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Abstract. We present the first purely semiclassical calculation of the resonance spectrum in the
diamagnetic Kepler problem (DKP), a hydrogen atom in a constant magnetic field withLz = 0.
The classical system is unbound and completely chaotic for a scaled energyε ∼ EB−2/3

larger than a critical valueεc > 0. The quantum mechanical resonances can in semiclassical
approximation be expressed as the zeros of the semiclassical zeta function, a product over
all the periodic orbits of the underlying classical dynamics. Intermittency originating from
the asymptotically separable limit of the potential at large electron–nucleus distance causes
divergences in the periodic orbit formula. Using a regularization technique introduced in
(Tanner G and Wintgen D 1995Phys. Rev. Lett.75 2928) together with a modified cycle
expansion, we calculate semiclassical resonances, both position and width, which are in good
agreement with quantum mechanical results obtained by the method of complex rotation. The
method also provides good estimates for the bound state spectrum obtained here from the classical
dynamics of a scattering system. A quasi-Einstein–Brillouin–Keller (QEBK) quantization is
derived that allows for a description of the spectrum in terms of approximate quantum numbers
and yields the correct asymptotic behaviour of the Rydberg-like series converging towards the
different Landau thresholds.

PACS numbers: 0545, 0365, 3115, 3230

The hydrogen atom in a uniform magnetic field has become one of the most important
examples for studying the correspondence between quantum mechanics and classical chaos.
The Hamiltonian is known to a high accuracy and furthermore, the system is experimentally
accessible in the laboratory. The angular momentum in the direction of the magnetic field
is conserved, which reduces the classical system to a problem with two degrees of freedom.
The classical flow in phase space covers a wide range of Hamiltonian dynamics reaching
from bound, nearly integrable behaviour to completely chaotic and unbound motion by
varying one parameter, the scaled energy,ε.

In the 1980s, the system served as a catalyst for quantum chaos. Modulations in the
absorption spectra of highly excited hydrogen atoms in a magnetic field, the so-called quasi-
Landau levels [1, 2], could be assigned to classical trajectories [3, 4] and could be understood
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in the framework of the semiclassical periodic orbit theory [5, 6, 7]. This strikingly simple
answer to a long outstanding question led to a completely new viewpoint in analysing
quantum spectra in general. We refer the reader to the review articles and article collections
[8–12].

So far, the main interest in the literature laid onunderstandingquantum manifestations
of the system such as the quantum spectra or the wavefunctions, in terms of the underlying
classical mechanics. Effective numerical techniques to solve Schrödinger’s equation directly
(neglecting relativistic and finite mass effects) have been developed in the recent years,
both for the bound state spectra [13–17] and resonances in the continuum [18–21]. Periodic
or closed orbits appear in the Fourier transformed energy- or photo-ionization—spectra
obtained from experiments or from full quantum calculations. Classical orbits can in some
cases be identified as ‘scars’ in quantum eigenfunctions [22] and as prominent peaks in the
corresponding Husimi distributions [23].

Less effort has been undertaken in the opposite direction, i.e. in quantizing hydrogen in
a magnetic field directly in terms of classical entities only. The density of quantum states
[24], photo-absorption spectra [25, 26] or the evolution of Rydberg wave packets [27] can
formally be written as sum over periodic or closed orbits. A brute force application of the
orbit sums using the shortest classical orbits only yields the coarse-grained structure of the
spectrum [28] or the time evolution of Rydberg wave packets on short time scales [27],
respectively. To resolve the fine structure of the spectrum and individual highly excited
quantum states, the information of the classical dynamics on long time scales is needed.
The classical orbit sums, however, diverge due to the exponential growth of the number of
orbits in chaotic systems and appropriate resummation techniques have to be developed to
overcome this problem.

The starting point is here the spectral determinantD(E) = ∏
n(E − En), which can in

semiclassical approximation be written as product over all periodic orbits of the system, the
so-called semiclassical zeta function [29]. An analytic continuation of the product formula
may be given by expanding the product and regrouping terms with the help of a symbolic
description of the flow in form of a cycle expansion [30, 31]. This method has been shown
to work for strictly hyperbolic classical dynamics, where all periodic orbits are unstable
and the Lyapunov exponents of the orbits, i.e. the logarithm of the largest eigenvalue of the
Monodromy matrix divided by the period, are strictly bound away from zero.

The diamagnetic Kepler problem (DKP) corresponding to conserved angular momentum
Lz = 0, (with the magnetic field inz direction), is known to be completely chaotic in
the sense that all periodic orbits are unstable for values of the scaled energyε > εc =
0.328782. . . [32]. The classical motion is unbound in this regime and the flow in phase
space can be described in form of a complete ternary symbolic dynamics [33, 32]. The DKP
is, however, not hyperbolic even for energiesε > εc. The potential becomes separable in
the limit where the classical electron is far from the nucleus, causing regular, but unstable,
dynamics in this phase space region. As a consequence, the Lyapunov exponents of periodic
orbits extending far into the regular region of phase space tend to zero. This behaviour,
known asintermittencyin the chaos-literature, is typically for the neighbourhood of marginal
stable orbits or stable islands and is thus generic in Hamiltonian systems.

The regular limit of the classical motion causes divergences in the semiclassical periodic
orbit expressions. This kind of divergence is different from the well known convergence
problem of semiclassical expressions due to the exponential growth of the number of
periodic orbits. Divergences introduced through intermittency can be regularized by first
summing over periodic orbit contributions in the regular classical regime alone. An analytic
continuation of each of the various sums can be given explicitly [34]. This procedure is
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equivalent to a cycle expansion of the zeta function in terms of an infinite alphabet [31]. We
can finally present the first purely semiclassical quantization of the resonance spectrum of
DKP at fixedε > εc. The regular limit of the dynamics can be identify to cause the Rydberg
series structure at the various Landau thresholds. The high excited Rydberg resonances can
be well described by a modified Einstein–Brillouin–Keller quantization.

The article is written self-consistently in such a way that it contains all the information
needed to understand the classical, the quantum and the semiclassical aspects of the problem.
The classical system together with the symbolic dynamics is introduced in section 1.
Asymptotic expressions for the actions and stability exponents in the separable limit of
the potential are derived here. In section 2, we explain the method of complex rotation,
which is an efficient tool to treat the full quantum problem in cases of resonances in the
continuum. In the last section, we present our new semiclassical quantization, and results
are compared with full quantum calculations.

1. Classical dynamics

The non-relativistic classical Hamiltonian for the hydrogen atom in a uniform magnetic field
with field strengthB along thez-axis is given as

H = p2

2me

− e2

r
+ 1

2
meω

2(x2 + y2) + ωLz. (1)

The z-component of the angular momentum,Lz is conserved and we will restrict ourselves
to the problemLz = 0 in the following. We work in the infinite nucleus mass approximation
andme denotes the mass of the electron. The frequencyω = eB/2mec is half the cyclotron
frequency. The Hamiltonian (1) in atomic units and forLz = 0 has the form

H = E = p2
z

2
+ p2

ρ

2
− 1√

ρ2 + z2
+ 1

8
γ 2ρ2 (2)

with the magnetic field strengthγ = B/B0 written in units ofB0 = m2
ee

3c/h̄ = 2.35 · 105

T. The radial distance from thez-axis is given by the coordinateρ. The system is bounded
for E < 0, while for E > 0 almost all trajectories escape toz = ±∞ with non-zero kinetic
energy.

Introducing the scaling transformation

r = γ −2/3r̃ , p = γ 1/3p̃, (3)

yields the new Hamiltonian

H̃ = ε = γ −2/3H = p̃2
ρ

2
+ p̃2

z

2
− 1√

ρ̃2 + z̃2
+ 1

8
ρ̃2, (4)

which is independent ofγ . The classical dynamics is now controlled by one parameter
only, the scaled energyε = Eγ −2/3. The classical action along a trajectory scales with the
magnetic field like

S =
∫

p dq = γ −1/3S̃ (5)

with ε fixed.
The Hamiltonian (4) is singular at̃r = 0 yielding singular equations of motions at this

point. For solving the equations of motion numerically, it is more convenient to switch to
semiparabolic coordinates and momenta [8]

ν2 = r̃ − z̃ µ2 = r̃ + z̃ pν = dν/dτ pµ = dµ/dτ, (6)
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with a new rescaled timeτ

dτ = dt/2r̃ = (ν2 + µ2)−1 dt. (7)

The Hamiltonian (4) in semiparabolic coordinates is

h = 1

2
p2

ν + 1

2
p2

µ − ε(ν2 + µ2) + 1

8
ν2µ2(ν2 + µ2) ≡ 2, (8)

and the scaled energyε enters as a parameter here.
The structure of the dynamics of the Hamiltonian (8) depends on the value of the scaled

energyε alone. TheE-γ parameter plane can be partitioned into five distinct regions [8, 32]
(see also figure 1):
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Figure 1. The five main dynamical regions in theE-γ parameter space reaching from bound
and almost integrable dynamics (I) to unbound completely chaotic dynamics (V). See also the
explanation in the text.

(i) ε < −0.5: bounded almost integrable motion;
(ii) −0.5 < ε < −0.13: bounded motion with mixed chaotic and regular motion;
(iii) −0.13 < ε < 0.0: the last large stable island disappear; the dynamics is mostly chaotic;
(iv) 0.0 < ε < 0.328782. . .: unbounded mostly chaotic motion; the symbolic dynamic is

not complete;
(v) 0.328782. . . = εc < ε: unbounded chaotic motion with a complete symbolic

description.

In the following, we will always work in the regionε > εc = 0.32878. . ., where a
simple and complete symbolic description can be assigned to flow in phase space [32].
Furthermore, all periodic orbits are unstable in this parameter regime. Forε values below
the critical energyεc, the symbolic dynamics become incomplete and stable islands appear.
Stable classical motion implies additional complications in the semiclassical description in
section 3, which will not be included in the work presented here.

1.1. Symbolic dynamics and periodic orbits

We can motivate the structures of the classical motion and the underlying symbolic
description by first studying the dynamics of a symmetric four-disk scattering billiard [35].
The similarity between the DKP and the four-disk system becomes obvious, when looking
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at the shape of the potential in the regularizedµ, ν coordinates, see figure 2(b). In the four-
disk billiard, a trajectory may after a bounce with one disk either hit one of the other three
disk or escape from the system. A trajectory bouncing two times after leaving the first disk
may bounce in nine different ways. We find that there are 3n possible sequences of disks for
n bounces. This set of non-escaping starting points forn → ∞ is called a Cantor set. We
label each disk with a numberst ∈ {1, 2, 3, 4} and a strings1 · · · sn assigned to a trajectory
represents one of the 3n possible sequences. A particle cannot bounce twice off the same
disk, which is the only restriction in the four-letter symbolic dynamics as long as the distance
between the disks is sufficiently large compared to the disk radius. The orbits remaining
in the system both forward and backward infinitely long in time form a two dimensional
Cantor set and are uniquely described by bi-infinite symbol strings· · · s−2s−1s0s1s2 · · ·.
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Figure 2. Periodic orbits in the (a) (z, ρ) plane and (b) (ν, µ) plane. The full line denotes the
boundary of the potential forε = 0.5.

Since the Cantor set is ternary we can reduce the number of symbols to three with no
restrictions on the sequence of symbols. The reduction can be done in several possible ways
[33, 35]. In appendix A, we construct a ternary alphabet closely related to theC4v-symmetry
of our system, which will be used throughout the paper. A trajectory is now characterized
by a symbol string· · · g−1g0g1 · · · with gi ∈ {0, 1, 2} defined in appendix A.

In appendix B, we introduce a so called well ordered symbolic dynamics
· · ·w−1w0w1 · · · with wi ∈ {0, 1, 2}, which is in particular useful for finding periodic orbits
numerically [36].

The structure of the Cantor set is similar for the DKP and for the four-disk scattering
system. We can associate a four-letter symbol string to every trajectory also in the DKP,
and the symbols can be understood as a smooth ‘bounce’ with one of the steep hills in
the potential (8). At this bounces, a trajectory has a caustic, and we can determine the
symbolic dynamics either by determining the number of caustics [33] or by making a
suitable partition curve in a Poincaré plane [37]. A detailed discussion of this method will
be given elsewhere [38].

The symbolic dynamics is complete, i.e. each possible symbol string· · · g−1g0g1 · · ·
corresponds to a non-escaping orbit in the symmetric four-disk system, if and only if the
gap between two disks are larger than 0.205 times the disk radius [39]. If the disks come
closer to each other certain paths between the disks are forbidden. These paths lie now in
the ‘shadow’ of a disk in between. The corresponding symbol strings cannot be related to
a physical orbit and the symbolic dynamics is said to be pruned [40, 41, 39].

We find an analogous situation in the DKP. Here, each possible symbol string
corresponds to an orbit if the scaled energy is larger thanεc = 0.32878. . . [32]. For energies
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below the critical value, the hills of the potential will shadow some of the trajectories which
exist for largerε and the symbolic dynamics becomes pruned. The value ofε thus plays
in the DKP the same role as the distance between the disks in the four-disk system. Note
that pruning in the DKP is introduced through bifurcations and stable islands appear and
disappear with varyingε < εc. In the disk system, however, periodic orbits are always
unstable and disappear immediately at a bifurcation point.

The periodic orbits are a subset of all non-escaping orbits existing in the system, (i.e.
of the repellor). A periodic orbit is described by an infinite repetition of a finite symbol
string G = g1g2 · · · gn. In the following, we focus mainly on periodic orbits, which we
characterize by the shortest non-repeating symbol string directly.

Four short periodic orbits of the DKP are drawn in figure 2, both in the coordinate
space(z, ρ), and in the semiparabolic coordinates(ν, µ). Note that the two orbits labelled
G=2 andG=20 in figure 2(a) collide with the nucleus. In figure 2(b) we have indicated the
labelling of the four hills used to construct the four-letter symbolic dynamics. A translation
from the four-letter to the three-letter alphabet can now be read off directly with the help
of appendix A. The orbits labelled 1, 2, 10, and 20 in figure 2(a) are given the symbolic
descriptionsS = 1234, 13, 1232, and 1324, respectively, in the four-letter code, figure 2(b).

1.2. Asymptotic in the classical Landau channel

In this section, we will study the dynamics of the Hamiltonian (2) for positive energyE in
the limit |z| → ∞. The coupling between thez and ρ coordinates vanishes in that limit
and the Hamiltonian (2) has the asymptotic form

H = 1

2
p2

ρ + 1

2
p2

z + ω2

2
ρ2 − 1

|z| + O(ρ2/z3) = E > 0, (9)

with ω = γ /2. The motion separates for large|z| values in a pure Coulomb part along the
z-axis and an harmonic oscillator perpendicular to the magnetic field. The energies

Eh = 1

2
p2

ρ + ω2

2
ρ2 and Ec = 1

2
p2

z + 1

|z| (10)

become adiabatic constants of motion for|z|/ρ → ∞. The regular region far from the
nucleus is always coupled to the chaotic motion near the core due to the attractive Coulomb
force inz-direction. The classical motion of the electron in the DKP thus alternates between
strong chaotic motion forρ ≈ |z| and regular time intervals out in the channel|z| � ρ.
Almost all trajectories escape finally to infinity with non-zero momentum in thez-direction.
Orbits which go further and further out in the regular channel but return to the origin,
approach a marginally stable periodic orbit|z| ≡ ∞, pz ≡ 0. In the symbolic description
explained in the appendix A, this marginally stable orbit is labelled 0. Escaping trajectories
which continue travelling along thez-axis can be separated from returning once by a plane,
that is part of the stable manifold of the marginal stable orbit. This plane is in the asymptotic
limit given by the conditionEc = p2

z/2−1/|z| = 0. Returning trajectories can be associated
with bound motion in thez-direction andEc < 0.

Periodic orbits that go far out in the regular region|z| � ρ pick up regular contributions
to the actions and stability exponents, which can be given in analytic form to leading order.
In the ternary symbolic description the channel orbits are characterized by a long string of
consecutive symbols ‘0’ in the symbol code. Of particular interest are periodic orbits with
a symbol code of the formG0n, i.e. periodic orbits with a common head stringG and a tail
of n symbols ‘0’. We will call these orbits a periodic orbit family. The orbits in a family
have approximately the same behaviour before entering and after leaving the regular region.
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Figure 3. Three members of the periodic orbit family 10n with (a) n = 25, (b) n = 50, and (c)
n = 100 in the fundamental domainµ > ν > 0 of the regularizedµ, ν coordinates.

They differ only in the ‘0’-tail string, i.e. in the numbern of half-oscillations perpendicular
to thez-axis in the regular region. In figure 3, some members of the periodic orbit families
with head stringG = 1 are shown explicitly.

The leadingn-dependent behaviour in the actions and stability exponents is universal,
i.e. it does not depend on the past or the future of the periodic orbits before entering and
after leaving the regular phase. Non-universal contribution approaches a constant for orbits
with the same head stringG, but increasing number of oscillations in the regular regime.

To obtain the leading contributions to the actions, we start with the Hamiltonian (9)
written in action-angle variables(Jh, ϕh, Jc, ϕc),

Hsep = 2ωJh − 1

2J 2
c

(11)



1648 G Tanner et al

and omitting the coupling terms. The action variables are given as

Jh = 1

2π

∮
pρ dρ = 1

2ω
Eh (12)

Jc = 1

2π

∮
pz dz = 1√−2Ec

. (13)

The integration is taken over a single revolution of a trajectory in the potential of the one
dimensional Hamiltonians in (10). (Note, thatρ > 0 in (12)). The angle variables propagate
linearly in time with frequencies

ωh = ∂Hsep

∂Jh

= 2ω; ωc = ∂Hsep

∂Jc

= J−3
c . (14)
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Figure 4. The actions (a) and stability exponents (b) of the periodic orbit families 10n (♦) and
20n (+) plotted with respect to the numbern of zeros in the symbol code (forε = 0.5); the
full lines correspond to the asymptotic expressionsSn ∼ n(ε + 3/2n−2/3) andλn = 5/3 log(n),
respectively.

The surface of constantJh, Jc form a two dimensional torus in the four-dimensional
phase space. The total action of a trajectory on a torus after the timeTc = 2π/ωc, i.e. after
one oscillation inz-direction, is

J (α, E) = Jc(α, E) + αJh(α, E), (15)

where the winding numberα = ωh/ωc is given as

α = 2ωJ 3
c . (16)

Inserting (12), (13) and (16) in (15), we can write the total action as function of the energy
E andα,

J (α, E) = α

2ω

(
E + 3

2

(
2ω

α

)2/3 )
. (17)

In terms of the scaled energyε = Eγ −2/3 andγ = 2ω, we obtain

J (α, ε) = αγ −1/3

(
ε + 3

2
α−2/3

)
. (18)
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The symbol ‘0’ corresponds to one oscillation perpendicular to the field axis in theρ

coordinates or half an oscillation in the original(x, y) coordinates. A trajectory withn
consecutive zeros in the symbol code has an approximate winding number

α(n) ≈ n + α0 for n � 1. (19)

Contributions due to the non-integrable part of the dynamics are collected here in the shift
term α0, which approaches a constant in the limitn → ∞ for periodic orbits in the same
family. Inserting (19) in (18), the asymptoticn dependent behaviour of the (un-scaled)
action of a channel trajectory can be written as

S(n) = 2πγ −1/3

[
n

(
ε + 3

2
n−2/3

)
+ S0 + S2/3n

−2/3 + O(n−1)

]
. (20)

The coefficientsS0, S2/3, . . . depend onε and explicitly on the head stringG or on the
past and future of the orbit before entering and after leaving the regular phase. Figure 4(a)
shows results for the periodic orbit families 10n and 20n up to n = 100. The constant
family dependent term in (20) isS0 = −0.6483 for the 10n family andS0 = −0.1440 for
the 20n family, (see also table 1).

The asymptotic behaviour of the stability exponents for periodic orbits with long
sequences of symbols ‘0’ can be extracted from the trace of the stability- or Jacobi-matrix
of the classical flow,

M(t) = ∂(q(t), p(t))

∂(q0, p0)
. (21)

This matrix describes the evolution of the classical dynamics in the neighbourhood of a
given trajectory (q(t),p(t)) in linear approximation.

The asymptotic behaviour of TrM for a large numbern of symbols ‘0’ is derived in
appendix C and we state only the final result here,

TrM = k1n
5/3 + k2n + O(n2/3). (22)

The termsk1, k2 depend onε and on the past and future of the periodic orbit before entering
the regular region. The largest eigenvalue of the stability matrix grows approximately like
the trace ofM . The stability exponent of a periodic orbit, i.e. the logarithm of the largest
eigenvalue of the stability matrix, scales thus asymptotically like

λ(n) = 5

3
logn + l0 + l2/3n

− 2
3 + O(n−1). (23)

The logarithmic behaviour and the factor 5/3 is universal, i.e. independent of the scaled
energyε and of the head stringG. In figure 4(b), we compare periodic orbit data of the
families 10n and 20n with the leading term 5/3 logn. The curves deviate not more than
a constant in the largen limit. This constant is again family dependent and we obtain
l0 = 1.696 for the 10n-family and l0 = 3.675 for the 20n-family (see table 1). It is the
slow logarithmic increase in the stability exponents, which reflects the regularity of the
dynamic in the separable limit of the potential. The DKP shows the typical behaviour of
intermittency, i.e. the the Lyapunov exponentλ = λ(n)/T (n) → 0 for n → ∞.

The discussion above is strictly valid only for scaled energiesε larger than the critical
valueεc. The symbolic dynamics becomes pruned forε < εc and long strings of ‘0’s tend to
be forbidden below the critical value. The actual pruning rules depend on the past and future
of the ‘0’ code strings. The maximal possible length of the ‘0’ string in a periodic orbit
family, which becomes pruned, decreases withε. The 10n family is an example showing
this behaviour. There are also families, as e.g. the 20n family, where the limitn → ∞
exists for allε > 0. A detailed analysis of these pruning rules will be presented elsewhere
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[38]. Note, however, that periodic orbit families with an infinitely long ‘0’ tail allowed will
have the same asymptotic behaviour as discussed above. In the semiclassical analysis in
section 3, we chooseε = 0.5 to avoid problems due to the incomplete symbolic dynamics.

2. The quantum spectrum

The starting point of our quantum calculations is the Hamiltonian of a hydrogen atom in
a uniform magnetic field, where we neglect relativistic corrections and effects of the finite
nuclear mass recently discussed in [42, 43]. These effects occur on extremely long time
scales, and correspondingly narrow energy spacings, which are accessible neither to present
laboratory experiments nor to our numerical quantum calculations. They are also ignored
in the classical and semiclassical calculations. The quantum Hamiltonian reads in atomic
units and settingγ = B/B0

H = 1

2
p2 − 1

r
+ 1

2
γLz + 1

8
γ 2ρ2, (24)

in analogy with its classical counterpart (2). Exact quantum numbers of the Hamiltonian
(24) are the parity with respect to the(z = 0)-plane,πz, and the magnetic quantum number,
m, but the system remains non-separable in(ρ, z) coordinates. Eigenvalues and eigenstates
of Schr̈odinger’s equation can be calculated in eachmπ subspace separately.

Introducing dilated semiparabolic coordinates similar to (6)

µ = 1

b

√
r + z ; ν = 1

b

√
r − z, (25)

whereb is a free length scale parameter, Schrödinger’s equation is transformed to[
4µ + 4ν + 2Eb4(µ2 + ν2) − 1

4
b8γ 2 µ2ν2(µ2 + ν2) + 4b2

]
9 = 0 (26)

where4µ and4ν are the Laplace operators for the radial coordinates i.e.

4ρ = 1

ρ

∂

∂ρ
(ρ

∂

∂ρ
) − m2

ρ2
, (ρ = µ or ν),

The paramagnetic term12γLz at constant magnetic field strength results in a constant energy
shift Epara = mγ/2, which is already omitted in (26).

The Schr̈odinger equation (26) depends on the two physical parametersE and γ .
Eigenvalues can now be calculated along various cuts in this plane, e.g. at constant
magnetic field strengthγ , along linesEγ = const or along lines of constant scaled energy
ε = Eγ −2/3. For example at constant magnetic field strength we introduce

λ ≡ −(1 + 2Eb4),

and obtain a generalized eigenvalue equation for the parameterλ[
H0 − 1

4
b8γ 2 µ2ν2(µ2 + ν2) + 4b2

]
9 = λ

(
µ2 + ν2

)
9 (27)

with

H0 = (4µ − µ2) + (4ν − ν2). (28)

Due to scaling laws of the classical Hamiltonian (2), the structure of the classical
dynamics depends only on the scaled energyε = Eγ −2/3. For comparison with semiclassical
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theories, it is therefore most convenient to evaluate the quantum spectra along linesε

constant. Choosing

s ≡ γ −1/3 b ≡ βs = const

with β a new free parameter, (26) can be transformed into a generalized eigenvalue
expression fors[

−2ε(µ2 + ν2) + 1

4
β8 µ2ν2(µ2 + ν2) − 4β2

]
9 = s−2

(4µ + 4ν

)
9. (29)

Both (27) and (29) can now be represented in matrix form as a generalized eigenvalue
problem with sparse symmetric matrices in terms of the complete set of basis functions
given by products of the eigenstates|Nρm〉 of the two-dimensional harmonic oscillator
(28), namely

|NµNνm〉 = |Nµm〉 ⊗ |Nνm〉 Nµ, Nν = 0, 1, 2, . . . . (30)

Eigenvaluesλ = −(1+ 2b4E) or s = γ −1/3 and the corresponding eigenstates are obtained
by numerical diagonalization of matrices.

Because the basis states (30) are square integrableL2 functions, scattering wavefunctions
of open systems cannot be expanded in this basis and the method is usually restricted to
the calculation ofbound statesat energies below the ionization threshold, i.e.

E < EIP = γ

2
(|m| + 1)

or for constant scaled energyε > 0

s = γ −1/3 <
|m| + 1

2ε
.

Note, that the spectrum of hydrogen in a magnetic field exhibits bound states at energies
even above the classical thresholdE = 0, i.e. when the classical motion is already unbound
in z direction. The continuum wavefunctions are (for|z| → ∞) still quantized in the
ρ-coordinate and the quantum threshold is thus shifted by the zero point energy of the
harmonic oscillator in the classical Landau channel. To account forunbound resonances
in the continuum we adopted the complex-rotation method [44, 45], which is based on the
replacement

r −→ r eiθ

in the Hamiltonian and in the wavefunctions. By this transformation, hidden resonances of
the Hamiltonian in the continuum, associated with complex eigenvalues, are exposed, while
the resonance wave functions can still be described by theL2 integrable basis functions
(30), but with complex arguments. In our approach, the complex rotation by the angleθ

is reflected in the replacement ofb and β in equations (27) and (29) with the complex
dilatation parameter

b = |b| ei θ
2 and β = |β| ei θ

2 ,

respectively. Representing (27) and (29) with complex rotated coordinates in matrix form,
this results in a generalized eigenvalue problem for complex symmetric, non-Hermitian
matrices. Numerically, the eigenvalue equations were solved by extending the Lanczos
algorithm [46] to complex matrices.

If the scale parameterb or β and the complex rotation angleθ are appropriately
chosen and a sufficiently high number of basis functions (30) is considered in the numerical
diagonalization isolated bound states along the real axis as well as resonances in the lower
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complex half plane can be obtained to high numerical precision. The method fails close to
the Landau thresholds

EN = γ

(
N + |m| + 1

2

)
(31)

or, for constant scaled energyε > 0

sN = 1

ε

(
N + |m| + 1

2

)
(32)

with N = 0, 1, 2, . . ., the Landau quantum number. To each Landau channel belongs an
infinite number of Rydberg like bound states(N = 0) or resonances(N > 0) converging to
the threshold. Obviously such infinite series of states cannot be obtained from a calculation
with a finite basis size. The numerical convergence of resonances close to the thresholds is
extremely slow if all basis functions up to a given oscillator quantum number, i.e.

Nµ + Nν + |m| 6 Nmax

are considered in the calculation because the total basis size increases quadratically with
growing Nmax. To improve the convergence we chose a different method to truncate the
basis. In coordinate space states|NµNνm〉 with Nµ ≈ Nν are localized close to the(z = 0)-
plane. In this direction the classical motion is bound and there is no need to complete the
basis with states of this type. On the other hand states withNµ � Nν or Nν � Nµ are
oriented along thez-axis, i.e. where the potential is open. These states are important for the
representation of Rydberg like resonances reaching far into the Landau channels. We have
now optimized our basis by taking into account only those states which cover the physically
important region. With this choice the numerical efficiency in the calculation of Rydberg
like resonances could be considerably improved.

Results for a quantization along constantε-lines will be presented in the next section
in comparison with the semiclassical calculations.

3. Semiclassical quantization

In the following, we will present a method for a semiclassical quantization of hydrogen
in a constant magnetic field forLz = 0, i.e. with azimuthal quantum numberm = 0.
The quantization will be performed with respect to the magnetic field variables = γ −1/3

introduced in the last section along constant scaled energy linesε = Eγ −2/3 > εc.
The starting point of our semiclassical calculation is the zeroth order Gutzwiller–Voros

zeta function [29], which is the leading term in a semiclassical approximation of the spectral
determinant det(E − Ĥ ). The zeta function can be derived from the periodic orbit trace
formula [24, 47] and has for the scale invariant classical Hamiltonian (2) with fixed scaled
energyε the form

ζ−1(s) =
∏
p

(
1 − tp(s)

)
, with tp(s) = eisS̃p−iσp

π
2 −(λp/2). (33)

The product runs over single repeats of all periodic orbits of the system. The scaled action
S̃ introduced in (5) is taken here along a periodic orbit. The (complex) variables is the
scaling factorγ −1/3 in units of h̄. The winding numberσ corresponds to the number of
turns of the stable or unstable invariant manifold around the periodic orbit [48]. The linear
stability exponentλ is defined as the logarithm of the largest eigenvalue of the stability
matrix M , equation (21).
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The semiclassical approximation to the quantum eigenvalues are given by the zeros of
the zeta function. The magnetic field dependence enters the semiclassical zeta function for
fixed ε only through the scaling factors = γ −1/3. The winding number and the stability
exponent are independent ofγ due to the scale invariance of the classical Hamiltonian. A
quantization with respect to the magnetic field variables uses the classical information in
the most optimal way as the periodic orbits have to be calculated only once for eachε.

The symmetry reduced zeta functions corresponding to the sub-spectra with fixed parity
πz = ±1 are obtained by restricting the classical dynamics to the fundamental domain, see
appendix A. The symmetric and anti-symmetric zeta functions differ in phase factors, which
are due to the different boundary conditions as explained in detail in appendix A. These
phase factors are included here in the Maslov indexσ , which can be read off directly from
the three letter symbolic dynamics introduced in section 1.1. We obtain [33]

σp = 2np + n2 + (1 − πz)n1, (34)

wherenp denotes the length of the symbol string corresponding to the periodic orbit, and
n1, n2 count the number of symbols ‘1’, ‘2’ in the code. Note, that the periodic orbit 2
running along the symmetry line has to be excluded in (33) forπz = −1.

The product representation of the zeta function (33) is absolute convergent only for
Im(s) > ha > 0 [49]. For systems with a well defined symbolic dynamics a so calledcycle
expansionof products like (33) has been proposed [30, 31] to provide a representation with
larger analyticity domain. The product is expanded by multiplying out the single factors and
regrouping the terms in such a way that maximal cancellations occur. The ordering scheme
makes intensive use of the self-similar structure of the dynamics reproduced by the symbolic
description of the flow and groups together orbits and pseudo-orbits into contributions of
increasing total symbol length, the so called curvature terms. For a symbolic dynamics with
a three letter alphabet{0,1,2}, this has the form [31]

ζ−1 =
∏
p

(
1 − tp

) = 1 −
∞∑

n=1

cn (35)

with

c1 = [t0 + t1 + t2] (fundamental term)

c2 = [(t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)]

c3 = [(t001 − t0t01) + (t011 − t01t1) + (t002 − t0t02)

+ (t022 − t02t2) + (t112 − t1t12) + (t122 − t12t2)

+(t021 − t02t1) + (t012 − t0t12 − t01t2 + t0t1t2)]

c4 = . . . .

Note that each term in the curvature contributionscn is accompanied by a ‘shadowing’
term differing in sign. The only exception is the leading termc1, which is also called the
fundamental term [31] in the expansion.

The method has been applied successfully for variety of strictly hyperbolic systems [31,
50–52] and yields an analytic continuation of the zeta function in a stripha > Im(s) > hc,
hc < 0 with exponentially decreasing curvature termscn in this regime. Analytic
semiclassical expressions below the critical valuehc can be obtained by modifications of
the Gutzwiller–Voros zeta function itself [53], which will not be discussed here. Hyperbolic
systems are characterized by Lyapunov exponentsλp = (λp/Sp) of periodic orbits strictly
bounded away from 0. The DKP, however, is an intermittent system even for scaled energies
ε above the critical valueεc and we obtainλ ∼ (logn/n) → 0 for periodic orbits with
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an increasing ‘0’- tail in the symbol code. This behaviour has strong implications on the
curvature expansion and a possible analytic continuation of the zeta function, which will be
discussed below.

3.1. Cycle expansion with infinite symbolic dynamics

The dynamics of the DKP is strongly influenced by the regular behaviour in the
asymptotically separable channel as discussed in detail in section 1.2. Periodic orbits with
equal symbol length contribute very differently to the zeta function depending on the time
spend far from the nucleus. The weighttp of channel trajectories drop off algebraically with
the period, whereas contributions from periodic orbits localized in the centre region decrease
exponentially in amplitude with increasing symbol length. As a consequence, shadowing
properties in a cycle expansion (35) between orbits with equal symbol code length are poor.
Furthermore, the regular orbits dominate the curvature termscn with increasing symbol
lengthn giving rise to an algebraic decay in the curvature expansion

cn ≈ n−5/6e2π i s ε n

for reals (see equation (20)). As a consequence, an expansion of the zeta function grouping
together single orbit terms like in (35) diverges for Im(s) < 0, i.e. exactly in the region,
where the quantum resonances are expected.

Controlling the divergences introduced through the coexistence of regular and chaotic
motion is one of the main challenges in classical and semiclassical periodic orbit theory
[54]. In the following, we present a method which overcomes the problem of including
intermittency originating from one marginally stable orbit in the cycle expansion of a zeta
function. We point out, however, that the distribution of marginally orbits in a generic
system with mixed regular and chaotic motion, as e.g. in the classical DKP forε < εc, may
itself have a complicated structure.

The marginally stable behaviour for|z| → ∞ enters the symbolic dynamics through
the symbol ‘0’, which corresponds to half an oscillation perpendicular to the magnetic field
axis. The symbols ‘1’ and ‘2’ are always related to motion in the near core region. The
symbol ‘0’ can occur everywhere in the regular channel arbitrary far from the origin. A
single ‘0’ in the symbol code contributes differently to the action or stability exponent of
a periodic orbit depending on how far from the nucleus the corresponding oscillation takes
place. The classical dynamics is thus not reflected by the symbol ‘0’ alone, but by the
number of ‘0’s occurring successively in a row.

Consequently, we have to change our three-symbol alphabet to a double infinite alphabet
in the following way; substrings starting with a ‘1’ or ‘2’ and followed byn − 1 symbols
‘0’ are transformed according to the rule

10n−1 → n1, 20n−1 → n2; n = 1, 2, . . . ,∞. (36)

The indexn corresponds to the total length of the substring in the ternary alphabet. The
symbol code length of a periodic orbit in the infinite alphabet is given by the number of
symbols differing from ‘0’ in the ternary code. All periodic orbits in the families 10n−1,
20n−1 correspond now to orbitsn1, n2 with symbol length one in the new alphabet. The
orbits with symbol length two can be written as

(mn)11, (mn)12, (mn)22 m, n = 1, 2, . . .∞.

The upper index denotes here the starting symbols ‘1’ or ‘2’ of the different ‘0’ substrings,
the lower index corresponds to the length of the substrings. We realize, that the new
symbolic dynamics has a matrix structure, e.g.(mn)11 corresponds to all codes 10m−110n−1,
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Table 1. Infinite alphabet compared with the ternary alphabet for the shortest periodic orbit
families; the last columns denote the leading coefficients in the expansions (20), (23) forε = 0.5.

∞-alphabet Ternary alphabet

n = 1 n = 2 n = 3 n = 4 S0 l0

n1 1 10 100 1000 −0.648 1.696
n2 2 20 200 2000 −0.144 3.675

(mn)11

(1n)11 11 110 1100 11000 −0.243 3.126
(2n)11 101 0101 10100 101000 0.342 4.220
(3n)11 1001 10010 100100 1001000 0.692 5.000

(mn)12

(1n)21 21 210 2100 21000 −0.235 3.011
(2n)21 201 2010 20100 201000 0.628 5.412
(3n)21 2001 20010 200100 2001000 1.053 6.460
(1n)12 12 120 1200 12000 0.628 5.412
(2n)12 102 1020 10200 102000 1.052 6.460
(3n)12 1002 10020 100200 1002000 1.345 7.161

(mn)22

(1n)22 22 220 2200 22000 0.838 6.287
(2n)22 202 0202 20200 202000 1.388 7.767
(3n)22 2002 20020 200200 2002000 1.725 8.692

(kmn)111

(11n)111 111 1110 11100 111000 0.438 4.562
(kmn)112

(11n)112 112 1120 11200 112000 1.225 6.928
(11n)211 211 2110 21100 211000 0.605 5.297
(11n)121 121 1210 12100 121000 0.605 5.297

(kmn)122

(11n)122 122 1220 12200 122000 1.644 8.220
(11n)212 212 2120 21200 212000 1.348 7.582
(11n)221 221 2210 22100 221000 0.844 6.321

(kmn)122

(11n)222 222 2220 22200 222000 1.868 9.169

(mn)12 includes all strings 10m−120n−1 and so on. Table 1 lists the possible symbols up
to length three in the new alphabet together with some periodic orbit families. A periodic
orbit family is defined in analogy to section 1.2 as all periodic orbits which differ only
in one number in the lower index. Note that a cyclic shift both in the upper and lower
index denotes the same periodic orbits. The symbol matrices(mn)12 and (mn)21 are thus
equivalent, i.e.(mn)12 = (nm)21 and the matrices(mn)11, (mn)22 are symmetric.

The cycle expansion in our new double-infinite alphabet has now the form

ζ−1 =
∏
p

(
1 − tp

) = 1 −
∞∑

n=1

cn (37)
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with

c1 =
∞∑

n=1

[
t1
n + t2

n

]
(fundamental term)

c2 =
∞∑

m=1

∞∑
n=1

[
1

2

(
t11
mn − t1

mt1
n

) + (
t12
mn − t1

mt2
n

) + 1

2

(
t22
mn − t2

mt2
n

)]
c3 =

∞∑
k=1

∞∑
m=1

∞∑
n=1

[(1

3
t111
kmn − 1

2
t11
kmt1

n + 1

6
t1
k t1

mt1
n

)
+ (

t112
kmn − t1

k t12
mn − 1

2
t11
kmt2

n + 1

2
t1
k t1

mt2
n

)
+ (

t122
kmn − t12

kmt2
n − 1

2
t1
k t22

mn + 1

2
t1
k t2

mt2
n

)
+ (1

3
t222
kmn − 1

2
t22
kmt2

n + 1

6
t2
k t2

mt2
n

)]
c4 =

∞∑
l=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

. . . .

The weightstp are written here as the elements of infinite dimensional tensors of ranknc,
wherenc is the length of the symbol string in the infinite alphabet or equivalent the length of
the upper index. The curvature termscn in the cycle expansion (37) are now sums over all
the elements of the tensors of rankn including outer products of tensors with rankn′ < n.
The prefactors are introduced to avoid double counting of periodic orbits. Note that the
sum over the prefactors alone (including the sign) adds up to zero in each curvature term.

We focus first on the leading or fundamental termc1 in the cycle expansion, which is a
sum over all members of the periodic orbit familiesn1, n2. In order to study the behaviour
of a single periodic orbit family sum, we introduce the notation

t̂ a(s) =
∞∑

n=1

tan =
∞∑

n=1

e2π i(sS̃a(n)−n(N+1/2))−λa(n)/2, (38)

with an upper indexa = {1, 2}. An additional phase 2πNn is added (withN integer),
which do not affect the sum. Its meaning will become clear in what follows. (Note there is
an additional phaseπ/2 in the case ofa = ‘2’, see also (34).) Using the asymptotic results
(20), (23) from section 1.2, we write

S̃a(n) = n

(
ε + 3

2
n− 2

3

)
+ Sa

0 + Sa
2/3n

−2/3 + Sa
R; (39)

λa(n) = 5

3
logn + la0 + la2/3n

−2/3 + laR, (40)

and S̃ is written here in units of 2π . The family dependent coefficientsS0, S2/3, l0, l2/3 as
well as the remainder termsSa

R andlaR are obtained from fitting (39), (40) to periodic orbit
data. (We used periodic orbits up to a symbol lengthn = 500 in the ternary alphabet. The
remainder terms have been approximated by a polynomial fit in 1/n up to sixth order, i.e.
Sa

R = ∑6
i=1 Sa

i n−i and laR = ∑6
i=1 lai n−i .) The leading coefficientsS(a)

0 and l
(a)

0 for ε = 0.5
are listed in table 1. The sumst̂ a diverge for Im(s) < 0 due to the logarithmic behaviour
in the stability exponent in (40). This is the same kind of divergence discussed earlier,
and it appears in all other curvature terms. An analytic continuation of the sums (38) for



Semiclassical resonance spectrum of hydrogen 1657

negative imaginarys values is provided by the following technique [34]; first we transfer
the periodic orbit sum into a sum over integrals, using the identity

∞∑
n=−∞

δ(x − n) =
∞∑

r=−∞
exp(2π irx) (41)

obtained by Poisson summation. The periodic orbit sumst̂ a can thus be written as

t̂ a(s) = 1

2
ta1 (s) +

∞∑
r=−∞

∫ ∞

0
dx e2π irx ta(s, x + 1). (42)

The continuous variablex in ta(s, x) corresponds here to the discrete symbol lengthn in
(38). We now fix the indexN in (38) by the condition

Re(s) ε + 1

2
> N > Re(s) ε − 1

2
,

i.e. we changeN exactly at the Landau thresholds (32) Re(s) = (N + 1/2)/ε. The r = 0
integral can then be evaluated by rotating the line of integration onto the negative imaginary
axis which corresponds to a transformationx → −ix. The integrand is now exponentially
decreasing for all imaginary parts ofs and Re(s) 6= (N + 1/2)/ε. The integral is thus
convergent for Im(s) < 0, but we pick up an essential singularity at the Landau thresholds.
By the same technique, we find the analytic continuation for the otherr-integrals. The real
axis has to be rotated according tox → ±ix and the±-sign refers to the sign ofr. We end
up with the compact expression

t̂ a(s) = 1

2
ta1 (s)− i

∫ ∞

0
dx ta(s, 1− ix)+ i

∫ ∞

0
dx

e−2πx

1 − e−2πx

[
ta(s, 1 + ix) − ta(s, 1 − ix)

]
.(43)

The sum overr for r 6= 0 is nothing but a geometric series which gives rise to the second
integral in (43). The transformation from the original sum to the two integrals in (43) is
indeed an equality for Im(s) > 0, but provides an analytic continuation for Im(s) < 0. The
second curvature terms can be worked out in the same spirit. The leading contributions to
the action and stability exponents are

S̃a(n) = n

(
ε + 3

2
n− 2

3

)
+ m

(
ε + 3

2
m− 2

3

)
+ Sa

0 + O(n− 2
3 + m− 2

3 ) (44)

λa(n) = 5

3
log(nm) + la0 + O(n− 2

3 + m− 2
3 )

and ’a’ corresponds to ‘11’, ‘12’ or ‘22’, here. The analytic continuation of the double
sum c2 in (37) leads to a double integral, the higher curvature terms give rise to higher
dimensional integrals, respectively.

Before presenting results for the full cycle expansion, we will study the leading termc1

in detail. We will show, that this term is indeed fundamental in the sense, that it contains
already all the information about the gross structure of the spectrum.

3.2. The QEBK quantization

The dominant contribution to the periodic orbit family sums (38) is contained in ther = 0
integral in (42). The otherr-terms give a contribution suppressed by the factor e−2πx , as
can be seen from (43). To obtain the dominants-dependent behaviour of the periodic orbit
family sums, we approximate the integral

I a(s) =
∫ ∞

1
dx e2π i

[
sS̃a(x)−(N+1/2)x

]
−λa(x)/2 (45)
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by stationary phase. This leads to the phase condition

∂

∂x

(
uS̃a(x) −

(
N + 1

2

)
x

)
= 0, (46)

where we sets = u + iv. The solutions of (46) are in leading order (up to corrections
O(x−5/3)) given by

x0(u) =
[

u

2(N + 1
2 − uε)

]3/2

. (47)

Note thatx0 tends to infinity at the Landau thresholdsu = (N + 1
2)/ε. We end up with

the approximation to the integral

I a(s) ≈
∣∣∣∣∣u ∂2S̃a

∂x2
(x0)

∣∣∣∣∣
−1/2

e2π i
[
sS̃a(x0)−(N+1/2)x0−1/8

]
−λa(x0)/2 (48)

x0�1≈
√

3 e−la0/2u−1/2 e2π i
[
sx0(ε+ 3

2 x
−2/3
0 )+sSa

0−(N+1/2)x0−1/8
]

+ O(x
−2/3
0 )

and x0(u) is the solution of (46). Note that the exponent 5/3 obtained from the leading
behaviour of the stability exponents in (40) exactly cancels the singularity introduced through
the second derivatives of the actions at the Landau thresholds. The additional term 1/8 in
the exponent is due to the stationary phase approximation.

In a next step we approximate the termc1 in the cycle expansion (37) by the dominating
periodic orbit family only, i.e. by the family with the smallest coefficientl0 in (40). For
ε = 0.5, this is the ‘1’-family withl0 = 1.696. . . (see table 1). This leads to the approximate
quantization condition,

ζ−1(s) ≈ 1 − t̂1(s) = 0. (49)

Inserting the stationary phase expression (48) in (49), we can write down a quantization
condition for the real parts ofs directly,

u S̃1(x0(u)) − (N + 1

2
) x0(u) = M + 1

8
(50)

with M integer. The quantization conditions (46) together with (50) can be interpreted
in terms of the semiclassical Einstein–Brillouin–Keller (EBK) quantization of integrable
systems, (see [24] for an overview). The Hamiltonian of a classical integrable systems with
f degrees of freedom can be written in the formH = H( EJ ), andJi , i = 1, . . . , f denotes
the conserved momenta (or actions). An example of such an Hamiltonian is given in (11).
The EBK treatment leads to the simple quantization conditionJi = ni + νi

4 and the energy
eigenvalues are obtained from inserting the quantized actions in the classical Hamiltonian.
The integer numbersνi are called the Maslov indices and correspond to the number of
caustics along a pathϕ(t) = ωit on the torus.

For the integrable Hamiltonian (11), we can express the action after one oscillation
along the magnetic field direction by the equation (15), i.e.

J (α, E) = Jc(α, E) + αJh(α, E), (51)

The variableα corresponds to the winding number in (16). Due to the condition
∂Jc

∂α
= −α

∂Jh

∂α
valid for fixed energy, we can write the additional condition

∂J

∂α
= Jh (52)



Semiclassical resonance spectrum of hydrogen 1659

for E constant. Equations (51) and (52) are indeed equivalent to (50) and (46), if we make
the natural identificationJ = uS̃1 andα = x and choose the quantization conditions

Jc(s, ε) = M + 1

8
Jh(s, ε) = N + 1

2
. (53)

The harmonic oscillator is quantized with the usual term 1/2 corresponding to an integer
Maslov index 2. We are lead to a non-integer Maslov phase 1/2 or a term 1/8 in the
quantization rule for the actionJc in the Coulomb direction. (Similar results have been
found in Helium, see [34]). A full winding in theJc coordinate implies a visit to the near-
core region, where the torus approximation of the full dynamics breaks down. This fact
may motivate the unusual Maslov term, a clear understanding within the EBK theory is,
however, still missing. Equations similar to (51)–(53) have been applied to quantize stable
islands in the classical phase space beyond the harmonic oscillator approximation assuming
near-integrability of dynamics in the neighbourhood of the stable fix-point [55, 56]. Note,
that the quantization rules are derived here directly from Gutzwiller’s periodic orbit formula
and provide a quantization both in the real and imaginary part of thes-variable.

An effective quantization scheme in terms of equations (50) and (46) is obtained by
first quantizing the winding numberx = xN,M according to

S̃(x)(N + 1

2
) − ∂S̃

∂x

[
(N + 1

2
)x + (M + 1

8
)

]
= 0. (54)

The eigenvaluesuN,M are finally given by the formula

uN,M = (N + 1/2) xN,M + (M + 1
8)

S̃(xN,M)
(55)

Note that there is no free parameter. The actionS̃(x) is determined by (39), and the family
dependent coefficients in the expansion are obtained from the periodic orbit data.

Asymptotic solutions of the (54), (55) near the Landau thresholds can be given in
analytic form,

u−1
N,M = ε

N + 1
2

+ 1

2(N + 1
2)

[
ε
M + 1/8

N + 1/2
− S1

0(ε) + 1

2ε2

N + 1/2

M + 1/8

]−2

M � 1, (56)

where the parameterS1
0(ε) denotes the leading coefficient of the expansion of the action

(39) of the dominating periodic orbit family, (which is then1 family for ε = 0.5).
In tables 2–4, we list the energy eigenvalues obtained from our EBK-like quantization

(54) and (55), which we call quasi-EBK (QEBK) quantization from now on [34]. They are
compared with the real parts of quantum eigenvalues calculated from Schrödinger’s equation
directly as described in section 2. Our simple quasi-integrable approach can reproduce the
quantum spectra already surprisingly well. The QEBK results deviate in large parts of the
spectrum not more than 10% of the mean level spacing and the bound states in the series
below the first Landau threshold (Re(s) < 1/2ε = 1) are completely reproduced within an
error of δ < 4%. This makes it possible to assign approximate quantum numbers (N , M)
to individual states in the spectrum. Note, that there are more quantum resonances than
approximate quantum numbers obtained from our quasi-separableansatz. The eigenstates at
Re(s) = 2.44, 3.73 and 4.64 in tables 3 and 4 cannot be reproduced by the QEBK approach.
These states have thus no equivalent in the separable problem (11), and are an effect of
the coupling region in the full potentialV (ρ, z) in (2). In other words, the phase space
volume of the non-separable problem is (for finite|z|) larger than the corresponding volume
in the separable approximation, which causes additional resonances. Their number can be
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Table 2. The spectrum of hydrogen in a constant magnetic field formπ = 0+ andε = 0.5; the
third and fourth columns contain the quantum results fors = γ −1/3 calculated by the complex
rotation method, see section 2; the approximate quantum numbersN and M are obtain from
the QEBK results in column 5. The zeros of the cycle expanded zeta function are presented in
columns 7 and 8; the deviationδ of the real parts of the semiclassical and quantum results (in
percent of the mean level spacing in each Rydberg series) is given in columns 6 and 9.

Quantum mechanics QEBK Cycle expansion

N M Re s Im s Re s δ Re s Im s δ

0 0 0.53581 0.00000 0.54072 1.07 0.50685 0.01972 6.06
0 1 0.81404 0.00000 0.81453 0.34 0.80786 0.00480 4.17
0 2 0.90117 0.00000 0.90212 1.61 0.89841 0.00225 4.58
0 3 0.94017 0.00000 0.94085 2.43 0.93879 0.00120 4.79
0 4 0.96039 0.00000 0.96084 2.94 0.95961 0.00069 4.97
0 5 0.97203 0.00000 0.97233 3.20 0.97155 0.00043 5.16
0 6 0.9795 0.0000 0.97947 0.56 0.97896 0.00028 9.23
0 ∞ 1.0 0.0 1.0 1.0 0.0

Table 3. The same as table 2 for 1< Re(s) 6 3.

Quantum mechanics QEBK Cycle expansion

N M Re s Im s Re s δ Re s Im s δ

1 0 1.35035 −0.08586 1.44120 17.04 1.33443−0.08332 2.90
1 1 1.79920 −0.08930 1.95646 43.55 1.78245−0.08668 4.24
1 2 2.03520 −0.01729 2.22902 74.38 2.02967−0.01435 1.83
2 0 2.25324 −0.00009 2.32694 13.65 2.25150−0.00084 0.32
1 3 2.41661 −0.00480 2.40817 5.43 2.41209−0.00241 2.93

2.44319 −0.06541 2.45229 −0.05027 6.38
1 4 2.53989 −0.00063 2.53346 5.76 2.53937 0.00010 0.47
1 5 2.62677 −0.4 × 10−6 2.62435 2.92 2.62558 0.00076 1.44
1 6 2.69279 −0.00010 2.69213 1.06 2.69172 0.00025 1.71
1 7 2.74367 −0.00020 2.74381 0.27 2.74287−0.00005 1.68
1 8 2.78347 −0.00023 2.78396 1.30 2.78289−0.00015 1.57
1 9 2.81504 −0.00022 2.81568 2.14 2.81461−0.00016 1.45
1 10 2.84043 −0.00019 2.84111 2.88 2.84010−0.00013 1.37
1 11 2.86108 −0.00015 2.86177 3.56 2.86082−0.00009 1.33
1 12 2.87808 −0.00011 2.87875 4.23 2.87786−0.00005 1.34
1 13 2.89221 −0.00008 2.89287 4.93 2.89202−0.00001 1.39
1 14 2.90406 −0.00005 2.90470 5.75 2.90389 0.00003 1.45
1 15 2.91405 −0.00006 2.91472 7.03 2.91393 0.00005 1.24
2 1 2.95568 −0.02187 2.96408 2.09
1 ∞ 3.0 0.0 3.0 3.0 0.0

estimated by the difference in the phase space volume and is expected to increase likes2

in the spectrum.
The approximate quantum numbers also help to clarify the structure of the spectrum.

The Rydberg series converging to the different Landau thresholds Re(s) = (N + 1/2)/ε

overlap forN > 1, the bound state seriesN = 0 is the only one remaining unperturbed. We
identify three perturber states in theN = 1 series and nine in theN = 2 series. The number
of perturber states increase rapidly with increasingN . The perturber states interfere with



Semiclassical resonance spectrum of hydrogen 1661

Table 4. The same as table 2 for 3< Re(s) 6 5.

Quantum mechanics QEBK Cycle expansion
N M Re s Im s Re s δ Re s Im s δ

3 0 3.17878 −0.05284 3.21081 5.92 3.17005−0.05350 1.60
2 2 3.32848 −0.02099 3.34358 4.81 3.32850−0.02063 0.01
2 3 3.57591 −0.02234 3.62001 17.51 3.57228−0.02357 1.41

3.73250 −0.01734 3.73010−0.02003 1.09
2 4 3.84891 −0.02636 3.83275 8.26 3.85544−0.02964 3.38
3 1 3.97355 −0.04542 3.92706 10.76
2 5 4.00158 −0.00995 4.00118 0.25 3.98719−0.00183 8.92
4 0 4.09806 −0.03383 4.09410 0.73 4.06406−0.03421 6.25
2 6 4.18873 −0.01770 4.13706 41.36 4.17664−0.02466 10.01
2 7 4.27474 −0.00251 4.24824 25.29 4.27393−0.00900 0.79
2 8 4.34968 −0.00062 4.34024 10.68 4.35543−0.00342 6.61
2 9 4.41610 −0.01134 4.41713 1.38 4.42244 0.00335 8.52
3 2 4.43167 −0.00953 4.38177 13.95
2 10 4.48467 −0.00385 4.48195 4.32 4.47754−0.00569 11.26
2 11 4.53808 −0.00585 4.53701 1.98 4.53703−0.01022 1.95
2 12 4.58573 −0.00697 4.58412 3.53 4.58751−0.00905 3.89
2 13 4.62807 −0.00650 4.62468 8.64 4.62954−0.00631 3.78

4.63908 −0.06772
2 14 4.66388 −0.00396 4.65982 11.96 4.66431−0.00336 1.28
2 15 4.69294 −0.00201 4.69042 8.48 4.69296−0.00161 0.07
2 16 4.71804 −0.00210 4.71722 3.12 4.71809−0.00179 0.22
2 17 4.74127 −0.00289 4.74081 2.01 4.74126−0.00235 0.06
3 3 4.76087 −0.05928 4.72799 10.92
2 18 4.76228 −0.00318 4.76164 3.13 4.76219−0.00254 0.43
4 1 4.86557 −0.01118 4.86649 0.20
5 0 4.93094 −0.15662 4.97714 8.45
2 ∞ 5.0 0.0 5.0 5.0 0.0

neighbouring Rydberg states causing level repulsion both in the real and imaginary part of
the eigenvalues. The interference effects are a result of the non-separability of the quantum
Hamiltonian and cannot be resolved within the QEBK approach. As a consequence, the
error in the QEBK eigenvalues is maximal in the neighbourhood of a perturber and a unique
assignment of quantum resonances by approximate quantum numbers becomes questionable
already above the third Landau threshold.

We conclude, that the gross structure of the spectrum is reproduced by our new QEBK
quantization. To resolve the fine structure in the spectrum and the additional resonances,
we have to include the chaotic part of the dynamics. This can be done in a systematic way
by performing the cycle expansion (37) including higher order curvature terms. We will
present results in the next section.

The QEBK approach is in particular useful to derive analytic expressions like equation
(56) close to the Landau thresholds. In order to demonstrate the accuracy of the QEBK
formulas in the largeM limit, we insert the real part of the quantum eigenvalues from tables
2–4 on the right hand side of (56) and replaceS1

0 on the left hand side by a variableSN,M

to fulfill the equality sign. The semiclassical theory then predicts limM→∞ SN,M equals
a constant, which is independent ofN and the limiting value is given by the classical
coefficientS1

0 = −0.6483. Results for different Landau channels andε = 0.5 are presented
in figure 5 and support our conjecture in detail.
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Figure 5. The quantitySN,M for the different N -Landau channels versus theM-Rydberg
quantum number for themπ = 0+ and ε = 0.5. The dashed dotted line corresponds to the
semiclassical limitS1

0 = −0.6483. . ..

We conclude that the spectrum of the DKP is purely integrable deep in the Landau
channel with two important modifications; the Maslov phase for the motion along the
magnetic field axis is non-integer and the spectrum depends on an additional parameter
S1

0(ε) which can be determined by the classical dynamics.
The QEBK approximation allows for a quantization of both the real and imaginary

part of s. The quantization condition for Im(s) can be obtained by inserting the quantized
winding numbersxN,M and energiesuN,M in (48) and (49) which yields the asymptotic
expressions forv = Im(s),

vN,M = − 1

4πε4

(
l
(1)

0 + log(
N + 1/2

3ε
)

) (
N + 1/2

M + 1/8

)3

M � 1. (57)

A decrease in the width of the resonances proportional toM−3 is indeed typical for atomic
systems [57].

The antisymmetric spectrumπz = −1 is obtained by a sign change in (49) or equivalent
by replacing the phase factor 1/8 by 5/8 throughout this section. The comparison between
the QEBK quantization and exact quantum calculations yields results of the same quality
as for theπz = +1 spectra.

Table 5. Cut-off of the tensor summations in the cycle expansion (37).

Length in the∞-alphabet Upper index Lower index (up to permutation)

2 11, 12, 22 (n, m); n = 1, . . .∞
m 6 3

3 111, 112, 122, 222 (n, m, k); n = 1, . . .∞
m + k 6 3

4 1111, 1112, 1122, (n, m, k, l); n = 1, . . .∞
1212, 1222, 2222 m + k + l = 3
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3.3. Cycle expansion results

So far, we can describe the gross structure of the spectrum in terms of a quasi-integrable
approximation, which can be derived from the fundamental termc1 in the cycle expansion
(37). The finer details in the spectrum, as e.g. level repulsion due to the overlap and
interference of different Rydberg series is a manifestation of the non-integrability of the
system and cannot be resolved in the QEBK approach. The non-integrability enters the
semiclassical formalism through the chaotic dynamics in the near core region and its
coupling to the regular channel. The full information about this part of the classical dynamics
is contained in the higher curvature termscn in the cycle expansion (37). An analytic
continuation of the multiple infinite sums below the reals axis leads to multi dimensional
infinite integrals as discussed in detail in section 3.1. The one dimensional integrals (43)
in the fundamental termc1 can be calculated ‘exactly’ by standard numerical techniques.
A full treatment of the higher-curvature terms demands a determination of periodic orbit
dependent coefficient matrices in the expansion of the actions and stability exponents like
in (44), and an evaluation of higher-dimensional integrals. At present, this exceeds the
limits of our computational abilities.

Instead, we approximate the higher-order curvature contributions in (37) by carrying
out the analytic continuation only in one of the summation indices and sum over the first
few numbers in the other indices directly. (Summing over the lower indicesm, k or l in
table 5 up to infinity leads of course to the same divergences for Im(s) < 0 as described for
the single sums in section 3.1. This is, however, no problem as long asm, k, l is small.)
The treatment is equivalent to a cycle expansion in terms of periodic orbit families of the
form G 0n−1, where the head stringG is here a substring of lengthnG in our old ternary
alphabet starting and ending with a ‘1’ or ‘2’. The results presented below belong to a
cycle expansion including all periodic orbit families up to a maximal head lengthnG = 4.
The corresponding symbols in the infinite alphabet are listed in table 5, the leading order
family dependent coefficients in the expansion of the actions and stabilities are included in
table 1. Our expansion of the zeta function thus contains 54 periodic orbit families and it
includes contributions up to the fourth curvature term in the cycle expansion (37).

Figure 6 shows the absolute value of the cycle expanded zeta function for Im(s) = 0
together with the real parts of the quantum resonances marked as ticks on the Re(s)-axis. The
minima of the zeta function coincide very well with the quantum spectrum and the Rydberg
series structure is reproduced leading to an essential singularity of the zeta function at each
Landau threshold Re(s) = (N + 1/2)/ε. The perturber states appear as strong modulations
in the Rydberg-oscillation, (indicated by the arrows in figure 6). To obtain both the real
and imaginary part of the quantum eigenvalues, we calculated the zeros of the zeta function
in the complexs-plane. Results are shown in figure 7 in comparison with the complex
eigenvalues obtained from our quantum calculations. The numerical values are listed in
tables 2–4. Our semiclassical zeta function indeed contains the information about both the
position and width of the resonances. The strong oscillations in the imaginary parts of the
eigenvalues are well reproduced and the error is of the same order of magnitude as for
the real parts. We also resolve the first states missing in the QEBK approach at Re(s)

= 2.443 and 3.733. Also the ground states of theN = 2, 3, 4 series perturbing the lower
Rydberg series are now obtained including level repulsion effects! The errorδ in units of the
mean level spacing is uniform in the neighbourhood of these perturbing states. In addition,
the overall deviation of the semiclassical eigenvalues from the quantum results decreases
compared to the QEBK approach. A remarkable exception is the series of bound states
N = 0. The real part of the zeros of the zeta function reproduces the quantum data again
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Figure 6. The absolute value of the cycle expanded zeta function for themπ = 0+ subspace
and ε = 0.5; the ticks on thes axis denotes the position of the quantum resonances and the
arrows indicate perturber states due to the overlap of different Rydberg series. (The quantum
numbers (N , M) are obtained from tables 2–4.)
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Figure 7. The zeros of the cycle expanded zeta function (+) compared with the quantum results
(�) for mπ = 0+ andε = 0.5 plotted in the complexs plane.

well, but we obtain (in contrast to all the other Landau series) here a positive imaginary
part! The systematic deviation of these zeros from the reals-axis are still an open question.
A semiclassical description of bound states in a classical scattering system is indeed not
well understood so far and needs further investigations.

Our cycle expansion of the zeta function can so far not resolve all quantum states, zeros
are missing near strong perturbations of the Rydberg series (see tables 3 and 4). (Note,
that these perturber states can still be observed as modulations in the zeta function, figure
6). The reason for not reproducing all the quantum eigenstates is well understood and
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not a principle problem of the theory. A semiclassical quantization of a generic system
with more than one degree of freedom demands periodic orbits of increasing length or
equivalent higher curvature terms to resolve the increasing level density in the spectrum or
in our example the increasing number of perturbing resonances. The number of orbits itself
grows exponentially with the period, which usually sets numerical limits to the maximal
curvature contributions attainable [58].

In addition, we approximate here the curvature terms itself by the shortest periodic orbit
families only. We thereby miss information about the dynamics in the classical Landau
channels by periodic orbits visiting the far regular regions two or more times. These orbits
build up perturbations of the Rydberg series near the Landau thresholds due to the overlap
of different N -series. As a consequence, we cannot resolve perturber states with large
imaginary part in the Rydberg series for largeM quantum numbers. Both effects can be
read off from figure 8, where we plotted the modulus of the curvature contributions for
Im(s) = 0. The curvature contributions drop off exponentially for fixeds, and we obtain
a decrease over three decades for Re(s) close to zero! The total fall off becomes smaller
inside eachN -interval, (but is still exponential) and decreases also globally with increasing
N . The non-uniform behaviour of the various curvature contributions in each Rydberg
series is due to the finite approximation of the curvature terms itself, the overall increase is
a manifestation of the cutoff in the curvature expansion.

We conclude, that the cycle expanded zeta function with a double infinite symbolic
dynamics includes all the important features of the whole spectrum. We resolve both the
Rydberg-like structure at the Landau levels and the perturbations due to the overlap of the
different N -series. The deviations from the quantum results and the missing levels can be
understood in the context of the approximations made in the cycle expansion. A quantization
of the odd parity spectrummπ = 0− is obtained by changing the Maslov index according to
(34) and yields results of the same quality as presented above. The semiclassical quantization
presented here thus exceeds complex rotation methods as outlined in section 2, which have
problems to obtain the high lying Rydberg resonances in the continuum.

Our results also shed a new light on recent speculations about the origin of the very
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narrow resonances or quasi-bound states [59], which have been observed in Hydrogen in
a magnetic field [60, 18], (see e.g. the eigenvalue at Re(s) = 2.627 in table 3.) Our
semiclassical treatment agrees with results in [20, 61], stating that these extremely small
imaginary parts are due to pure interference effects. They cannot be traced back to special
features in the classical dynamics, as e.g. to stable classical motion, but can be reproduced
as a collective effect in a quantization using unstable periodic orbits only. This is in contrast
to the Helium atom, where series of quasi-bound resonances could be assigned to a large
stable island in phase space [56]. As a consequence, these small resonances in the DKP
cannot be expected to be correlated with the classical relevant linesε = const. Detailed
numerical studies indeed found a more or less ‘random’ distribution of narrow resonances
over the wholeE–γ parameter plane [20, 61].

4. Conclusions

We have presented here the first semiclassical calculations of the resonance spectrum in
the diamagnetic Kepler problem. A proper treatment of the system cannot be performed
without overcoming fundamental problems in the semiclassical approach originating from
the intermittency in the classical dynamics. A regularization of the divergences in the
semiclassical zeta function caused by the regular part of the classical motion is obtained by
performing the cycle expansion of the zeta function in terms of a double infinite alphabet.
The fundamental term and the curvature contributions are written as infinite sums over
families of periodic orbits. The orbits in these families approach the marginal stable fixed
point in the separable limit of the potential. An analytically continued integral representation
of the various curvature contributions is given. The universal asymptotic behaviour of the
actions and stability exponents in the different periodic orbit families could be derived
analytically, higher order contributions are obtained from periodic orbit data directly.

An optimized version of the complex rotation technique is presented, which allow for a
calculation of the resonance spectrum for relatively high-lying Rydberg states at the various
Landau thresholds.

The good agreement between ‘exact’ and semiclassical results both in the position and
in the width of the resonances demonstrates that the semiclassical zeta function as the
leading term in an ¯h-expansion indeed carries most information about the spectrum. An
approximation of the zeta function itself uncovers an EBK-like quantization of the marginal
stable fixed point at infinity. This quantization scheme may serve as a useful tool to obtain
an overall estimate of the spectrum and yields surprisingly accurate results especially for the
ground state series and for the Rydberg spectrum near the Landau thresholds. Our method
may thus be seen as the semiclassical analogous to quantum-defect theory in atomic physics
[19, 57]. The extremely narrow resonances in the DKP are a pure quantum interference
effect which is reproduced qualitatively by our semiclassical method using unstable periodic
orbits and are not associated with stable classical motion.

The calculations have been carried out for scaled energyε = 0.5 and are expected
to hold for all ε-values above the critical scaled energyεc, see figure 1. Of fundamental
interest is a deeper understanding of the semiclassical theory, when crossingεc from above.
This is no problem for pure quantum techniques, but makes semiclassical methods more
complicated due to bifurcations of periodic orbits.
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Appendix A. Symmetry reduced symbolic dynamics

A three letter symbolic alphabet for the four-disk problem and the diamagnetic Kepler
problem is obtained by defining the new symbols as the relative increment of two consecutive
bouncesst st+1 with two disks. Our choice of a ternary symbolic dynamics is a symbolic
description which is closely related to theC4v-symmetry in the four-disk billiard and in
the DKP-Hamiltonian (4) inµ, ν - coordinates. The new symbols correspond to the
symmetry operations forming theC4v group. Orbits, which can be mapped onto each
other by symmetry operations, will have the same code, here. The symbolic dynamics thus
describes the motion in the desymmetrized fundamental domain, (which is, for example,
the areaµ > ν > 0 in figure 2), with hard reflection at the boundaries. The symbolic
description was first introduced by Cvitanović and Eckhardt [35] in the four-disk problem.

We denote this symbolic dynamicsG = · · · g−2g−1g0g1g2 · · · with gi ∈ {0, 1, 2}. The
disk enumerating symbolsS are obtained from the symbolsG by the following algorithm:
choose one disk as the starting disks1 (e.g., s1 = 1) and the next disk is given as
s2 = s1 + 1 mod 4 if g1 = 0 or g1 = 1 and it is s2 = s1 + 2 mod 4 if g1 = 2. If the
symbolg1 was a 1 or a 2 wecontinue adding 1 or 2 to obtains3 depending on the value
of g2. If g1 was a 0 wechange the sign of the increment for the next symbol and choose
the decrement−1 or −2 to gets3. Each symbolgi = 0 change the sign of the increment
for the following symbols whilegi = 1 preserves the sign.

Using this rule we obtain for the periodic orbitG = 2 the stringsS = 13 or S = 24;
from G = 1, S = 1234 orS = 1432; fromG = 20, S = 1324,S = 1342,S = 1423, or
S = 1243; and fromG = 10, S = 1232,S = 2343,S = 3414, orS = 4121. These are the
four orbits drawn in figure 2.

In the alphabetG we have the same symbolic description for all periodic orbits which
can be mapped into each other with a spatial rotation or a reflection. Cycles which are
related to each other by time reversal symmetry alone will be represented by two different
symbol strings.

The symmetry of a periodic orbit is obtained by identifying each symbol with a discrete
group operator of theC4v group and multiply the elements of the symbol string describing
the cycle together. We identify symbol 0 with the reflectionσ on theµ or ν axis, symbol 1
with aπ/2-rotation or aC symmetry, and symbol 2 withC2, aπ -rotation of the configuration
space. The total symmetry of the periodic orbit becomes important, when looking at the
periodic orbit zeta function in its symmetry factorized representation.

The zeta-function for the four-disk system factories according to the irreducible
representations of the groupC4v in ζ = ζA1ζA2ζB1ζB2ζE . The factorization of the single
orbit contributions can be read off from [35]. The DKP inρ, z coordinates, however, has
only C2 symmetry due to the invariance of the Hamiltonian (2) under the transformation
z → −z. The symmetric and antisymmetric representation of the groupC2 correspond
here to theA1 andB1 representation of theC4v symmetry of the regularized Hamiltonian
(4). The DKP-zeta function can thus be written as productζ = ζA1ζB1. The zeros ofζA1
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yields the symmetric eigenstates, whileζB1 gives the antisymmetric part of the spectrum
with respect to parity transformation. The periodic orbits contributing to the single factors
in the zeta function are those in the fundamental domain.

Symmetric states belong to a quantization of the DKP in the fundamental domain with
Neumann boundaries along the linez = 0, antisymmetric states obey Dirichlet boundary
conditions there. In the zeta functionζB1, a periodic orbit picks up a phaseπ/2 every time
it crosses the axisz = 0. The number of crossings is equal to the number of 1’s in the
code. A periodic orbit with an odd number of symbols ‘1’ thus changes sign in the zeta
function ζB1. In addition, the cycle 2, which runs along the symmetry linez = 0, does not
contribute to an antisymmetric eigenstate. These states have a node on the symmetry axis,
the orbit 2 is excluded in theζB1-function.

A time shift corresponds to a cyclic permutation in the symbol codegi . Note however,
that a time reversed symbol string corresponds not to the time reversed physical orbit.

Appendix B. Well ordered symbolic dynamics

A second useful ternary symbolic dynamics is the one which has a natural ordering identical
to the ordering of the folds in the stable and unstable manifolds. This enables us to make a
bisection search in the Poincaré map to find periodic orbits using the method introduced in
[36]. Well ordered symbolic dynamicsW = · · ·w−2w−1w0w1w2 · · · for the 4 disk system
is defined in [39]. The symbolwt ∈ {0, 1, 2} is obtained by the incrementst+1 − st − 1 for
odd timet and the decrementst − st+1 − 1 for even timet . Reading the string witht > 0
as the numberγ = ∑∞

t=1 wt/3t gives the relative position of the fold in the stable manifold
structure and equivalent for negative time giving the position in the unstable manifold
structure.

We use this symbolic position for points on a Poincaré plane to search for the periodic
orbits. We have been able to find orbits up to symbol length 1000 with this method and we
have for each family of orbits calculated all orbits up to length 40 and some orbits up to
length 500.

Note, that for the well ordered symbolswt a time shift is not a simple shift operation
in the symbol string because the symbols depends on whether the time is even or odd.

Appendix C. The trace of the stability matrix in the classical Landau channel

The stability matrixM , (equation (21)), of a periodic orbit going far out in the classical
Landau channel|z| � ρ in (2) can be split into two parts; by fixing an arbitrary, but large
|z0|, we write

M = M 0 M sep, (C1)

where the matrixM sep describes the linearized motion in the neighborhood of a periodic
trajectory in the regular channel from a starting point (ρ, z0, pρ, pz0 > 0) to the end point
(ρ ′, z0, p

′
ρ, p

′
z0

≈ −pz0 < 0). The chaotic part of the dynamics in the near core region
is contained inM 0. The matrix elements ofM 0 approach constants, when increasing the
numbern of oscillations in the regular channel for periodic orbits in the same families. The
dominant contribution to the stability matrixM sep in the regular region can be described
by the linearized dynamics of the separable Hamiltonian (9). Transforming our coordinate
system from phase space coordinates (ρ, z) to action angle variables (J, ϕ), we can write
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M sep as

M sep = T′−1 M̃ sep T, (C2)

whereT, T′ denotes the transformation matrix

T = ∂(ϕh, ϕc, Jh, Jc)

∂(ρ, z, pρ, pz)
, (C3)

at the start and ending points. The matrixM̃ sep is the Jacobi matrix of the flow with respect
to action-angle variables and has now a particular simple form,

M̃ sep(t) =


1 0 0 0
0 1 0 ac tc
0 0 1 0
0 0 0 1

 with ac = ∂2Hsep

∂J 2
c

= −3J−4
c , (C4)

and tc is the time spend in the regular channel. Note, thatJc and tc ∼ J 3
c depends through

(13) on the energy deposed in the Coulomb motion. The transformationT can be given as

T =


∂ϕh/∂ρ 0 ∂ϕh/∂pρ 0

0 ∂ϕc/∂z 0 ∂ϕc/∂pz

ωρ 0 pρ/ω 0
0 J 3

c /z2 0 J 3
c pz

 . (C5)

Using the condition detT = 1, we can write down a similar expression for the inverse of
T. The derivatives of the angle variables approach finite values for periodic orbits in the
same family andn → ∞. The explicit expressions for the derivatives are not needed here.

Inserting (C4) and (C5) in (C1), we can approximate the trace ofM as follows,

TrM ≈ k1J
2
c tc + k2J

3
c + k3. (C6)

All the expressions, which approach constants in the limittc → ∞ or Ec → 0, are collected
in k1, k2, k3. The time variabletc is proportional to the winding numberα andn, and using
(16), (19), we obtainJc ∼ n1/3. The trace can thus be written as

TrM = k1n
5/3 + k2n + O(n2/3) (C7)

The coefficientski depend on the history of the periodic orbit before entering the regular
region and on the scaled energyε. The trace ofM is independent ofγ after one period of
the periodic orbit.
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[21] Buchleitner A, Gŕemaud B and Delande D 1994J. Phys. B: At. Mol. Opt.27 2663
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