repeats of all periodic orbits of the system. The scaled action
S introduced in (5) is taken here along a periodic orbit. The (complex) varialidethe
scaling factory ~%2 in units of 2. The winding number corresponds to the number of
turns of the stable or unstable invariant manifold around the periodic orbit [48]. The linear
stability exponent: is defined as the logarithm of the largest eigenvalue of the stability
matrix M, equation (21).
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The semiclassical approximation to the quantum eigenvalues are given by the zeros of
the zeta function. The magnetic field dependence enters the semiclassical zeta function for
fixed e only through the scaling factor = y~%3. The winding number and the stability
exponent are independent pfdue to the scale invariance of the classical Hamiltonian. A
guantization with respect to the magnetic field variablgses the classical information in
the most optimal way as the periodic orbits have to be calculated only once foeeach

The symmetry reduced zeta functions corresponding to the sub-spectra with fixed parity
7, = £1 are obtained by restricting the classical dynamics to the fundamental domain, see
appendix A. The symmetric and anti-symmetric zeta functions differ in phase factors, which
are due to the different boundary conditions as explained in detail in appendix A. These
phase factors are included here in the Maslov indewhich can be read off directly from
the three letter symbolic dynamics introduced in section 1.1. We obtain [33]

op =2n, +ny+ (1—m)ny, (34)

wheren, denotes the length of the symbol string corresponding to the periodic orbit, and
ni, ny count the number of symbols ‘1’, ‘2’ in the code. Note, that the periodic orbit 2
running along the symmetry line has to be excluded in (33)zfo= —1.

The product representation of the zeta function (33) is absolute convergent only for
Im(s) > h, > 0[49]. For systems with a well defined symbolic dynamics a so caljete
expansiorof products like (33) has been proposed [30, 31] to provide a representation with
larger analyticity domain. The product is expanded by multiplying out the single factors and
regrouping the terms in such a way that maximal cancellations occur. The ordering scheme
makes intensive use of the self-similar structure of the dynamics reproduced by the symbolic
description of the flow and groups together orbits and pseudo-orbits into contributions of
increasing total symbol length, the so called curvature terms. For a symbolic dynamics with
a three letter alphabg0,1,2, this has the form [31]

=] -1)=1-)c (35)
n=1

p
with
c1=[to+t1+ 1] (fundamental term)
c2 = [(to1 — tot1) + (toz — tot2) + (t12 — ta1t2)]
c3 = [(too1 — toto1) + (fo11 — toat1) + (fo02 — toto2)
+ (fo22 — fo2f2) + (f112 — f1f12) + (f122 — t12f2)
+(toz21 — to2t1) + (forz — tot12 — toat2 + tot1t2)]

Cqa = ...

Note that each term in the curvature contributiapsis accompanied by a ‘shadowing’
term differing in sign. The only exception is the leading termwhich is also called the
fundamental term [31] in the expansion.

The method has been applied successfully for variety of strictly hyperbolic systems [31,
50-52] and yields an analytic continuation of the zeta function in a 8trip Im(s) > h.,
h. < 0 with exponentially decreasing curvature terms in this regime. Analytic
semiclassical expressions below the critical vatlyecan be obtained by modifications of
the Gutzwiller—Voros zeta function itself [53], which will not be discussed here. Hyperbolic
systems are characterized by Lyapunov expongpts: (1,/S,) of periodic orbits strictly
bounded away from 0. The DKP, however, is an intermittent system even for scaled energies
€ above the critical value. and we obtaim. ~ (logn/n) — 0O for periodic orbits with
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an increasing ‘0’- tail in the symbol code. This behaviour has strong implications on the
curvature expansion and a possible analytic continuation of the zeta function, which will be
discussed below.

3.1. Cycle expansion with infinite symbolic dynamics

The dynamics of the DKP is strongly influenced by the regular behaviour in the
asymptotically separable channel as discussed in detail in section 1.2. Periodic orbits with
equal symbol length contribute very differently to the zeta function depending on the time
spend far from the nucleus. The weightof channel trajectories drop off algebraically with

the period, whereas contributions from periodic orbits localized in the centre region decrease
exponentially in amplitude with increasing symbol length. As a consequence, shadowing
properties in a cycle expansion (35) between orbits with equal symbol code length are poor.
Furthermore, the regular orbits dominate the curvature termwith increasing symbol
lengthn giving rise to an algebraic decay in the curvature expansion

Cp R n—5/6e27'[| sen

for reals (see equation (20)). As a consequence, an expansion of the zeta function grouping
together single orbit terms like in (35) diverges for(kn < O, i.e. exactly in the region,
where the quantum resonances are expected.

Controlling the divergences introduced through the coexistence of regular and chaotic
motion is one of the main challenges in classical and semiclassical periodic orbit theory
[54]. In the following, we present a method which overcomes the problem of including
intermittency originating from one marginally stable orbit in the cycle expansion of a zeta
function. We point out, however, that the distribution of marginally orbits in a generic
system with mixed regular and chaotic motion, as e.g. in the classical DKP<ot,., may
itself have a complicated structure.

The marginally stable behaviour for| — oo enters the symbolic dynamics through
the symbol ‘0’, which corresponds to half an oscillation perpendicular to the magnetic field
axis. The symbols ‘1" and ‘2’ are always related to motion in the near core region. The
symbol ‘0’ can occur everywhere in the regular channel arbitrary far from the origin. A
single ‘0’ in the symbol code contributes differently to the action or stability exponent of
a periodic orbit depending on how far from the nucleus the corresponding oscillation takes
place. The classical dynamics is thus not reflected by the symbol ‘0’ alone, but by the
number of ‘0’s occurring successively in a row.

Consequently, we have to change our three-symbol alphabet to a double infinite alphabet
in the following way; substrings starting with a ‘1’ or ‘2’ and followed hy— 1 symbols
‘0’ are transformed according to the rule

10> nl, 2005 0% n=12 ..., 00. (36)

The indexn corresponds to the total length of the substring in the ternary alphabet. The
symbol code length of a periodic orbit in the infinite alphabet is given by the number of
symbols differing from ‘0’ in the ternary code. All periodic orbits in the families 10

20" correspond now to orbits!, n? with symbol length one in the new alphabet. The
orbits with symbol length two can be written as

(mn)*t, mn)*2, mn)? m,n=1,2,...00.

The upper index denotes here the starting symbols ‘1’ or ‘2’ of the different ‘0’ substrings,
the lower index corresponds to the length of the substrings. We realize, that the new
symbolic dynamics has a matrix structure, €mgu)* corresponds to all codes10*10" 1,
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Table 1. Infinite alphabet compared with the ternary alphabet for the shortest periodic orbit
families; the last columns denote the leading coefficients in the expansions (20), (23} fab.

oo-alphabet Ternary alphabet
n=1 n=2 n=3 n=4 So Iy
nt 1 10 100 1000  —0.648  1.696
n? 2 20 200 2000 —0.144 3.675
(mn)ll
(It 11 110 1100 11000 -0.243  3.126

@n)tt 101 0101 10100 101000 0.342  4.220
@mit 1001 10010 100100 1001000 0.692  5.000

(mn)lZ

a2t 21 210 2100 21000 -0.235  3.011

@2t 201 2010 20100 201000 0.628 5.412

@2t 2001 20010 200100 2001000 1.053  6.460

(1n)12 12 120 1200 12000 0.628 5.412

(2n)*? 102 1020 10200 102000 1.052  6.460

(3n)12 1002 10020 100200 1002000 1.345  7.161
(mn)22

(1n)%2 22 220 2200 22000 0.838  6.287

(2n)%2 202 0202 20200 202000 1.388  7.767

(3n)%2 2002 20020 200200 2002000 1.725  8.692
(kmn)lll

A1 111 1110 11100 111000 0.438  4.562
(kmn)llz

Az 112 1120 11200 112000 1.225  6.928

A2 211 2110 21100 211000 0.605  5.297

A2t 121 1210 12100 121000 0.605  5.297
(kmn)lZZ

w122 122 1220 12200 122000 1.644  8.220

1?2 212 2120 21200 212000 1.348  7.582

1wm)?2t 221 2210 22100 221000 0.844 6.321
(kmn)lzz

(11?2 222 2220 22200 222000 1.868 9.169

(mn)*? includes all strings 101201 and so on. Table 1 lists the possible symbols up
to length three in the new alphabet together with some periodic orbit families. A periodic
orbit family is defined in analogy to section 1.2 as all periodic orbits which differ only
in one number in the lower index. Note that a cyclic shift both in the upper and lower
index denotes the same periodic orbits. The symbol matie@3'? and (mn)?* are thus
equivalent, i.e(mn)*? = (nm)?* and the matricegmn)*!, (mn)?? are symmetric.

The cycle expansion in our new double-infinite alphabet has now the form

=] -5)=1-)q (37)
n=1

p
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with

[tr + 2] (fundamental term)

C2

o0
=)

S5 —adad) + (52— 132) + 502 — 217

2
00
1 111 1.1 1 1.1.1
Z |: Slkmn — 7tkmtn + Sl )

k=1m=1n=1 6
t112 t1t12 1[11 2 1l1l1 2
+(kmn_kmn ékmn_’_ékmn)
t122 t12t2 1t1t22 ltlt2t2
+(kmn_kmn_ékmn+ék )

1 222 1 22.2 1 2.2 2
+ (3tkmn - tkmtn + 6tkt )

2

1n=1

gk

29>

=1 k=1m

The weightst, are written here as the elements of infinite dimensional tensors ofank
wheren, is the length of the symbol string in the infinite alphabet or equivalent the length of
the upper index. The curvature termsin the cycle expansion (37) are now sums over all
the elements of the tensors of ramkncluding outer products of tensors with rank< n.

The prefactors are introduced to avoid double counting of periodic orbits. Note that the
sum over the prefactors alone (including the sign) adds up to zero in each curvature term.
We focus first on the leading or fundamental taryrin the cycle expansion, which is a
sum over all members of the periodic orbit familie's »2. In order to study the behaviour

of a single periodic orbit family sum, we introduce the notation

00 00 -
l’:a(s) — Zt:ll — Z e271|(xS‘ (n)—n(N+1/2))—x (n)/2’ (38)
n=1 n=1

with an upper indexa = {1,2}. An additional phase/2Nn is added (withN integer),
which do not affect the sum. Its meaning will become clear in what follows. (Note there is
an additional phase/2 in the case ofi = ‘2', see also (34).) Using the asymptotic results
(20), (23) from section 1.2, we write

3 3

§9n) =n (e + 2"_§> + 8§+ S5,an7 7% + S5 (39)
5

X(n) = 5 logn + 1 + 135n 2% + 1%, (40)

and S is written here in units of 2. The family dependent coefficiens, S2/3, lo, I2/3 @s

well as the remainder ternsy, and/$, are obtained from fitting (39), (40) to periodic orbit
data. (We used periodic orbits up to a symbol lengtk 500 in the ternary alphabet. The
remainder terms have been approximated by a polynomial fifinup to sixth order, i.e.

S8 =3%°  5%n~ andl% = Y% 1n~1.) The leading coefficients}” and/" for e = 0.5

are listed in table 1. The sum$ diverge for In(s) < 0 due to the logarithmic behaviour

in the stability exponent in (40). This is the same kind of divergence discussed earlier,
and it appears in all other curvature terms. An analytic continuation of the sums (38) for
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negative imaginary values is provided by the following technique [34]; first we transfer
the periodic orbit sum into a sum over integrals, using the identity

Y sx—n)y= ) exp2rirx) (41)

n=—oo r=—00

obtained by Poisson summation. The periodic orbit séfnsan thus be written as

2a 1 a = OO irx .a
(s) = ztl(s)+r;w/0 dx 771 (s, x + 1). (42)
The continuous variable in (s, x) corresponds here to the discrete symbol lengin
(38). We now fix the indexV in (38) by the condition

1 1
Re(s)e+é >N > Re(s)e—é,

i.e. we changeV exactly at the Landau thresholds (32)(Re= (N + 1/2)/¢. Ther =0
integral can then be evaluated by rotating the line of integration onto the negative imaginary
axis which corresponds to a transformatior> —ix. The integrand is now exponentially
decreasing for all imaginary parts efand Rés) # (N + 1/2)/e. The integral is thus
convergent for Infs) < 0, but we pick up an essential singularity at the Landau thresholds.
By the same technique, we find the analytic continuation for the aetfireegrals. The real

axis has to be rotated accordingse—~ +ix and thet-sign refers to the sign of. We end

up with the compact expression

00 [e9) — 27X
fo(s) = %tf(s)—i/(; dxz“(s,l—ix)+i/0 dxﬁ [z“(s, 1+ix) —19s,1— ix)] .(43)

The sum over for r = 0 is nothing but a geometric series which gives rise to the second
integral in (43). The transformation from the original sum to the two integrals in (43) is
indeed an equality for Ii3) > O, but provides an analytic continuation for (s < 0. The
second curvature terms can be worked out in the same spirit. The leading contributions to
the action and stability exponents are

. 3 3
§(n) =n (e + 2n‘§> +m (e + 2m‘3> +Sg+OMT +mTy)  (44)

5 2 2
An) = 3 log(nm) + 15+ O3 +m™3)

and @’ corresponds to ‘11’, ‘12’ or ‘22’, here. The analytic continuation of the double
sumc; in (37) leads to a double integral, the higher curvature terms give rise to higher
dimensional integrals, respectively.

Before presenting results for the full cycle expansion, we will study the leadingdgrm
in detail. We will show, that this term is indeed fundamental in the sense, that it contains
already all the information about the gross structure of the spectrum.

3.2. The QEBK quantization

The dominant contribution to the periodic orbit family sums (38) is contained im thed
integral in (42). The other-terms give a contribution suppressed by the factdfg as
can be seen from (43). To obtain the dominawtependent behaviour of the periodic orbit
family sums, we approximate the integral

1%(s) = /oo dx eZHi[SS‘”(X)—(N+1/2)x]—k“(x)/2 (45)
1
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by stationary phase. This leads to the phase condition

% <u§a(x) - (N + ;>x> =0, (46)

where we sek = u + iv. The solutions of (46) are in leading order (up to corrections
O(x~%3)) given by

3/2
u
xo(u) = |:2(N+é—ue)j| . 47

Note thatxg tends to infinity at the Landau thresholds= (N + %)/e. We end up with
the approximation to the integral
- —1/2
2ga il o Qa - a
e2m[sS (x0)~(N+1/2)x0-1/8] ~1(x0)/2 (48)

I19(s) ~
(s) 552

u

(x0)

w01 V382,12 e27'[i[sx0(€+gx0*2/3)+sS6’7(N+l/2)x071/8] n O(xaz/s)

and xo(u) is the solution of (46). Note that the exponenBSobtained from the leading
behaviour of the stability exponents in (40) exactly cancels the singularity introduced through
the second derivatives of the actions at the Landau thresholds. The additional/&im 1
the exponent is due to the stationary phase approximation.

In a next step we approximate the teemin the cycle expansion (37) by the dominating
periodic orbit family only, i.e. by the family with the smallest coefficiéntin (40). For
€ = 0.5, this is the ‘1’-family withly = 1.696. .. (see table 1). This leads to the approximate
guantization condition,

Yy~ 1-17l(s) =0. (49)

Inserting the stationary phase expression (48) in (49), we can write down a quantization
condition for the real parts of directly,

s 1 1
u St(xo(u)) — (N + é)xo(u) =M+ 3 (50)

with M integer. The quantization conditions (46) together with (50) can be interpreted
in terms of the semiclassical Einstein—Brillouin—Keller (EBK) quantization of integrable
systems, (see [24] for an overview). The Hamiltonian of a classical integrable systems with
f degrees of freedom can be written in the fofin= H(J), andJ;,i =1, ..., f denotes
the conserved momenta (or actions). An example of such an Hamiltonian is given in (11).
The EBK treatment leads to the simple quantization condifios »; + % and the energy
eigenvalues are obtained from inserting the quantized actions in the classical Hamiltonian.
The integer numbers; are called the Maslov indices and correspond to the number of
caustics along a patp(zr) = w;t on the torus.

For the integrable Hamiltonian (11), we can express the action after one oscillation
along the magnetic field direction by the equation (15), i.e.

J(, E) = J.(a, E) +aty(a, E), (51)

The variablea corresponds to the winding number in (16). Due to the condition

M = —o 2%+ valid for fixed energy, we can write the additional condition

0J
o, (52)
o
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for £ constant. Equations (51) and (52) are indeed equivalent to (50) and (46), if we make
the natural identificatioy = uS* anda = x and choose the quantization conditions

1 1
JC(Sve):M+é Jh(sae):N+é- (53)

The harmonic oscillator is quantized with the usual terf@ torresponding to an integer
Maslov index 2. We are lead to a non-integer Maslov pha&& dr a term 1/8 in the
guantization rule for the actiod, in the Coulomb direction. (Similar results have been
found in Helium, see [34]). A full winding in thd, coordinate implies a visit to the near-
core region, where the torus approximation of the full dynamics breaks down. This fact
may motivate the unusual Maslov term, a clear understanding within the EBK theory is,
however, still missing. Equations similar to (51)—(53) have been applied to quantize stable
islands in the classical phase space beyond the harmonic oscillator approximation assuming
near-integrability of dynamics in the neighbourhood of the stable fix-point [55, 56]. Note,
that the quantization rules are derived here directly from Gutzwiller's periodic orbit formula
and provide a quantization both in the real and imaginary part of-thariable.
An effective quantization scheme in terms of equations (50) and (46) is obtained by

first quantizing the winding number = xy , according to

~ 1 N 1 1

S(x)(N + 2) 5 [(N + 2)x + (M + 8)} =0. (54)

X

The eigenvaluesa j, are finally given by the formula
(N+1/2xym+ M+ 3)
SCen,m)

Note that there is no free parameter. The acfan) is determined by (39), and the family
dependent coefficients in the expansion are obtained from the periodic orbit data.

Asymptotic solutions of the (54), (55) near the Landau thresholds can be given in
analytic form,

_1 € + 1 |: M+1/8
u = €
NN+ T2v+ D L N+1)2

(55)

Un.m =

— Sé(e) +

1 1/2772
N+/] M>1 (56)

2¢2M +1/8

where the parametesi(e) denotes the leading coefficient of the expansion of the action
(39) of the dominating periodic orbit family, (which is thé family for ¢ = 0.5).

In tables 2—4, we list the energy eigenvalues obtained from our EBK-like quantization
(54) and (55), which we call quasi-EBK (QEBK) quantization from now on [34]. They are
compared with the real parts of quantum eigenvalues calculated frordddaper’s equation
directly as described in section 2. Our simple quasi-integrable approach can reproduce the
guantum spectra already surprisingly well. The QEBK results deviate in large parts of the
spectrum not more than 10% of the mean level spacing and the bound states in the series
below the first Landau threshold (R¢ < 1/2¢ = 1) are completely reproduced within an
error of § < 4%. This makes it possible to assign approximate quantum numheraf§
to individual states in the spectrum. Note, that there are more quantum resonances than
approximate quantum numbers obtained from our quasi-sepamabédz The eigenstates at
Re(s) = 2.44, 3.73 and 4.64 in tables 3 and 4 cannot be reproduced by the QEBK approach.
These states have thus no equivalent in the separable problem (11), and are an effect of
the coupling region in the full potentidt (p, z) in (2). In other words, the phase space
volume of the non-separable problem is (for finig§ larger than the corresponding volume
in the separable approximation, which causes additional resonances. Their number can be
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Table 2. The spectrum of hydrogen in a constant magnetic field/#for= 0+ ande = 0.5; the

third and fourth columns contain the quantum resultssfer y ~1/2 calculated by the complex
rotation method, see section 2; the approximate quantum nunibensd M are obtain from

the QEBK results in column 5. The zeros of the cycle expanded zeta function are presented in
columns 7 and 8; the deviatighof the real parts of the semiclassical and quantum results (in
percent of the mean level spacing in each Rydberg series) is given in columns 6 and 9.

Quantum mechanics QEBK Cycle expansion
N M Res Im s Res 8 Res Im s )
0 0 0.53581  0.00000 0.54072 1.07 0.50685 0.01972 6.06
0 1 0.81404 0.00000 0.81453 0.34 0.80786 0.00480 4.17
0 2 0.90117  0.00000 0.90212 1.61 0.89841 0.00225 4.58
0 3 0.94017 0.00000 0.94085 2.43 0.93879 0.00120 4.79
0 4 0.96039  0.00000 0.96084 2.94 0.95961 0.00069  4.97
0 5 0.97203  0.00000 0.97233 3.20 0.97155 0.00043 5.16
0 6 0.9795 0.0000 0.97947 056 0.97896  0.00028 9.23
0 oo 1.0 0.0 1.0 1.0 0.0

Table 3. The same as table 2 for4 Re(s) < 3.

Quantum mechanics QEBK Cycle expansion
N M Res Im s Res 8 Res Im s 8
1 0 1.35035 —0.08586 144120 17.04  1.33443-0.08332 2.90
1 1 1.79920 —0.08930 1.95646 43.55 1.78245-0.08668 4.24
1 2 2.03520 —0.01729 2.22902 74.38 2.029670.01435 1.83
2 0 2.25324 —0.00009 2.32694 13.65 2.25156-0.00084 0.32
1 3 2.41661 —0.00480 240817 5.43 2.41209-0.00241 2.93
2.44319 —0.06541 2.45229 -0.05027 6.38
1 4 2.53989 —0.00063 253346 5.76 2.53937 0.00010 0.47
1 5 2.62677 —0.4x 1076 2.62435 2.92 2.62558 0.00076 1.44
1 6 2.69279 —0.00010 2.69213 1.06 2.69172 0.00025 1.71
1 7 2.74367 —0.00020 2.74381 0.27 2.74287-0.00005 1.68
1 8 2.78347 —0.00023 2.78396 1.30 2.78289-0.00015 1.57
1 9 2.81504 —0.00022 2.81568 2.14 2.81461-0.00016  1.45
1 10  2.84043 —0.00019 2.84111 2.88 2.84016-0.00013  1.37
1 11 2.86108 —0.00015 286177 3.56 2.86082-0.00009  1.33
1 12 2.87808 —0.00011 2.87875 4.23 2.87786-0.00005 1.34
1 13 2.89221 —0.00008 2.89287 4.93 2.89202-0.00001  1.39
1 14  2.90406 —0.00005 290470 5.75 2.90389 0.00003 1.45
1 15  2.91405 —0.00006 291472  7.03 291393 0.00005 1.24
2 1 2.95568 —0.02187 2.96408 2.09
1 oo 3.0 0.0 3.0 3.0 0.0

estimated by the difference in the phase space volume and is expected to increase like
in the spectrum.

The approximate quantum numbers also help to clarify the structure of the spectrum.
The Rydberg series converging to the different Landau thresholds) Re (N + 1/2)/¢
overlap forN > 1, the bound state seri@é = 0 is the only one remaining unperturbed. We
identify three perturber states in the= 1 series and nine in th&¥ = 2 series. The number
of perturber states increase rapidly with increashg The perturber states interfere with
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Table 4. The same as table 2 for 3 Re(s) < 5.

1661

Quantum mechanics QEBK Cycle expansion

N M Res Im s Res ) Res Im s )
3 0 3.17878 —0.05284 3.21081 5.92 3.17005-0.05350 1.60
2 2 3.32848 —0.02099 3.34358 481 3.32856-0.02063 0.01
2 3 3.57591 —0.02234 3.62001 17.51 3.57228-0.02357 1.41

3.73250 —0.01734 3.73010-0.02003  1.09
2 4 3.84891 —0.02636 3.83275 8.26 3.85544-0.02964  3.38
3 1 3.97355 —0.04542 3.92706  10.76
2 5 4.00158 —0.00995 4.00118 0.25 3.98719-0.00183  8.92
4 0 4.09806 —0.03383 4.09410 0.73 4.06406-0.03421  6.25
2 6 4.18873 —0.01770 413706 41.36 4.17664-0.02466  10.01
2 7 4.27474 —0.00251 424824 2529  4.27393-0.00900 0.79
2 8 4.34968 —0.00062 4.34024 10.68 4.35543-0.00342 6.61
2 9 4.41610 —0.01134 441713 1.38 442244  0.00335 8.52
3 2 4.43167 —0.00953 438177  13.95
2 10 4.48467 —0.00385 448195 4.32 4.47754-0.00569  11.26
2 11 4.53808 —0.00585 453701 1.98 4.53703-0.01022 1.95
2 12 458573 —0.00697 458412 3.53 4.5875%0.00905 3.89
2 13 4.62807 —0.00650 4.62468 8.64 4.62954-0.00631 3.78

4.63908 —0.06772
2 14  4.66388 —0.00396 465982 1196 4.664310.00336 1.28
2 15 4.69294 —0.00201 469042 8.48 4.69296-0.00161  0.07
2 16  4.71804 —0.00210 471722  3.12 4.71809-0.00179  0.22
2 17  4.74127 —0.00289 474081 2.01 4.74126-0.00235 0.06
3 3 4.76087 —0.05928 472799  10.92
2 18 4.76228 —0.00318 476164 3.13 4.76219-0.00254 0.43
4 1 4.86557 —0.01118 4.86649  0.20
5 0 4.93094 —0.15662 497714 8.45
2 oo 5.0 0.0 5.0 5.0 0.0

neighbouring Rydberg states causing level repulsion both in the real and imaginary part of
the eigenvalues. The interference effects are a result of the non-separability of the quantum
Hamiltonian and cannot be resolved within the QEBK approach. As a consequence, the
error in the QEBK eigenvalues is maximal in the neighbourhood of a perturber and a unique
assignment of quantum resonances by approximate quantum numbers becomes questionable
already above the third Landau threshold.

We conclude, that the gross structure of the spectrum is reproduced by our new QEBK
guantization. To resolve the fine structure in the spectrum and the additional resonances,
we have to include the chaotic part of the dynamics. This can be done in a systematic way
by performing the cycle expansion (37) including higher order curvature terms. We will
present results in the next section.

The QEBK approach is in particular useful to derive analytic expressions like equation
(56) close to the Landau thresholds. In order to demonstrate the accuracy of the QEBK
formulas in the large/ limit, we insert the real part of the quantum eigenvalues from tables
2—-4 on the right hand side of (56) and replaigeon the left hand side by a variabB
to fulfill the equality sign. The semiclassical theory then predicts,ling, Sy » equals
a constant, which is independent &f and the limiting value is given by the classical
coefficientS; = —0.6483. Results for different Landau channels and 0.5 are presented
in figure 5 and support our conjecture in detail.
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Figure 5. The quantity Sy » for the different N-Landau channels versus the-Rydberg
guantum number for the:™ = 0" ande = 0.5. The dashed dotted line corresponds to the
semiclassical limitS} = —0.6483. ...

We conclude that the spectrum of the DKP is purely integrable deep in the Landau
channel with two important modifications; the Maslov phase for the motion along the
magnetic field axis is non-integer and the spectrum depends on an additional parameter
Sa(e) which can be determined by the classical dynamics.

The QEBK approximation allows for a quantization of both the real and imaginary
part of s. The quantization condition for Im) can be obtained by inserting the quantized
winding numbersxy » and energiesiy » in (48) and (49) which yields the asymptotic
expressions foo = Im(s),

M>1 (57

UN.M = —

N + 1/2)) (N + 1/2)3

<lél) +log(—3, M+ 1/8

1
et
A decrease in the width of the resonances proportiona¥td is indeed typical for atomic
systems [57].

The antisymmetric spectrum = —1 is obtained by a sign change in (49) or equivalent
by replacing the phase factoy8 by 5/8 throughout this section. The comparison between
the QEBK quantization and exact quantum calculations yields results of the same quality
as for ther, = +1 spectra.

Table 5. Cut-off of the tensor summations in the cycle expansion (37).

Length in theoo-alphabet ~ Upper index Lower index (up to permutation)
2 11, 12, 22 R, m); n=1...00
m<3
3 111, 112, 122, 222 n{m, k); n=1...00
m+k<3
4 1111, 1112, 1122, n(m,k,1); n=1...00

1212, 1222, 2222 m+k+1=3
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3.3. Cycle expansion results

So far, we can describe the gross structure of the spectrum in terms of a quasi-integrable
approximation, which can be derived from the fundamental terim the cycle expansion

(37). The finer details in the spectrum, as e.g. level repulsion due to the overlap and
interference of different Rydberg series is a manifestation of the non-integrability of the
system and cannot be resolved in the QEBK approach. The non-integrability enters the
semiclassical formalism through the chaotic dynamics in the near core region and its
coupling to the regular channel. The full information about this part of the classical dynamics
is contained in the higher curvature terms in the cycle expansion (37). An analytic
continuation of the multiple infinite sums below the reaxis leads to multi dimensional
infinite integrals as discussed in detail in section 3.1. The one dimensional integrals (43)
in the fundamental terma; can be calculated ‘exactly’ by standard numerical techniques.
A full treatment of the higher-curvature terms demands a determination of periodic orbit
dependent coefficient matrices in the expansion of the actions and stability exponents like
in (44), and an evaluation of higher-dimensional integrals. At present, this exceeds the
limits of our computational abilities.

Instead, we approximate the higher-order curvature contributions in (37) by carrying
out the analytic continuation only in one of the summation indices and sum over the first
few numbers in the other indices directly. (Summing over the lower indicek or [ in
table 5 up to infinity leads of course to the same divergences for) Im 0 as described for
the single sums in section 3.1. This is, however, no problem as lomg &s! is small.)

The treatment is equivalent to a cycle expansion in terms of periodic orbit families of the
form G 0"~1, where the head string is here a substring of length; in our old ternary
alphabet starting and ending with a ‘1’ or ‘2’. The results presented below belong to a
cycle expansion including all periodic orbit families up to a maximal head lengtk- 4.

The corresponding symbols in the infinite alphabet are listed in table 5, the leading order
family dependent coefficients in the expansion of the actions and stabilities are included in
table 1. Our expansion of the zeta function thus contains 54 periodic orbit families and it
includes contributions up to the fourth curvature term in the cycle expansion (37).

Figure 6 shows the absolute value of the cycle expanded zeta function oy +#n0
together with the real parts of the quantum resonances marked as ticks orith@ke The
minima of the zeta function coincide very well with the quantum spectrum and the Rydberg
series structure is reproduced leading to an essential singularity of the zeta function at each
Landau threshold Re) = (N + 1/2)/e. The perturber states appear as strong modulations
in the Rydberg-oscillation, (indicated by the arrows in figure 6). To obtain both the real
and imaginary part of the quantum eigenvalues, we calculated the zeros of the zeta function
in the complexs-plane. Results are shown in figure 7 in comparison with the complex
eigenvalues obtained from our quantum calculations. The numerical values are listed in
tables 2—4. Our semiclassical zeta function indeed contains the information about both the
position and width of the resonances. The strong oscillations in the imaginary parts of the
eigenvalues are well reproduced and the error is of the same order of magnitude as for
the real parts. We also resolve the first states missing in the QEBK approachsat Re
= 2.443 and 3.733. Also the ground states of Me= 2, 3, 4 series perturbing the lower
Rydberg series are now obtained including level repulsion effects! The&imamits of the
mean level spacing is uniform in the neighbourhood of these perturbing states. In addition,
the overall deviation of the semiclassical eigenvalues from the quantum results decreases
compared to the QEBK approach. A remarkable exception is the series of bound states
N = 0. The real part of the zeros of the zeta function reproduces the quantum data again
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Figure 7. The zeros of the cycle expanded zeta function (+) compared with the quantum results
(o) for m™ = 0* ande = 0.5 plotted in the complex plane.

well, but we obtain (in contrast to all the other Landau series) here a positive imaginary
part! The systematic deviation of these zeros from theseadis are still an open question.

A semiclassical description of bound states in a classical scattering system is indeed not
well understood so far and needs further investigations.

Our cycle expansion of the zeta function can so far not resolve all quantum states, zeros
are missing near strong perturbations of the Rydberg series (see tables 3 and 4). (Note,
that these perturber states can still be observed as modulations in the zeta function, figure
6). The reason for not reproducing all the quantum eigenstates is well understood and
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Figure 8. The absolute value of the first four curvature contributionsf the zeta function for
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not a principle problem of the theory. A semiclassical quantization of a generic system
with more than one degree of freedom demands periodic orbits of increasing length or
equivalent higher curvature terms to resolve the increasing level density in the spectrum or
in our example the increasing number of perturbing resonances. The number of orbits itself
grows exponentially with the period, which usually sets numerical limits to the maximal
curvature contributions attainable [58].

In addition, we approximate here the curvature terms itself by the shortest periodic orbit
families only. We thereby miss information about the dynamics in the classical Landau
channels by periodic orbits visiting the far regular regions two or more times. These orbits
build up perturbations of the Rydberg series near the Landau thresholds due to the overlap
of different N-series. As a consequence, we cannot resolve perturber states with large
imaginary part in the Rydberg series for large quantum numbers. Both effects can be
read off from figure 8, where we plotted the modulus of the curvature contributions for
Im(s) = 0. The curvature contributions drop off exponentially for fixedand we obtain
a decrease over three decades fo(sRelose to zero! The total fall off becomes smaller
inside eachv-interval, (but is still exponential) and decreases also globally with increasing
N. The non-uniform behaviour of the various curvature contributions in each Rydberg
series is due to the finite approximation of the curvature terms itself, the overall increase is
a manifestation of the cutoff in the curvature expansion.

We conclude, that the cycle expanded zeta function with a double infinite symbolic
dynamics includes all the important features of the whole spectrum. We resolve both the
Rydberg-like structure at the Landau levels and the perturbations due to the overlap of the
different N-series. The deviations from the quantum results and the missing levels can be
understood in the context of the approximations made in the cycle expansion. A quantization
of the odd parity spectrum™ = O~ is obtained by changing the Maslov index according to
(34) and yields results of the same quality as presented above. The semiclassical quantization
presented here thus exceeds complex rotation methods as outlined in section 2, which have
problems to obtain the high lying Rydberg resonances in the continuum.

Our results also shed a new light on recent speculations about the origin of the very
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narrow resonances or quasi-bound states [59], which have been observed in Hydrogen in
a magnetic field [60, 18], (see e.g. the eigenvalue atsRe 2.627 in table 3.) Our
semiclassical treatment agrees with results in [20, 61], stating that these extremely small
imaginary parts are due to pure interference effects. They cannot be traced back to special
features in the classical dynamics, as e.g. to stable classical motion, but can be reproduced
as a collective effect in a quantization using unstable periodic orbits only. This is in contrast
to the Helium atom, where series of quasi-bound resonances could be assigned to a large
stable island in phase space [56]. As a consequence, these small resonances in the DKP
cannot be expected to be correlated with the classical relevantdiresonst. Detailed
numerical studies indeed found a more or less ‘random’ distribution of narrow resonances
over the wholeE—y parameter plane [20, 61].

4. Conclusions

We have presented here the first semiclassical calculations of the resonance spectrum in
the diamagnetic Kepler problem. A proper treatment of the system cannot be performed
without overcoming fundamental problems in the semiclassical approach originating from
the intermittency in the classical dynamics. A regularization of the divergences in the
semiclassical zeta function caused by the regular part of the classical motion is obtained by
performing the cycle expansion of the zeta function in terms of a double infinite alphabet.
The fundamental term and the curvature contributions are written as infinite sums over
families of periodic orbits. The orbits in these families approach the marginal stable fixed
point in the separable limit of the potential. An analytically continued integral representation
of the various curvature contributions is given. The universal asymptotic behaviour of the
actions and stability exponents in the different periodic orbit families could be derived
analytically, higher order contributions are obtained from periodic orbit data directly.

An optimized version of the complex rotation technique is presented, which allow for a
calculation of the resonance spectrum for relatively high-lying Rydberg states at the various
Landau thresholds.

The good agreement between ‘exact’ and semiclassical results both in the position and
in the width of the resonances demonstrates that the semiclassical zeta function as the
leading term in ark-expansion indeed carries most information about the spectrum. An
approximation of the zeta function itself uncovers an EBK-like quantization of the marginal
stable fixed point at infinity. This quantization scheme may serve as a useful tool to obtain
an overall estimate of the spectrum and yields surprisingly accurate results especially for the
ground state series and for the Rydberg spectrum near the Landau thresholds. Our method
may thus be seen as the semiclassical analogous to quantum-defect theory in atomic physics
[19, 57]. The extremely narrow resonances in the DKP are a pure quantum interference
effect which is reproduced qualitatively by our semiclassical method using unstable periodic
orbits and are not associated with stable classical motion.

The calculations have been carried out for scaled energy 0.5 and are expected
to hold for all e-values above the critical scaled enekgy see figure 1. Of fundamental
interest is a deeper understanding of the semiclassical theory, when croskimg above.

This is no problem for pure quantum techniques, but makes semiclassical methods more
complicated due to bifurcations of periodic orbits.
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Appendix A. Symmetry reduced symbolic dynamics

A three letter symbolic alphabet for the four-disk problem and the diamagnetic Kepler
problem is obtained by defining the new symbols as the relative increment of two consecutive
bouncess,s; 1 with two disks. Our choice of a ternary symbolic dynamics is a symbolic
description which is closely related to th®&,,-symmetry in the four-disk billiard and in

the DKP-Hamiltonian (4) inu,v - coordinates. The new symbols correspond to the
symmetry operations forming th€y, group. Orbits, which can be mapped onto each
other by symmetry operations, will have the same code, here. The symbolic dynamics thus
describes the motion in the desymmetrized fundamental domain, (which is, for example,
the areaw > v > 0 in figure 2), with hard reflection at the boundaries. The symbolic
description was first introduced by Cvitanéwand Eckhardt [35] in the four-disk problem.

We denote this symbolic dynami&s = --- g_»g 1808182 - - With g; € {0,1,2}. The
disk enumerating symbolS$ are obtained from the symbots by the following algorithm:
choose one disk as the starting disk (e.g., s1 = 1) and the next disk is given as
sp =s1+1mod4ifgg =00rg; =1anditiss, =s;+2mod4 ifg; = 2. If the
symbolg; was a 1 or a 2 weontinue adding 1 or 2 to obtaiy depending on the value
of g,. If g1 was a 0 wechange the sign of the increment for the next symbol and choose
the decrement-1 or —2 to getss. Each symbolg; = 0 change the sign of the increment
for the following symbols whileg; = 1 preserves the sign.

Using this rule we obtain for the periodic orliit = 2 the stringsS = 13 or § = 24;
from G =1, S = 1234 orS = 1432; fromG = 20, S = 1324,5 = 1342,S5 = 1423, or
S =1243; and fromG = 10, S = 1232,§ = 2343,S = 3414, orS = 4121. These are the
four orbits drawn in figure 2.

In the alphabetG we have the same symbolic description for all periodic orbits which
can be mapped into each other with a spatial rotation or a reflection. Cycles which are
related to each other by time reversal symmetry alone will be represented by two different
symbol strings.

The symmetry of a periodic orbit is obtained by identifying each symbol with a discrete
group operator of th€,, group and multiply the elements of the symbol string describing
the cycle together. We identify symbol O with the reflectioon theu or v axis, symbol 1
with a/2-rotation or aC symmetry, and symbol 2 witf,, ax-rotation of the configuration
space. The total symmetry of the periodic orbit becomes important, when looking at the
periodic orbit zeta function in its symmetry factorized representation.

The zeta-function for the four-disk system factories according to the irreducible
representations of the groufy, in ¢ = ¢a,84,¢8,¢8,(e. The factorization of the single
orbit contributions can be read off from [35]. The DKP gnz coordinates, however, has
only C, symmetry due to the invariance of the Hamiltonian (2) under the transformation
z — —z. The symmetric and antisymmetric representation of the giGumorrespond
here to theA; and B; representation of th€,, symmetry of the regularized Hamiltonian
(4). The DKP-zeta function can thus be written as produet ¢4,¢5,. The zeros of,,
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yields the symmetric eigenstates, whilg gives the antisymmetric part of the spectrum
with respect to parity transformation. The periodic orbits contributing to the single factors
in the zeta function are those in the fundamental domain.

Symmetric states belong to a quantization of the DKP in the fundamental domain with
Neumann boundaries along the lipe= 0, antisymmetric states obey Dirichlet boundary
conditions there. In the zeta functigp,, a periodic orbit picks up a phase’2 every time
it crosses the axis = 0. The number of crossings is equal to the number of 1's in the
code. A periodic orbit with an odd number of symbols ‘1’ thus changes sign in the zeta
function ¢g,. In addition, the cycle 2, which runs along the symmetry line 0, does not
contribute to an antisymmetric eigenstate. These states have a node on the symmetry axis,
the orbit 2 is excluded in theg, -function.

A time shift corresponds to a cyclic permutation in the symbol cgdeNote however,
that a time reversed symbol string corresponds not to the time reversed physical orbit.

Appendix B. Well ordered symbolic dynamics

A second useful ternary symbolic dynamics is the one which has a natural ordering identical
to the ordering of the folds in the stable and unstable manifolds. This enables us to make a
bisection search in the Poinéamap to find periodic orbits using the method introduced in
[36]. Well ordered symbolic dynamic®/ = --- w_,w_jwowiw; - - - for the 4 disk system

is defined in [39]. The symbab, € {0, 1, 2} is obtained by the incremest,; —s, — 1 for

odd timer and the decrement — 5,1 — 1 for even timer. Reading the string with > 0

as the numbey = >"°; w,/3 gives the relative position of the fold in the stable manifold
structure and equivalent for negative time giving the position in the unstable manifold
structure.

We use this symbolic position for points on a Poiricatane to search for the periodic
orbits. We have been able to find orbits up to symbol length 1000 with this method and we
have for each family of orbits calculated all orbits up to length 40 and some orbits up to
length 500.

Note, that for the well ordered symbals a time shift is not a simple shift operation
in the symbol string because the symbols depends on whether the time is even or odd.

Appendix C. The trace of the stability matrix in the classical Landau channel

The stability matrixM, (equation (21)), of a periodic orbit going far out in the classical
Landau channelz| > p in (2) can be split into two parts; by fixing an arbitrary, but large
|zo|, we write

M =M0Msep7 (Cl)

where the matrixM ., describes the linearized motion in the neighborhood of a periodic
trajectory in the regular channel from a starting point 1o, p,. p;, > 0) to the end point

(o', 20, P, DLy & —Pz < 0). The chaotic part of the dynamics in the near core region
is contained inMy. The matrix elements ofly approach constants, when increasing the
numbern of oscillations in the regular channel for periodic orbits in the same families. The
dominant contribution to the stability matriM ., in the regular region can be described

by the linearized dynamics of the separable Hamiltonian (9). Transforming our coordinate
system from phase space coordinatesz{ to action angle variables/(¢), we can write
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Mgy as
Myp =T "My, T, (C2)
whereT, T’ denotes the transformation matrix
T_ (@n, s Ins Jc)’
9(p, 2, Pp> P2)

at the start and ending points. The matr7|>_;g,, is the Jacobi matrix of the flow with respect
to action-angle variables and has now a particular simple form,

(C3)

100 O

. 0 1 0 act , 9%H,, _

Me®=1 0 0 1 o with a. = 8J2”=—3JC4, (C4)
000 1

andt, is the time spend in the regular channel. Note, thaandz, ~ J2 depends through
(13) on the energy deposed in the Coulomb motion. The transform@tizan be given as

den/op 0 99 /0p) 0
0 d¢p:/0z 0 d¢./0p;
wp 0 Do/ @ 0
0 J3/7? 0 J3p.

Using the condition déf = 1, we can write down a similar expression for the inverse of

T. The derivatives of the angle variables approach finite values for periodic orbits in the

same family andi — oco. The explicit expressions for the derivatives are not needed here.
Inserting (C4) and (C5) in (C1), we can approximate the trackl ais follows,

TIM & kyJ %t + koJ2 + ks. (C6)

All the expressions, which approach constants in the limit- oo or E. — 0, are collected
in k1, k2, k3. The time variable, is proportional to the winding number andn, and using
(16), (19), we obtain/. ~ n*3. The trace can thus be written as

TtM = kan®2 + kon + O(n??) (C7)

The coefficients; depend on the history of the periodic orbit before entering the regular
region and on the scaled energy The trace ofM is independent of after one period of
the periodic orbit.

T= (C5)
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