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Abstract
A remarkable property of Rydberg atoms is the possibility of creating molecules formed by
one highly excited atom and another atom in the ground state. The first realization of such a
Rydberg molecule has opened an active field of physical investigations, and showed that its
basic properties can be described within a simple model regarding the ground state atom as a
small perturber that is bound by a low-energy scattering process with the Rydberg electron
(Greene et al 2000 Phys. Rev. Lett. 85 2458). Besides the good agreement between theory and
the experiment concerning the vibrational states of the molecule, the experimental
observations yield the astonishing feature that the lifetime of the molecule is clearly reduced as
compared to the bare Rydberg atom (Butscher et al 2011 J. Phys. B: At. Mol. Opt. Phys.
44 184004). With focus on this yet unexplained observation, we investigate in this paper the
vibrational ground state of the molecule in a quantum-classical framework. We show that the
Rydberg wavefunction is continuously detuned by the presence of the moving ground state
atom and that the timescale on which the detuning significantly exceeds the natural linewidth
is in good agreement with the observed reduced lifetimes of the Rydberg molecule.

(Some figures may appear in colour only in the online journal)

1. Introduction

The field of Rydberg atoms which possess a highly excited
valence electron has been established decades ago, and it is still
an active one today (see [1] for a recent review and references
therein). One reason for the interest in such highly excited
atoms is the fact that important properties of these atoms in
general scale universally with powers of the principal quantum
number n. For highly excited atoms (n � 1) this leads, e.g.,
to extremely large extensions up to the size of a virus, huge
polarizabilities as well as van der Waals coefficients and long
lifetimes, making these atoms ideal candidates for applications
in quantum simulations or quantum computing [2].

Besides these remarkable properties, Rydberg atoms are
also of great interest because they are able to form very weakly
bound molecules together with a second atom in the ground
state [3]. Such Rydberg molecules were first realized in 2009
with rubidium atoms [4], and the experiment showed that
the basic properties of the molecule can be well described
within a simple model [3]. Regarding the ground state atom
as a small perturber which is polarized by the Rydberg
electron, the interaction can be described theoretically by

a low-energy scattering process. If the respective scattering
length is negative, the interaction leads, within a mean-
field approximation, to a binding and oscillatory molecular
potential, and the theoretical predictions agree very well with
the measured vibrational spectra of the molecules [4].

However, a remarkable and not yet fully explained
property of the Rydberg molecules is that surprisingly they
exhibit mean lifetimes τ which are clearly reduced when
compared to the bare atomic Rydberg state [4–6]. Butscher
et al [7] found that the atomic background gas has a significant
influence on the lifetime due to inter-particle collisions. For
the decay rate γ = 1/τ , they found a linear dependence
γ = γ0 + cN on the background gas density N which can
be explained using the classical scattering theory. However,
regarding the vibrational ground state in the limit N → 0, the
background atoms cannot play a role in the reduction of the
lifetimes. Nevertheless, the measurements indicate a ground
state’s lifetime of τ0 = 47.6 μs, while the bare atoms have
a lifetime of τatom = 62.5 μs. In this zero density limit, the
system only consists of three parts, namely the Rydberg core,
the Rydberg electron and the ground state atom, so, obviously,
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the reduced lifetime must be caused by the ground state atom
somehow perturbing the Rydberg wavefunction.

In order to uncover the reason for this difference of about
25% in the lifetimes, a convenient approach in molecular
physics would be to evaluate the non-adiabatic energy terms
which govern the energy transfer between nuclear and
electronic motion. These terms couple a particular Rydberg
state with the continuum of dissociation of a lower lying
one and, thus, allow for a predissociation process under the
change of the electronic state. In addition to spontaneous
photon emission and blackbody-induced radiation, such a
process may further shorten the lifetime of the molecule.
However, a quantitative evaluation of the corresponding decay
rate requires the determination of the non-adiabatic coupling
terms—which is a difficult task.

As an alternative, we therefore pursue a different approach
in this paper to investigate the decay mechanism initiated by
the ground state atom in a Rydberg molecule. This is based on
a quantum-classical description of the Rydberg molecule [8]
which allows us to take into account the effect of the ground
state atom onto the Rydberg atom beyond the usual treatment
of a static disturber. In previous work [9, 10], the perturbation
of the Rydberg state has been considered at a fixed position R of
the non-moving ground state atom. In this paper, we introduce
a model in which the moving of the ground state atom plays
an important role, namely the Rydberg state is continuously
detuned due to a transfer of kinetic energy from the ground
state atom to the Rydberg state. A detuning comparable to
or larger than the natural linewidth of the Rydberg state will
enhance the transition to a lower Rydberg state resulting in the
decay of the molecule by either spontaneous photon emission
or predissociation. As we will show below, the time when
the detuning significantly exceeds the natural linewidth of the
vibrational ground state agrees very well with the lifetime
in the zero density limit. Moreover, we find that the detuning
becomes smaller with increasing principal quantum number, so
that the experimentally measured tendency of longer lifetimes
with increasing n is also in accordance with our treatment.

This paper is organized as follows. In section 2, we
give a brief review of the quantum-mechanical description
[3] as well as that of the quantum-classical treatment [8].
In section 3, we apply the latter approach to a rubidium
Rydberg molecule in the s-state. The detuning is discussed
in detail for the vibrational ground state of a molecule with
n = 35 and comparisons with the corresponding experiment
are made. Moreover, we demonstrate the effect of the detuning
for different experimentally accessible principal quantum
numbers n = 33–41.

2. Theory

In this section, we review the quantum-mechanical description
of the scattering process between the Rydberg electron and the
ground state atom as well as the quantum-classical treatment.
Both approaches are discussed briefly and we refer the reader
to [3, 8] for details.

2.1. Molecular potential of Rydberg molecules

The binding mechanism of the Rydberg molecule is based on
the polarization of the ground state atom under the influence
of the Rydberg electron. This interaction can be described
theoretically using a Fermi-type pseudopotential [11]

V (r, R) = 2πas(k) δ(r − R), (1)

where r and R denote the positions of the Rydberg electron and
the ground state atom, respectively. The whole information on
the scattering process is given here by the s-wave scattering
length as(k). It depends on the wave vector k of the Rydberg
electron and can be expressed by its first-order approximation
[12] as(k) = as,0 + π

3 αk + O(k2) with as,0 = −16.05 au
being the zero-energy scattering length and α = 319 the
polarizability of the rubidium target [4, 13, 14]. Greene et al
[3] showed that, in a mean-field approximation, this contact
interaction leads to the molecular potential

Vs(R) = 2πas(k)|ψRy(R)|2, (2)

where ψRy(R) is the value of the Rydberg wavefunction at the
position R of the ground state atom. In the case of as(k) < 0,
we obtain an attractive interaction which allows for bound
states. Figure 1(a) shows the resulting molecular potential (2)
for the above-mentioned physical parameters (solid line) and
indicates the energy and internuclear distance of the vibrational
ground state (horizontal red line) which is located in the
outermost potential minimum.

Note that significant modifications of this potential are
caused for small internuclear separations when also p-wave
scattering is taken into account by the additional term Vp(R) =
6πa3

p|∇ψRy(R)|2, with the p-wave scattering length ap =
−21.15 au [13] (see the dashed line in figure 1(a)). This
correction is important for the formation of Rydberg molecules
at energies E � 0 [8]. However, in this paper we will solely
consider the vibrational ground state of the molecule which
is located in the outermost potential minimum, and, as can be
seen in figure 1(a), the p-wave contribution can be neglected
there.

2.2. Energy detuning of the Rydberg state in the
quantum-classical framework

One consequence of the mean-field approach of Greene et al
[3] is the fact that equation (2) associates a fixed position
R of the ground state atom with the potential energy Vs(R).
Physically, this is equivalent to the assumption of a vanishing
ratio of masses of the two scattering partners, i.e. me/mRb = 0.
Although the ground state atom is, by far, heavier than the
electron (me/mRb ≈ 6 × 10−6 for rubidium), this assumption
is not strictly fulfilled. Considering the single-scattering events
leading to the bound molecule, we must, therefore, expect a
momentum and, with it, also an energy transfer between the
ground state atom and the Rydberg electron occurring with
each orbit of the latter.

In order to take into account such effects, we will
investigate the system in a quantum-classical way [8]. We
describe the positions and the motion of both the Rydberg
electron and the ground state atom as that of point particles
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Figure 1. (a) Molecular potential of a rubidium Rydberg molecule
in the n = 35 s-state. Shown are both the potential Vs(R) taking into
account only the s-wave contribution (solid line) and, for
comparison, the potential Vs(R) + Vp(R) including p-wave
scattering (dashed line). At internuclear separations
R ≈ 1875 − 1970 au where the vibrational ground state (horizontal
red line) is located, the p-wave contribution can be neglected.
(b) Oscillation of a point particle in the molecular potential Vs(R) at
the energy of the vibrational ground state. (c) Energy detuning �E
of the ground state atom: within the conservative potential resulting
from the mean-field approximation, there is no energy detuning
(blue dashed–dotted line); however, energy is transferred to the
Rydberg electron with each oscillation in the quantum-classical
treatment (red solid line). Note that, because of energy conservation,
the energy of the Rydberg state is increased by −�E.

while the scattering process between these two is treated fully
quantum mechanically. Because of the high excitation of the
Rydberg atom (n � 1), the correspondence principle allows
us to treat the motion of the Rydberg electron in terms of the
classical trajectories whose angular momentum L and energy
E will be quantized semiclassically:

L = l + 1

2
, E = p2

2
− 1

r
= − 1

2n2
. (3)

Here, n = 1, 2, 3, . . . and l = 0, 1, 2, . . . denote the
principal and azimuthal quantum numbers, respectively, p is
the momentum of the Rydberg electron and r = |r| is its
distance from the core.

Since the interaction between the Rydberg electron and
the ground state atom is of contact-like type, we only need
to consider those orbits which include the position R of the
ground state atom. Considering a Rydberg atom in an s-state

(l = m = 0), there remain four ellipses which we locally
approximate by a superposition of plane waves

ψRy(r) ≈
4∑

i=1

ψ(i)
pw(r) =

4∑
i=1

A(i) exp(ip(i)r). (4)

In order to determine their amplitudes A(i), we require this
superposition to fulfil

ψpw|r=R = ψRy|r=R, (5a)

∂ρ,zψpw|r=R = ∂ρ,zψRy|r=R, (5b)

∂2
ρ,zψpw|r=R ≈ ∂2

ρ,zψRy|r=R, (5c)

i.e. to reproduce the value of the Rydberg wavefunction
and its derivatives identically on the one hand, and to
approximately reproduce the second derivatives on the other.
Here, equation (5c) has to be understood in the sense that the
norm of the difference of both sides is minimal. Altogether,
equations (5a)–(5c) provide the best possible approximation
of the Rydberg wavefunction by the four plane waves.

With the knowledge of the plane waves, the scattering
interactions can be calculated straightforwardly: each of them
represents a Rydberg electron with momentum p(i)

in = mev
(i)
e

which is scattered to an outgoing wave

ψ
(i)
out ∼ exp

(
i p(i)

out|r − R|)
|r − R| . (6)

Because of the spherically symmetric angle distribution, the
total momentum of the outgoing s-wave is p(i)

out = 0, and the
momentum transfer �p is connected with an energy transfer
�E between the ground state atom and the Rydberg electron.

Describing successive collisions of N(i) electrons by a
current density j(i) = n(i)

e v(i)
e (n(i)

e = |A(i)|2 is the electron
density on the ith Kepler ellipse), the total momentum transfer
�p(i) = N(i)mev

(i)
e over time can be associated with a classical

force

F(i) = �p(i)/�t = n(i)
e meσ

∣∣v(i)
e − vRb

∣∣2
ê
(v

(i)
e −vRb)

(7)

acting on the ground state atom. Here, σ = 4πa2
s (k) is the

total scattering cross-section and ê
(v

(i)
e −vRb )

is the unit vector in
the direction of v(i)

e − vRb. The energy detuning over time of
the ground state atom induced by equation (7) is consequently
given by

dE

dt
=

4∑
i=1

F(i) vRb

= meσ

4∑
i=1

n(i)
e

∣∣v(i)
e − vRb

∣∣2
[ê

(v
(i)
e −vRb)

vRb], (8)

where the sum i = 1, . . . , 4 takes into account all four
contributing Kepler ellipses. Note that, because of energy
conservation, the detuning of the Rydberg state is given by
the negative of equation (8), and that the value of dE/dt is
significantly changing with time because of the vibrational
motion of the ground state atom. Thus, an appropriate mean
energy detuning can be obtained by averaging equation (8)
over one oscillation,

〈dE/dt〉 =
∫ T

0
dt ′ [dE/dt ′], (9)
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where T is the period of the vibrational oscillation. Moreover,
since the energy detuning is proportional to the velocity of
the ground state atom dE/dt ∝ vRb, the main contribution is
obtained when the ground state atom is fast and there will be
no contribution when it does not move, i.e. at the turning points
of the oscillation.

Depending on whether the two scattering partners fly in
the same (v(i)

e · vRb > 0) or in the opposite (v(i)
e · vRb < 0)

direction, the respective contributions to equation (8) differ,
and the latter is always dominant because in this case the term
|v(i)

e − vRb| is larger. Therefore, the net effect of equation (8)
is always an energy transfer from the ground state atom to
the Rydberg electron, i.e. the Rydberg state is permanently
detuned.

The energy detuning is quantum mechanically not strictly
forbidden because the vibrational ground state of the Rydberg
molecule is metastable and has some finite lifetime τ . This
directly implies a finite width in frequency space �ν =
(2πτ )−1 which is, for typical lifetimes of a few tens of μs,
on the order of several kHz, and, thus, small compared to the
level spacing of the Rydberg atom. Note that an exponential
decrease of the ground state’s population leads to a Lorentzian
form

I(ν) ∼ 1

(ν − ν0)2 + (�ν/2)2
(10)

of the spectroscopic line. Consequently, detunings ν �= ν0

are allowed, but they reduce the intensity I(ν), and for very
low intensities, one expects a change of the electronic state
(e.g. n → n − 1). Because the intensity I(ν) decreases
continuously with increasing difference of the frequency ν−ν0

and the tail of the Lorentzian is extended infinitely, a clear
threshold for the frequency ν which distinguishes the quantum
mechanically allowed region ν (where we do not expect a
change of the electronic state) from the forbidden one (where
we do expect the electronic state to change) does, therefore, not
exist. Therefore, we estimate these regimes in the following
way: a detuning which is smaller than the natural linewidth,
|ν − ν0| � �ν, will be surely allowed, while much larger
detunings |ν−ν0| � �ν are quantum mechanically forbidden,
so that we expect a detuning on the order of a few natural
linewidths, |ν − ν0| ∼ �ν, to determine the threshold where
the transition of the electronic state will set in resulting in
the decay of the molecule by spontaneous photon emission or
predissociation.

3. Results and discussion

In this section, we demonstrate the effect of the energy
detuning in equation (8) for 87Rb Rydberg atoms in the
spherically symmetric s-state. At first, we will discuss the
detuning of the vibrational ground state in general, and
then compare the results with the experimentally measured
lifetimes and, finally, investigate the effect of different
principal quantum numbers n on the time development of the
detuning. Note that all calculations presented take into account
a quantum defect correction of δ = 3 [15].

3.1. Detuning of the molecular states

The Rydberg molecule is quantum mechanically described by
the corresponding wavefunction ψRy. The vibrational ground
state of the molecule is located in the outermost potential
minimum of the oscillatory molecular potential and does not
extend into one of the neighbouring wells, since their minima
are energetically higher than the ground state (see figure 1(a)).
This wavefunction describes the probability density of the
ground state atom, which oscillates in this outermost potential
well, to be found at a specific internuclear distance.

The classical analogue is a point particle oscillating in
this potential well between two turning points Rmin and Rmax.
Figure 1(b) shows this oscillation of the ground state atom with
a binding energy of E0 = −22.5174 MHz [16] for a Rydberg
molecule in which the Rydberg atom is excited to the n = 35
s-state. In this case, the turning points are Rmin ≈ 1875 au and
Rmax ≈ 1970 au.

In the framework of the conservative mean-field
potential (2), this oscillation would continue until t → ∞
and the energy of the ground state atom would not change,
i.e. �E = 0 (see the blue dashed–dotted line in figure 1(c)).
However, this situation is different in the quantum-classical
treatment (see the red solid line in figure 1(c)): with each
oscillation, i.e. when vRb �= 0, energy is transferred to the
Rydberg electron, and the ground state atom loses energy.
The total detuning is on the order of ∼0.02 kHz per oscillation
and, thus, very small compared to the binding energy of several
MHz. The detuning per oscillation therefore remains almost
constant with time, and from averaging equation (8) we obtain
a mean detuning over time (see equation (9)) on the order of
〈dE/dt〉 ∼ 0.3 kHz μs−1.

3.2. Comparison with the experiment

In this section, we compare the time development of the
detuning with the experimental investigations of the lifetimes.
We again consider a Rydberg excitation of n = 35 which
has also been investigated in detailed experimental lifetime
measurements by Butscher et al [7].

Figure 2 again shows the time development of the detuning
(red solid line). The authors of [7] have measured the lifetimes
of the n = 35 Rydberg state for different densities N of the
atomic background gas and found that the lifetime decreases
with increasing density N . Some of their results have been
included in figure 2 for comparison (horizontal green dotted
lines). As discussed in the introduction, they found a linear
dependence of the decay rate on the density that indicates a
τ0 = 47.6 μs lifetime of the Rydberg molecule in the zero
density limit (horizontal green dashed line: the horizontal
green stripe indicates the experimental error). In contrast to the
expectation that, in this limit, one would obtain the lifetime
τatom = 62.5 μs of the bare atomic state (horizontal orange
dotted line), the extrapolated value is still significantly reduced
by about 25%.

To determine whether or not the detuning of the Rydberg
state discussed above can play a role in reducing the lifetimes,
we compare these two on the relevant time scale. As can be seen
in figure 2, the detuning of the Rydberg state reaches a value of
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Figure 2. Top: Lorentzian peak with a width �ν corresponding to
the lifetime of 87Rb Rydberg molecules in the zero density limit.
Bottom: the development of the ground state atom’s energy, �E
(again, the Rydberg state is detuned by −�E). Within the
conservative mean-field description of the potential Vs(R) in
equation (2) the energy remains constant (blue dashed-dotted line),
i.e. �E = 0. By contrast, the quantum-classical model shows a
permanent detuning (red solid line). For comparison, the
experimentally measured lifetimes of the Rydberg atoms and
molecules are shown (horizontal dotted lines) for different densities
N as well as in the limit N → 0. The shaded areas indicate the
experimental error (green horizontal stripe) and the region of the
energy detuning which is present in this regime (blue vertical
stripe). See the text for further description.

�E ≈ 15–22 kHz (indicated by the vertical blue stripe) within
the extrapolated lifetime including the experimental error.
Comparing this detuning with the corresponding Lorentzian
profile of the vibrational ground state which has a linewidth
of �ν = 3.4 kHz (see the top of figure 2), we find that this
corresponds to a detuning of �E ≈ (4.5–6.5)�ν. This value
is in accordance with the above-estimated detuning where the
quantum mechanically ‘forbidden region’ is reached, since
for such a detuning the Lorentzian curve has decreased to
I/Imax � 0.01. The Rydberg wavefunction is then strongly
detuned which can result in a significantly higher probability
for its decay than one would expect from spontaneous decay
or blackbody-induced radiation. Therefore, we expect the
lifetime of the Rydberg molecule to be determined by the time

necessary for the detuning to significantly exceed the natural
linewidth of the molecule.

As already discussed above, we also expect this strongly
detuned Rydberg wavefunction to cause a change in the
electronic structure (e.g. n → n − 1) which, depending
on the final state, may allow for different reactions, e.g.,
the dissociation of the Rydberg molecule. This situation is
supported by the quantum-mechanical interpretation of the
process. In the case of a fixed ground state atom [9, 10], the
scattering of a Rydberg electron will, in general, change its
direction but not its energy. This means that the scattering
process does not conserve the angular momentum but the
principal quantum number (n = const). However, in the case
of a ground state atom with nonvanishing velocity (vRb �= 0),
each scattering process causes a change in the Rydberg
electron’s energy. For detunings which are small compared
to the natural linewidth, this is possible within the linewidth
of the respective Rydberg state n. Significant detunings on
the order of the natural linewidth or even larger, however, are
quantum mechanically related to couplings to other quantum
states, i.e. the strongly detuned Rydberg state must, in general,
be coupled to states with other principal quantum numbers n.
The coupling can induce transitions to lower electronic states
resulting in the decay of the molecule, as already discussed
above.

3.3. Dependence on the principal quantum number

Detailed investigations of the lifetimes of Rydberg molecules
can only be found for the n = 35 s-state in the literature so
far [7]. However, in the publication on their first experimental
realization [4], a dependence of the lifetime on the principal
quantum number n has already been discussed. Although these
experiments have been performed at finite densities N and an
extrapolation to zero density is not possible due to the lack of
data, the measured tendency of longer lifetimes with increasing
quantum number n can also be expected to hold in the limit
N → 0. We, therefore, present the behaviour of the Rydberg
electron’s detuning for different n in the following.

In order to determine the detuning for different quantum
numbers n, we proceed as done for the n = 35 state. We
determine the molecular potential for the respective quantum
number and place the point particle representing the ground
state atom in the outermost well with an energy corresponding
to the respective vibrational ground state. The average energy
detuning 〈dE/dt〉 is calculated using equation (9).

Figure 3 shows this mean energy detuning over time for
different experimentally accessible quantum numbers n =
33 –41 (red squares). The figure illustrates that the value
〈dE/dt〉 strongly depends on n showing a significant decrease
of the detuning with an increasing quantum number. The two
following points contribute to this behaviour. (i) The extension
of the Rydberg electron’s wavefunction scales with 〈r〉 ∼ n2,
so that the atom becomes more extended with increasing n.
At the same time, the larger extension results in a smaller
electron density n(i)

e at the position of the ground state atom,
which lowers the effect of the finite mass correction term
in equation (8). (ii) For higher principal quantum numbers,

5



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 085201 A Junginger et al

 0.10

 1.00

 32  34  36  38  40  42

<
 d

E
 / 

dt
 >

   
[ k

H
z 

/ µ
s ]

n

Figure 3. Dependence of the mean energy detuning over time
〈dE/dt〉 in equation (9) on the principal quantum number n. The
calculations reveal a perfect exponential decrease of the detuning
with the quantum number n.

the outermost potential minimum becomes less deep, so that
the velocity of the ground state atom decreases. Because vRb

directly enters the correction term, its effect is further reduced.
For the decrease of the detuning with increasing n, we

obtain a value of

(�E/�t)n ∼ 0.76n (11)

from figure 3. Assuming that—in analogy to the calculations
for the n = 35 s-state—the decay of the Rydberg molecule
was generally induced by the ground state atom when a
detuning of �E ≈ 15–22 kHz is reached, this would mean
an increase of the Rydberg molecule’s lifetime by a factor
of 1/0.76 ≈ 1.32. Note that, considering the experimental
error stripes presented in [4], this value is in accordance
with the lifetime measurements of the Rydberg molecules by
Bendkowsky et al at finite densities [4].

4. Conclusion and outlook

We have investigated the vibrational ground state of Rydberg
molecules within a quantum-classical treatment. In this model,
the dynamics of the ground state atom and the Rydberg electron
are coupled, leading to a continuous energy transfer from
the ground state atom to the Rydberg electron by which the
Rydberg state is permanently detuned.

Comparing the time evolution of the detuning with
these reduced lifetimes of the molecule, we observe that the
measurements agree very well with the time at which the
detuning significantly exceeds the natural linewidth. We,
therefore, expect this detuning of the Rydberg state to
give an important contribution to the reduced lifetimes
of Rydberg molecules. Also, the experimentally measured
tendency of longer lifetimes with higher Rydberg excitation
could be verified within this model. However, further detailed
experimental investigations of the corresponding lifetimes
need to be performed for different densities of the background
atomic gas as well as different quantum numbers n to verify the
results also in the zero density limit of the atomic background

gas. A fully quantum-mechanical treatment of the process
discussed in this paper and the accurate computation of the
lifetimes are a challenge for future work.

Acknowledgments

This work was supported by Deutsche Forschungsge-
meinschaft. AJ is grateful for support from the Landes-
graduiertenförderung of the Land Baden-Württemberg. We
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