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Gaussian wave packets (GWPs) are well suited as basis functions to describe the time evolution
of arbitrary wave functions in systems with nonsingular smooth potentials. They are less so in
atomic systems on account of the singular behavior of the Coulomb potential. We present a time-
dependent variational method that makes the use of GWPs possible in the description of propagation
of quantum states also in these systems. This is achieved by a regularization of the Coulomb
potential, and by introduction of a fictitious time coordinate in which the evolution of an initial
state can be calculated exactly and analytically for a pure Coulomb potential. Therefore in perturbed
atomic systems variational approximations only arise from those parts of the potentials which deviate
from the Coulomb potential. The method is applied to the hydrogen atom in external magnetic and
electric fields. It can be adapted to systems with definite symmetries, and thus allows for a wide
range of applications.

PACS numbers: 32.80.Ee, 32.60.+i, 31.15.-p, 05.45.-a

I. INTRODUCTION

Wave packets in atomic systems can be excited experi-
mentally, e.g., with microwaves [1–3] or short laser pulses
[4, 5]. Theoretically, the time evolution of wave packets
can be calculated accurately by numerically solving the
time-dependent Schrödinger equation [6], or by using ap-
proximation methods, such as semiclassical [7] or time-
dependent variational [8] methods. The topic of wave
packet dynamics in systems with Coulomb interactions
covers a large body of problems ranging from atomic
physics to physics of solid state, where Coulomb inter-
action plays an important, often crucial, role. In many-
body physics, in particular, in the physics of solid state,
theoretical methods well suited for studying the effects
stemming from Coulomb interactions are still lacking.
The majority of the available methods, e.g., the method
of pseudopotentials in atomic physics and the Fermi and
the Luttinger liquid theories for solid conductors, are ba-
sically indirect and substantiated neither from the theo-
retical nor from the experimental side. For this reason
they still remain, to a certain extent, disputable. The
time-dependent variational principle (TDVP) applied to
Gaussian wave packets (GWPs) lead to exact results for
the harmonic oscillator potential. GWPs have turned out
to be also well suited for describing the time evolution of
arbitrary wave functions in smooth and nearly harmonic
potentials [9, 10] but they are bound to fail for atomic
systems because of the singularity of the Coulomb poten-
tial. It is the objective of this Paper to make the GWP
method applicable to the description of the time evolu-
tion of arbitrary quantum states also in these systems.

For the one-dimensional (1D) Coulomb potential, at-
tempts already have been made [11–13] to use GWPs as
trial wave functions, based on a local harmonic approxi-
mation. For the full 3D Coulomb potential, which we will
consider, a way to remove the singularity is, as is well
known, the transformation to 4D Kustaanheimo-Stiefel
(KS) coordinates [14, 15], which converts the Coulomb

potential into a sum of two 2D harmonic oscillator po-
tentials, adapted to the use of GWPs, but also introduces
an additional constraint on the wave functions. The reg-
ularization implies a fictitious time coordinate. Various
approaches have been made to construct coherent states
for the hydrogen atom [16–20] in the fictitious time in
analogy with the coherent states of the harmonic oscil-
lator. These approaches construct the coherent states as
the eigenstates of the lowering operators associated with
the harmonic potential.

We will present a variant of the GWP method in co-
ordinate space, which describes wave packet propagation
in the Coulomb problem exactly. Therefore it is only
deviations from the Coulomb potential which require a
variational treatment. As prime examples we will apply
the method to wave packet propagation in the hydrogen
atom in a magnetic field, and in crossed electric and mag-
netic fields. Both systems have attracted considerable
attention over the past decades because classically they
exhibit a transition from regular to chaotic motion and
thus can be used in the search for quantum signatures
of chaos [21, 22]. If the method can be further extended
to larger systems with more degrees of freedom it will
allow for a wide range of future applications in different
branches of physics.

In this article we introduce the basic ideas and ex-
ample results of the method. Mathematical derivations
and details of the implementation are presented in Refs.
[23, 24].

II. RESTRICTED GAUSSIAN WAVE PACKETS

The Hamiltonian for an electron under the combined
action of the Coulomb potential and external perpen-
dicularly crossed electric and magnetic fields has the
form (in atomic units, with F0 = 5.14 × 109 V/cm,
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Here we have assumed that the electric field is oriented
along the x axis, and the magnetic field along the z axis.
We regularize the singularity of the Coulomb potential
by switching to KS coordinates u with x = u1u3 − u2u4,
y = u1u4 + u2u3, and z = 1

2 (u2
1 + u2

2 − u2
3 − u2

4). In-

troducing scaled coordinates and momenta u → n
1/2
eff u,

pu → n
−1/2
eff pu one obtains

Hψ =

[

1

2
p2

u + V (pu,u)

]

ψ = 2neff ψ , (2)

where the scaled potential V depends on the parameters

α ≡ −n2
effE , β ≡ n2

effB , ζ ≡ n3
effF , (3)

which can be chosen constant. Eq. (2) is an eigenvalue
problem for the effective quantum number neff , and for
any quantized neff the energy E and field strengths B
and F of the physical state are obtained from Eq. (3). In
KS coordinates physical wave functions must fulfill the
constraint

(u2p1 − u1p2 − u4p3 + u3p4)ψ = 0 . (4)

For α = 1/2 and vanishing external fields (β = 0,
ζ = 0) Eq. (2) describes the 4D harmonic oscillator with
V = 1

2u
2, and neff = n becomes the principal quantum

number of the field-free hydrogen atom.
Eq. (2) can be extended to the time-dependent

Schrödinger equation in a fictitious time τ by the re-
placement 2neff → i ∂

∂τ , viz.

i
∂

∂τ
ψ =

(

1

2
p2

u + V

)

ψ = Hψ . (5)

When the TDVP is used to solve Eq. (5) the wave func-
tion ψ depends on a set of appropriately chosen parame-
ters whose time-dependences are obtained by solving or-
dinary differential equations. As the regularized Hamil-
tonian without external fields (2) becomes that of a har-
monic oscillator basis trial wave functions in the form of
GWPs

g(A,q,π, γ) = ei[(u−q)A(u−q)+π·(u−q)+γ] (6)

with time-dependent parameters are a natural choice. In
(6) A designates a complex symmetric 4 × 4 width ma-
trix with positive definite imaginary part, π and q are
the expectation values of the momentum and position
operator, and the phase and normalization are given by
the complex scalar γ. In KS coordinates physical wave
functions must fulfill the constraint (4). Inserting the
ansatz (6) into (4) leads to restrictions for the admissible

variational parameters, viz. q = 0, π = 0, and the special
form of the width matrix

A =







aµ 0 ax ay

0 aµ ay −ax

ax ay aν 0
ay −ax 0 aν






, (7)

which depends only on four parameters (aµ, aν , ax, ay)
[23, 24]. The “restricted Gaussian wave packets” obey-
ing Eq. (4) are located around the origin with zero mean
velocity and thus at first glance might not appear appro-
priate for dynamical calculations. However, they are the
key for both the exact analytical derivation of the ficti-
tious time wave packet dynamics in the field-free hydro-
gen atom and the time-dependent variational approach
to the perturbed atom.

The restricted GWPs are not a complete basis set for
the four-dimensional harmonic oscillator but they are in
the 3D space, i.e., any physically allowed state can be
expanded in that basis. This can be verified by trans-
forming the restricted GWP in KS coordinates back into
3D Cartesian coordinates,

g(y) = ei(uAu+γ) (8a)

= ei[(aµ+aν)r+(aµ−aν)z+2axx+2ayy+γ] (8b)

= ei(prr+p·x+γ) . (8c)

In (8c) the set of parameters (aµ, aν , ax, ay, γ) is replaced
with an equivalent set y = (pr,p, γ) with

pr = aµ+aν , p = (px, py, pz) = (2ax, 2ay, aµ−aν) . (9)

For pr = 0 and real valued parameters px, py, pz the re-
stricted GWP in Cartesian coordinates (8c) reduces to
a plane wave. Since plane waves form a complete basis
we have the result that the restricted GWPs (8) are also
complete, or even over-complete.

III. TIME-DEPENDENT VARIATIONAL

PRINCIPLE

The propagation of the wave packets is investigated
by applying the TDVP. Briefly, the TDVP of McLachlan
[25], or equivalently the minimum error method [26], re-
quires to minimize the deviation between the right-hand
and the left-hand side of the time-dependent Schrödinger
equation with the trial function inserted. The quantity

I = ||iφ(τ) −Hψ(τ)||2
!
= min (10)

is to be varied with respect to φ only, and then ψ̇ ≡ φ is
chosen, i.e., for any time τ the fixed wave function ψ(τ)
is supposed to be given and its admissible time derivative
ψ̇(τ) is determined by the requirement to minimize I. As
trial functions we consider superpositions of N restricted
GWPs (8a), i.e.,

ψ(τ) = ψ(z(τ)) =

N
∑

k=1

g(yk) ≡
N

∑

k=1

gk , (11)
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which are parameterized by a set of 5N time-dependent
complex parameters z = (yk, k = 1, . . . , N) [instead of
15N complex parameters when using the most general
superposition of Gaussian wave packets (6) in 4D coordi-
nate space]. The equations of motion for the variational
parameters z(τ) are obtained as

Ȧk = −2(Ak)2 −
1

2
V k

2 , (12a)

γ̇k = i trAk − vk
0 , (12b)

where we have introduced the time-dependent scalars vk
0

and matrices V k
2 , which induce couplings between the

restricted GWPs. Since the special structure of the ma-
trices Ak in Eq. (7) is maintained in the squared matrices
(Ak)2, that structure carries over to the 4 × 4 complex
symmetric matrices V k

2 . Therefore, they have only four
independent coefficients (V k

µ , V
k
ν , V

k
x , V

k
y ), in the nota-

tion of Eq. (7). The parameters vk
0 and V k

2 are calcu-
lated at each time step by solving a 5N dimensional set
of linear equations. All integrals required for the setup
of that linear system have the form 〈gl|f(u,pu)|gk〉, with
f(u,pu) a polynomial in the KS coordinates and mo-
menta, and can be calculated analytically [24].

For the field-free hydrogen atom one finds vk
0 = 0 and

V k
2 = 1, i.e., the equations of motion (12) simplify to the

uncoupled equations Ȧ = −2A2 − 1
21, γ̇ = i trA for the

parameters of each each basis state. These equations can
be solved analytically [23] and yield for the time evolution
of the restricted GWP the explicit form

g(τ) =
1

N (τ)
exp

{

i
Z(τ)

N (τ)

}

, (13)

with

Z(τ) = p0 · x + p0
rr cos 2τ +

r

2
[(p0

r)
2 − (p0)2 − 1] sin 2τ ,

(14a)

N (τ) = 1 + [(p0
r)

2 − (p0)2](1 − cos 2τ) + p0
r sin 2τ ,

(14b)

and where p0
r and p0 are the parameters (9) of the initial

GWP at time τ = 0. This is an important result for
the field-free hydrogen atom: The time evolution of a
restricted GWP (8c) can be calculated analytically, and
takes the compact form (13), which is a periodic function
of the fictitious time τ with period π. In the physical
time wave packets disperse in the hydrogen atom. By
contrast, the wave packets in the fictitious time show an
oscillating behavior, with no long-time dispersion in τ .

IV. GAUSSIAN WAVE PACKET DYNAMICS

We now investigate the propagation of 3D Gaussian
wave packets which are localized around a given point x0

with width σ in coordinate space, and around p0 in mo-
mentum space. As mentioned above any physical state

can be expressed in terms of the complete basis set of the
restricted GWPs (8). The Fourier decomposition of the
initial 3D GWP has the form

ψ = (2πσ2)−3/4 exp

{

−
(x − x0)

2

4σ2
+ ip0 · (x − x0)

}

=

(

σ2

2π3

)3/4 ∫

d3p e−σ2(p−p0)
2
−ip·x0 g(y) , (15)

where the g(y) are the restricted GWPs (8c) for the set
of parameters y given as (pr = 0,p, γ = 0).

In numerical computations it is convenient to approx-
imate the initial 3D Gaussian wave packet by a finite
number of restricted GWPs rather than using the integral
representation (15). This is most efficiently achieved by
evaluating the integral in (15) by a Monte Carlo method
using importance sampling of the momenta. The initial
wave packet then reads

ψ = (2πσ2)−3/4 1

N

N
∑

k=1

g
(

yk
)

e−ipk
·x0 , (16)

with yk = (iǫ,pk − iǫx0/|x0|, 0), and the pk distributed
randomly according to the normalized Gaussian weight
function w(p) = (σ2/π)3/2 exp{−σ2(p − p0)

2}. A small
ǫ > 0 has been introduced for damping of the restricted
GWPs at large radii r, which is convenient in numeri-
cal computations. The wave function ψ in Eq. (16) is
an approximation to the 3D Gaussian wave packet (15),
and the accuracy depends on how many restricted GWPs
are included. However, it is important to note that a lo-
calized wave packet can be described even with a rather
low number N of restricted GWPs. The time propaga-
tion of an initial state (16) in the fictitious time τ is now
obtained exactly and fully analytically by replacing the
initial restricted GWPs g(yk) in Eq. (16) with the corre-
sponding time-dependent solutions (13). Results for the
wave packet propagation in the field-free hydrogen atom
are given elsewhere [23].

Here we present example calculations for the hydrogen
atom in external fields. In crossed electric and magnetic
fields the propagation of 3D GWPs is computed for the
time-dependent Schrödinger equation (2) with parame-
ters α = 0.5, β = 0.05, and ζ = 0.01 in Eq. (3). The
choice of an appropriate initial state ψ(0) is very im-
portant for the successful application of the TDVP. We
achieved optimal results by choosing a 3D initial Gaus-
sian wave packet in physical Cartesian coordinates as
given in (15). The external fields lead to couplings be-
tween the basis states and the time-dependence of the
variational parameters must be determined by the nu-
merical integration of Eq. (12). For better numerical per-
formance we resort to the TDVP with constraints [27].

Once a time-dependent wave packet (11) is determined
the eigenvalues neff of the stationary Schrödinger equa-
tion (2) and thus a quantum spectrum of the hydrogen
atom in external fields can be obtained by frequency anal-
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FIG. 1: Spectra with (a) even and (b) odd z parity of the
Hamiltonian (2) with α = 0.5, β = 0.05, ζ = 0.01 obtained
from the propagation of two different 3D GWPs. Solid and
dashed line: x0 = (6, 0, 0), p0 = (0,±1/

√
2, 1/

√
2), respec-

tively. The eigenvalues are extracted from the autocorrelation
function by Fourier transform. The peak positions agree very
well with the numerically exact eigenvalues of the effective
quantum number marked in the lower panels of the figure.

ysis of the time signal

C(τ) = 〈ψ(0)|ψ(τ)〉 =
∑

j

cje
−2in

(j)
eff τ , (17)

with the amplitudes cj depending on the choice of the
initial wave packet. In perpendicularly crossed fields the
z parity is conserved. Spectra with even and odd z parity
obtained from the Fourier transforms of the autocorrela-
tion functions C±(τ) = 〈ψ±(0)|ψ±(τ)〉 of the parity pro-
jected wave packets are shown in Fig. 1. The solid and
dashed lines result from the propagation of two different
initial 3D GWPs with σ = 3.5, ǫ = 0.15, the same ini-
tial position but different initial mean momenta. N = 41
and N = 31 basis states were coupled in the calcula-
tions. The line widths, i.e., the resolution of the spectra
is determined by the length of the time signal τmax. The
eigenvalues obtained by numerically exact diagonaliza-
tions of the stationary Hamiltonian (2) are shown in the
lower panel in Fig. 1. The line-by-line comparison shows
very good agreement between the exact spectrum and the
results obtained from the wave packet propagation. The
amplitudes of levels indicate the excitation strengths of
states with higher or lower angular momentum lz by the
two initial wave packets rotating clockwise or anticlock-
wise around the z-axis.

The method presented can be especially adapted to
systems with, e.g., cylindrical or spherical symmetries.
For the hydrogen atom in a magnetic field we consider
the very challenging regime around the field-free ioniza-
tion threshold E = 0 where the Coulomb and the Lorentz
force are of comparable strength, resulting in a fully

0 4 8 0 6 12

 0

 2

 4

ρ|ψ|2 τ=0.4

ρ z

ρ|ψ|2

0 4 8 0 6 12

 0

 5

 10
ρ|ψ|2 τ=0.8

ρ z

ρ|ψ|2

0 4 8 0 6 12

 0

 2

 4

ρ|ψ|2
τ=1.2

ρ z

ρ|ψ|2

0 4 8 0 6 12

 0

 2

 4

ρ|ψ|2
τ=3.0

ρ z

ρ|ψ|2

0 4 8 -100 10

 0

 5

 10
ρ|ψ|2τ=5.0

ρ z

ρ|ψ|2

0 4 8 -100 10

 0

 2

 4

ρ|ψ|2τ=7.0

ρ z

ρ|ψ|2

FIG. 2: Fictitious time evolution of the state (18) with ρ0 =
6.0, z0 = 0 and a nonzero initial mean momentum. The wave
function is plotted for different values of the dimensionless
fictitious time τ . The initial wave packet gradually becomes
delocalized. Lengths are given in scaled atomic units neffa0

with a0 the Bohr radius [see Eq. (2)].

chaotic classical dynamics. The initial wave function is
most conveniently chosen to be a GWP in parabolic co-
ordinates

ψ(ξ, η) = Ae−
(ξ−ξ0)2

4σ2 −
(η−η0)2

4σ2 +ipξ0
(ξ−ξ0)+ipη0 (η−η0), (18)

with center (ξ0, η0), width σ and mean momentum
(pξ0 , pη0). The GWP is expanded in terms of parabolic
basis states according to the procedure described in detail
in Ref. [23], including the Monte Carlo technique with im-
portance sampling. The procedure yields the initial val-
ues of the variational parameters. The time evolution of a
typical wave function with initial values ρ0 = 6.0, z0 = 0
and a nonzero initial mean momentum is presented in
Fig. 2. The real part of the even z-parity autocorrelation
function is shown in Fig. 3(a). A number of N = 90 basis
states was used in the computation. The eigenvalues are
extracted from the signal C+(τ) by the high-resolution
harmonic inversion method [28] and drawn in Fig. 3(b).
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FIG. 3: (a) Real part of the even z-parity autocorrelation
function and (b) spectrum of the diamagnetic hydrogen atom
extracted from the signal C+(τ ) by harmonic inversion at
the field-free ionization threshold E = 0, β = n2

effB = 0.5.
For comparison the exact eigenvalues in (b) are marked in
the upper pane. They are in excellent agreement with the
variational results in the lower panels.

The agreement between the eigenvalues computed varia-
tionally (upper panel) and the numerically exact results
(lower panel) is very good. Some lines are lacking in the
variational computation because of a nearly zero overlap
of the respective eigenstates |neff〉 and the initial GWP,
but can be revealed by choosing different initial GWPs.

V. CONCLUSION

In this Paper we have extended the Gaussian wave
packet method in such way that it can also be applied
to quantum systems with singular Coulomb potentials.
We have shown that the evolution in fitctious time can
be calculated analytically in the pure quantum Coulomb
problem. Therefore in applying the time-dependent vari-
ational principle to the description of time evolution of
wave packets in perturbed atomic systems approxima-
tions arise only from the non-Coulombic parts of the po-
tentials. The method can be adapted to special sym-
metries, such as axisymmetric or spherical, and opens
the way to a wide range of applications in systems with
Coulomb potentials.
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