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A singular value decomposition based harmonic inversion signal processing scheme is applied to the
semiclassical initial value representation~IVR! calculation of molecular vibrational states. Relative
to usual IVR procedure of Fourier analysis of a signal made from the Monte Carlo evaluation of the
phase space integral in which many trajectories are needed, the new procedure obtains acceptable
results with many fewer trajectories. Calculations are carried out for vibrational energy levels of
H2O to illustrate the overall procedure. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1652523#

I. INTRODUCTION

The initial value representation~IVR! of semiclassical
~SC! theory has received much attention in recent years.1–4

Much of the interest in these studies is stimulated by the fact
that as compared to the corresponding quantum calculations,
the SC calculations scale more favorably with increasing de-
grees of freedom. It is desired to develop a practical SC
method capable of calculating problems in challenging mul-
tidimensional molecular dynamics including quantum ef-
fects. In the SC–IVR, which shows some promise in achiev-
ing this goal, the quantum mechanical time evolution
operator, exp(2iĤt/\), is approximated by an integral op-
erator with the kernel expressed in terms of only classical
values and coherent states integrated over the initial values
of the momenta and coordinates, (pW 0 ,qW 0), for a classical
trajectory of the molecular dynamics problem at hand. The
present paper is concerned with the determination of vibra-
tional energy levels of a bound molecular system, which can
be conveniently identified as peaks in the spectral density,
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`

dt exp~ iEt/\!c~ t !, ~1!

wherec(t)[^juexp(2iĤt/\)uj& is the autocorrelation func-
tion or signal with uj& being some reference state. The
Herman–Kluk5 ~HK! IVR propagator gives the following
expression for the autocorrelation function:

c~ t !5~2p\!2FE dpW 0 dqW 0^jupW tqW t&^pW 0qW 0uj&

3exp~ iSt~pW 0 ,qW 0!/\!Ct~pW 0 ,qW 0!, ~2!

where F is the dimension of the system;St(pW 0 ,qW 0) is the
classical action integral along the classical trajectory with the
values of the momenta and coordinates at timet, pW t

[pW t(pW 0 ,qW 0) andqW t[qW t(pW 0 ,qW 0), that evolve from the initial
conditions (pW 0 ,qW 0); Ct(pW 0 ,qW 0) is the HK pre-exponential
factor;5 upW 0qW 0& is a coherent state,6,7 whose coordinate space
wave function is given by

^qW upW 0qW 0&5S g

p D F/4

e2g~q2q0!2/21 ip0•~q2q0!/\. ~3!

The main advantage of the HK–IVR approach over the
usual SC methods based on the Van Vleck type SC
propagators8 is that it avoids the notoriously difficult root-
search problem, in which all possible classical trajectories
connecting two points in coordinate space by a certain time
interval must be located. To calculate the HK–IVR spectral
density, Eqs.~1! and ~2!, one needs to compute a classical
trajectory for each set of initial condition (pW 0 ,qW 0), evaluate
the integrand along the trajectory, and then to perform the
Fourier transform overt. For systems of many degrees of
freedom, the phase space average will be an integral of high
dimensionality, so that a Monte Carlo method is the only
feasible way to do it. There have been a number of calcula-
tions along these lines, most of which have given good re-
sults for the vibrational energy levels~or other spectral den-
sities relevant to the photoabsorption cross-section, the
photoelectron spectrum, etc.!.9–15 Of concern, however, has
been the number of trajectories that must be computed, i.e.,
the number of initial phase points that must be sampled in
Eq. ~2!, in order to obtain converged results. The more one
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can do to reduce the number of trajectories that are needed,
the more practical the overall approach will be for an appli-
cation to large molecular systems of interest.

There have been several approaches suggested to im-
prove the efficiency of the IVR phase space average; among
them, the Filinov filtering scheme,16,17 the filter-
diagonalization technique,18 and others.1 A recent idea is to
use time averaging of the integrand, Eq.~2!, to get rid of
much of the oscillatory behavior of the integrand~sign prob-
lem!, so that many fewer initial conditions~i.e., trajectories!
are needed for the Monte Carlo phase space average to
converge.19,20Note that all the methods based on the Fourier
transform spectral analysis are inherently low resolution
methods with resolution being inversely proportional to the
length,T[Nt ~t is the time interval between adjacent time
samples! of the signalc(t) so that to get spectral features
resolved they need more signal points sampled. This in turn
requires more trajectories to be averaged to achieve conver-
gence.

This happens for two reasons: First, the integrand be-
comes more oscillatory at largert. Second, the HK propaga-
tor is a short time propagator. This means thatc(t) for a
given number of averaged trajectories behaves unphysically
at longer times creating more error in the signal. These ef-
fects necessitate more trajectories to be averaged in the not
always fulfilled hope of reducing the error. Hence it would
clearly be advantageous to have a time to frequency proces-
sor that can yield acceptable results and resolution using
shorter time propagations, i.e., shorter signals. The harmonic
inversion~HI! class of processors in its several variants, the
filter diagonalization method,~FDM! the linear predictor
method, and the Pade´ method supply such an alternative.21

All these methods gain their advantage by assuming a model,
namely a linear combination of decaying complex exponen-
tials. When such methods are fed by converged signals
which are nearly free of error~or noise! they yield excellent
and similar results if the harmonic inversion equations are
properly regularized.

Reference 18 applied these ideas using FDM to compute
resonances~or energies! in collinear H21H scattering. Al-
though a systematic study was not given, it was noted that
acceptable results were obtained with up to a factor of 16
fewer trajectories than could be obtained using Fourier meth-
ods that as explained above invite more error and which can
do nothing but signal averaging to reduce the error.

In this paper, in the spirit of Ref. 18 we apply the har-
monic inversion method to the IVR signal, Eq.~2!, averaged
over Ntr trajectories to obtain the lower vibrational energies
of H2O molecule. This is a 3D problem that is more chal-
lenging than the 1D H21H problem. In doing this problem
we make several changes in methodology from Ref. 18 two
of which are alternatives to the windowing and the method
of extracting the energies. FDM does the former by partition-
ing a localized Fourier–Krylov basis and the latter by diago-
nalizing the Hamiltonian on Fourier–Krylov basis designed
to cover the window. Our method of windowing is explained
in Sec. II A and our method of obtaining the energies and
weights of the vibrational states in the signal is explained in

Sec. III. For the latter we used the previously published Pade´
method.21

Most importantly here we address the problem that the
results produced by the harmonic inversion methods are very
sensitive to residual signal error in the sense that false error
peaks can appear and are often indistinguishable from true
peaks, and also if the noise/error is too high, true peaks can
be undetected. This serious fault, which did not occur in the
simpler H21H problem, will be cured here by applying the
Cadzow regularization method for error reduction which will
be introduced in Sec. II B and also by using different refer-
ence states as explained in Sec. IV.

Here, we apply the Cadzow regularization iterative
procedure22 to first reduce the error in the windowed signal.
Later by using the HI Pade´21,23 solver we extract vibrational
energy levels from the error reduced signal. The error reduc-
ing method applied in the present work is the analogue of a
noise reducing method used in signal processing of experi-
mental NMR signals.23 In this sense, this work can be con-
sidered as two step processing: First, noise/error reduction of
the signal; second, harmonic inversion of the cleaned signal
to obtain harmonic inversion parameters or the line list.
Atomic units~\51! are used throughout the rest of the paper
unless specified otherwise.

II. NOISEÕERROR REDUCTION

A. Windowing

All processing can be done by breaking the Fourier
transform spectrum into windows of 100 to 400~300 is
usual! Fourier grid points. The reasons for windowing as
done here is that for the noise/error reduction part of the
problem:~i! without windowing the so-called singular value
decomposition~SVD!24 graphs, to be discussed below, be-
come too cluttered with signal and noise singular value
points to be easily analyzed;~ii ! certain windows will be
much simpler to process than others, and not windowing
unnecessarily ties all features to the features most affected by
noise; and~iii ! without windowing the dimensionN/2 of the
data matrix arising in the Cadzow method~will be explained
in Sec. II B! would be so large that a needed SVD calculation
could become too time consuming.

The edges of the windows are at Fourier grid points.
Their placement ideally, based on prior knowledge or hints
from the noise/error corrupted Fourier transform spectrum,
surrounds regions containing signal peaks and begins and
ends in regions of pure noise. In less than ideal situations a
systematic windowing of the spectrum can be designed for
all regions. If peaks, because of spectral density reasons,
unavoidably appear at window edges where window induced
distortions will occur, an additional window should be cho-
sen so that the edge of the prior window falls interior to the
new window. This is possible because windows do not know
about each other and can overlap. Choosing windows is gen-
erally not a problem and becomes even less so with experi-
ence.

At this point the windowing program takes over and pro-
duces a signal of lengthNw , calledcn

bl , ‘‘ bl ’’ for band lim-
ited, out of the measured/calculated signal of lengthN called
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cn . This is inputted into the Cadzow noise reduction scheme
described in Sec. II B below. The production process, de-
scribed with formulas in Ref. 21, is here discussed in words.
In the Fourier spectrum of a signal averaged over a given
number of trajectories all intensities outside the window of
Nw Fourier grid points are set to zero. The window spectrum
is then shifted symmetrically about zero frequency~energy!
and inverse Fourier transformed to produce a ‘‘new’’ signal.
Since the original bandwidth was 2p/t ~t is the sampling or
dwell time! and now it is reduced by the factorNw /N, the
new effective sampling or dwell time will beNt/Nw[tw .
Hence the band limited signal withnth element cn

bl

[cbl(ntw) is just the ‘‘new’’ signal with fewer samples
numberedn50,1,...,Nw21. As T[Nt5Nwtw , resolution is
not affected by this signal length reduction. After all process-
ing the real part of the frequencies~energies! must be shifted
back to the original origin. Results near window edges are
not reliable.

B. Cadzow regularization

The Cadzow method is based on the general idea to cre-
ate from a given, nonideal, band limited signalcn with a
signal lengthN ~we dropped superscript ‘‘bl ’’ in cn

bl and
subscript ‘‘w’’ in Nw and tw), which is contaminated by
noise or error perturbations, a new signal that satisfies a
number ofa priori known properties of the underlying signal
and at the same time is the closest to the original signal. It is
assumed that the HK–IVR autocorrelation signal, Eq.~2!,
can be decomposed as a sum

c~ t !5x~ t !1e~ t !, x~ t !5 (
k51

K

dk exp~2 iEkt !, ~4!

whereEk anddk are thekth vibrational energy level and the
weight amplitude;e(t) is the error due to nonconvergence of
the Monte Carlo average, which is scaled as 1/ANtr with the
number of trajectoriesNtr taken into the Monte Carlo aver-
age. The HI part of the signalx(t) is what we are looking
for, while e(t) is the unwanted part of the signal. The valid-
ity of the decomposition Eq.~4! is based on the two facts:
First, an exact quantum mechanical autocorrelation function
satisfies the HI signal form with the energyEk and amplitude
dk5u^Ckuj&u2 defined by the Schro¨dinger equation,ĤCk

5EkCk . Second, the HK semiclassical expression Eq.~2!
approximates the corresponding quantum mechanical one up
to \ terms.

Let us assume that the signal is given on an equidistant
grid cn5c(nt) and xn5x(nt), n50,...,N21, andN is as-
sumed to be even. The best that can be done to extractxn

from cn is to minimize the fitting error,

min
dk ,Ek

(
n50

N21

wnucn2xnu2

5 min
dk ,Ek

(
n50

N21

wnUcn2 (
k51

K

dkexp~2 iEknt!U2

, ~5!

wherewn51/sn
2 is a weight coefficient inversely proportional

to the squared error deviationsn
2 of the nth data point. In

practice, the distribution of the error deviations in time is not
known and can be modeled as a uniform or more compli-
cated distribution function. Let us consider minimization of
the following error cost function:

min
dk ,Ek

iC2XiF
25M min

dk ,Ek

(
n50

N21

wnucn2xnu2, ~6!

where

wn5H ~n11!/M , n50,1,2,...,M21,

1, n5M ,M11,...,N2M ,

~N2n!/M , n5N2M11,...,N21.

Here C is the so-called data matrixCnm5cn1m and Xnm

5xn1m , n50,1,...,M21, m50,...,N2M and i•iF denotes
the Frobenius matrix norm.M can be taken asN/2 ~small
changes are not important23! so the data matrixC will be a
N/23(N/211) rectangular matrix. Obviously,X is aK-rank
matrix, but due to random errorsC is usually a full-rank
matrix. The solution matrixX also satisfies the Hankel prop-
erty, i.e., elements on the antidiagonals are the same@see Eq.
~12!#. Cadzow suggested an algorithm for approximating this
solution. Specifically, the original problem Eq.~6! is decom-
posed into two simpler subproblems related to each of the
individual signal property subsets. In the first step, we are
looking for aK-rank matrix,X(K), which is the best approxi-
mation to the data matrixC,

min
X,RK

iC2XiF
2 , ~7!

and in the second step, a Hankel matrix is found to minimize

min
X,H

iX~K !2XiF
2 . ~8!

The solution of the first step is well known.25 For
a general full rank complex valuedM3(N2M11),
M<(N2M11) matrixC, its associated SVD representation
takes the following form:

C5X~K !1E~M2K !

5 (
k51

K

skuuk&^vku1 (
k5K11

M

skuuk&^vku, ~9!

wheresk are the singular values, whileuuk& and^vku are the
left and right singular vectors, respectively. The singular val-
ues are here ordered in a monotonically decreasing fashion
sk11<sk . Zeroing the smallest singular valuessK115¯

5sM50 or settingE(M2K)50 in Eq.~9!, one gets aK-rank
matrix X(K)5R̂KC, whereR̂K denotes a rank reducing~non-
linear! operator transformingC→X(K).

Estimating the rank, the value ofK, is the most essential
step in our method. For an ideal converged signal with no
error or noise the rankK could easily be spotted as the num-
ber of K nonzero singular values. For this case, in SVD
graphs, the signal points could be recognized as some de-
creasing sequence of points while the noise/error points
could be distinguished as a horizontal line of almost equally
spaced points or a ‘‘string of points’’ close to zero level. If
the noise/error level is increased slowly, this effect shows
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itself on the SVD graphs as an increase on the height of this
horizontal string of points~noise/error points! relative to sig-
nal points. If noise/error level is increased more, eventually,
some signal points might be covered by the string of points
depending on the strength of the noise relative to the signal.
Therefore the K value will simply be taken as the number of
points above the noise/error points. That is, we will only be
interested in the singular values that are well above the
noise/error points, and those below the noise/error level, if
they exist, will be omitted. The best strategy, up to date, to
distinguish the signal points from the noise/error points is to
look for a ‘‘gap’’ in the SVD graphs. The distance from the
highest noise point to the lowest signal point above the high-
est noise point is defined as the ‘‘gap.’’ Figure 1 shows eight
different sets of singular value graphs from different packets
~will be explained in Sec. IV!. The ‘‘gap’’ in real cases can
be estimated by recognizing that it always appears near ‘‘el-
bow’’ of the curves as in Fig. 1. In many cases, there is a
clear separation of signal points from the noise/error points.
When the gap is not clear we hold to a conservative strategy
and chose a few points more on the elbow by considering a
next possible gap towards the region of noise/error points.
Even though the noise/error points, ‘‘string of points,’’
should theoretically~in case of a white Gaussian distributed
noise! be around a constant value, i.e., zero slope, in the
SVD graphs, we observe a slight nonzero slope. This is
caused by the effect of windowing and possible nonwhite
nature of noise/error perturbations, but since the near hori-
zontal character is distinguishable the gap criteria is still ap-
plicable.

After the rank reduction operation the Hankel property is
lost. The second step is simply to average over the antidiago-
nal elements or to Hankelize the matrix. The Hankelization
can be formulated asX(H)5ĤX(K), whereĤ denotes a Han-
kelization ~linear! operator~not to be confused with Hamil-
tonian operator!, is given by

Xi j
~H !5x~~ i 1 j !t!5

1

L (
n,m:

m1n5 i 1 j

Xnm
~K ! , ~10!

with L being the number of the elements in matrixX(K)

satisfyingm1n5 i 1 j in Eq. ~10!.
These regularization steps have to be applied many times

to reach a convergence in the results; that is the procedures
should be iteratedNiter times until a Hankel matrixXNiter

(H)

5(ĤR̂K)NiterC with only K dominant singular values is ob-
tained. From the approximated Hankel matrixXNiter

(H) , better

error-reduced dataxNiter
(nt) can be read off. The conver-

gence of the above iteration can be proved using the theory
of composite property mapping algorithm.22 Let Xtrue5X de-
notes the true underlying data matrix; then, it can be
proved26 that

iX~H !2XtrueiF<iX~K !2XtrueiF . ~11!

The equality holds only ifX(K) is Hankel. The above in-
equality demonstrates thatX(H) is always more accurate than
X(K). If the SVD in the iteration procedures can reduce the
error effect efficiently, a better estimation ofXtrue can be
obtained by preserving the Hankel form after each iteration.
Hence, the performance of the Cadzow preprocessed HI al-
gorithm should be better than that of the original HI algo-
rithm as applied to the signal Eq.~4!.

Now, havingxNiter
(nt), n50,...,N21 signal, which bet-

ter satisfies the HI model, one can actually apply any form of
the HI algorithm to perform the spectral analysis of the sig-
nal with practically the same results on output. In this paper,
we have used the Pade´ HI spectral estimator to get the
$dk ,Ek%k51

K parameters as described, e.g., in Refs. 21 and 23.
Before proceeding to the next section we give an algo-

rithm summarizing the above error reduction signal process-
ing scheme.

FIG. 1. The singular values of the data matrices for all
packets. Upper row graphs belong toA1 symmetry, and
lower row graphs belong toB2 symmetry.
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Step 1: Create a matrixC from a windowed signalcn ,
n50,...,N21, as

C5S c0 c1 c2 ¯ cN/2

c1 c2 c3 ¯ cN/211

c2 c3 c4 ¯ cN/213

¯ ¯ ¯ ¯ ¯

cN/221 cN/2 cN/211 ¯ cN21

D . ~12!

Step 2: Make the SVD of the matrix:C→USVH where
U and V are unitary matrices composed from the left and
right singular vectors, respectively, andS is a rectangular
diagonal matrix with the singular values on the diagonal.

Step 3: For the first iteration (Niter51), estimate the
rank K from the SVD graph. For the following iterations
(Niter.1), use the same rank. GivenK set to zero all smaller
N/22K singular values:S→S8.

Step 4: Find a new matrixC8:US8VH→C8.
Step 5: Do Hankelization.
Step 6: Go to step 2 and replaceC by C8 in Eq. ~12! then

iterate the procedureNiter times until the convergence is
achieved.

Step 7: From theNiter times iterated matrixC, which is
of Hankel form, read off an error reduced signalxn

Niter

5xNiter
(nt), n50,...,N21.

III. PADÉ HI METHOD

The xn
Niter, n50,...,Nw21, which are hopefully very

similar to the exact noiseless signal samplesxn , can be sub-
jected to a harmonic inversion analysis. The spectrumI (E)
which can be represented in the infinite discrete Fourier
transform~DFT! ~or z transform! of the signal described by
Eq. ~4! can be obtained via

I ~E!5tw(
n50

`

xnz2n

5tw(
k51

K
dk

12zk /z

5tw(
k51

K
dk

12exp@ i~E2Ek!tw#
, ~13!

wherez5exp(2iEtw) and zk5exp(2iEktw). The real part
of Eq. ~13! gives the density spectrum Eq.~1!. The right-
hand side of Eq.~13!, obtained as a result of summing up an
infinite series of signal points, is the harmonic inversion
spectral estimator expressed in terms of harmonic inversion
parameters. Ifu(E2Ek)twu!1, Eq.~13! reduces to a sum of
complex Lorentzians. In the spectral regions far from reso-
nance lines, ReI(E)5(tw/2)(k51

K dk5twx0/2 ~if all dk’s are
real! so that in order to get zero baseline the constanttwx0/2
should be subtracted from Eq.~13!.

Formally let us construct from the signal Eq.~4! an in-
finite Hankel matrix xnm5xn1m5x((n1m)t), n,m
50,1,... . Then the matrixxnm has a finite rankK and there
exist K numbersa1 , a2 ,...,aK such that

xq5 (
k51

K

akxq2k ~q5K,K11,...! ~14!

~see Vol. II, Chap. XV, Sec. 10 in Ref. 27 for proof!. The
linear prediction~LP! equations~14! enable one to calculate
all the signal points knowing the firstK signal points and the
K LP equation coefficients; the LP coefficients in turn can be
obtained as a solution of the system ofK LP equations.

If the infinite matrixxnm is of finite rank then the DFT of
the signal can be summed up to a rational function ofz ~Padé
approximant!,27

I ~E!5tw(
n50

`

xnz2n5tw

PK~z!

QK~z!
, ~15!

wherePK(z)5(k51
K bkz

K2k11 andQK(z)5(k50
K akz

K2k are,
respectively, numerator and denominator polynomials whose
coefficients can be calculated from the following system of
relations:

bk5 (
r 50

k21

arxk212r ~k51,...,K !, ~16a!

05 (
k50

K

akxq2k ~q5K,K11,...,2K21!. ~16b!

Settingak52ak /a0 , k51,...,K, we can write the relations
Eq. ~16b! in the form Eq.~14!. Therefore, theak’s coeffi-
cients can be obtained as a solution of a set of the LP
equations,24 whereas thebk’s ones from theexplicit relations
Eq. ~16a!.

The harmonic inversion parameters,zk or Ek , can be
found, by rooting the denominator polynomial. This problem
can be effectively reduced to the diagonalization of the com-
panion Hessenberg matrix.21,25 The parametersdk are calcu-
lated via the residues of the Pade´ approximant Eq.~15! at the
positions of the corresponding complex poleszk .21

IV. VIBRATIONAL ENERGY LEVELS
OF THE H2O MOLECULE

To illustrate the overall procedure, calculations for the
vibrational energy levels of H2O are carried out. We use a
standard normal mode vibrational Hamiltonian that ignores
vibration–rotation coupling28,29 and a well-studied potential
energy surface for which exact quantum-mechanical results
have been reported.30 The 3N2653 normal mode coordi-
nate are mass-weighted in the usual way19 so thatq1 , q2 , q3

denote mode coordinates for bending, symmetric stretch, and
asymmetric stretch vibrations, respectively. The reference
stateuj& is taken to be a coherent stateupW rqW r&, Eq. ~3! ~with
g j5v j ), centered at the coordinate~potential energy! equi-
librium position qW r5qW e and the momentum pW r

5(pr1 ,pr2 ,pr3) with component valuepr j 5A(2nj11)v j

corresponding to the vibrational energy specified by har-
monic oscillator quantum numbernj and normal mode fre-
quencyv j for j 51, 2, 3. According to a specific symmetry
of the molecular system, the reference state can be made to
have 1 or 2 symmetry uponq3→2q3 reflection, which
gives a state ofA1 or B2 symmetry, respectively. The sam-
pling function used for the Monte Carlo average over the
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phase space was the Husimi distribution function31 as de-
scribed in Ref. 19. We use a rejection Monte Carlo algorithm
combined with the Box–Muller method to select
trajectories.24 The trajectories are propagated for 244 fs
~1000 steps,t510 a.u.!. For details on numerical algorithms
used to propagate classical trajectories and to calculate the
stability matrix ~monodromy matrix! for the HK prefactor
we refer to Ref. 19.

Also, it might be advantageous to run several wave
packetscn1

cn2
cn3

(nt) with different reference states~with
different momentum vectors! specified by oscillatory quan-
tum numbers (n1 ,n2 ,n3) in order to maximize the weight
amplitudesdk;u^juCk&u2 for a certain group of vibrational
states. The higher thedk value is, the better chance the cor-
responding line will be above the noise/error level. By run-
ning different wave packets we aim to collect as many as

possible different lines in the spectrum so that if one peak is
weak and eliminated by the error reduction procedure from
one packet we expect to catch it from another one. We have
run four different packets with oscillatory quantum numbers
~0,0,0!, ~1,0,0!, ~0,0,1!, and~0,0,2! and with 5000 trajectories
for each. We will label them as 000, 100, 001, and 002,
respectively.

Due to the short-range nature of the HK propagator after
some time the semiclassical error grows rapidly. It is ob-
served that for all the packets after around a time of 4000 a.u.
~corresponding to 400 signal points! the signal starts to show
wild oscillations which is an indication of a fast growing
error. In Fig. 2 one of the signals is shown in time domain as
an example~see the caption for details!. Here there is a trade
off. By taking a shorter length signal, one obviously reduces
resolution and accuracy both in the HI techniques and the
Fourier transform. However, a shorter signal contains rela-
tively less error, and so it facilitates the application of Cad-
zow regularized HI procedure. In further signal processing
we set the signal lengthN5400 (t54000 a.u.).

For all of the packets a spectral window of interest has
been chosen in the range@344, 34 744# cm21, which contains
Nw5100 Fourier grid points, and the band limited signals
have been obtained. The inset in Fig. 3 indicates the window
of interest. Then, the Cadzow regularized HI spectral estima-
tor has been applied to this signal. As explained in the pre-
ceding section, the data matrixC has been constructed and
the SVD of C has been calculated. Since the band limited
signal had 100 points, the size of the matrices was 50351.
We wish to estimate a rankK of the underlying signal data
matrix. In Fig. 1 all the singular values versus their numbers
are shown for all the packets. The positions of the gaps taken
are shown in the graphs by arrows. The number of singular
value points above the gap gives theK value. Cadzow regu-
larized HI signal processing has been applied by taking theK
values shown in Fig. 1, and withNiter520 for each packet.

In Figs. 4 and 5 the Cadzow regularized HI results are

FIG. 2. The SC signal for packet 000 symmetryA1 obtained by 5000 tra-
jectories. The full line is the real, the dotted line is the imaginary part of the
signal.

FIG. 3. Real part of the discrete Fourier transform of
the signal from packet 000 symmetryA1 ~400 signal
points!. Region of interest~window! is shown~100 sig-
nal points!.
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shown for the packets ofA1 andB2 symmetry, respectively,
applied to regularized signals. The heights of the sticks in the
diagrams show theudku values and their positions correspond
to the real parts of the energies. The symbols are used to
indicate to which packet they belong. Dark plus signs up to
value 14 000 cm21 are the exact quantum-mechanical ener-
gies~marked by letter ‘‘e’’ !, and the others~marked by letter

‘‘ s’’ ! are the SC results from Ref. 19. Some of the lines on
the graphs are bundled very closely. These lines are from
different packets and we believe that they correspond to the
same point in the spectrum. On the figures, a curly bracket
sign, ‘‘%’’, is used to indicate a bundle. On the other hand,
there are some single lines that can not be ascribed to a
bundle and are well separated from the others. These lines

FIG. 4. Stick diagram ofudku values from all packets forA1 symmetry. The numbers having letter ‘‘e’’ next to them are exact values of the energies, the
numbers having letter ‘‘s’’ next to them are SC values of the energies from Ref. 19, the numbers having no letter next to them are real part of the energies of
the lines having biggestdk value in their bundle and obtained by Cadzow regularized HI method by using 5000 trajectories for each packet.

FIG. 5. Stick diagram ofudku values from all packets forB2 symmetry. The other notations are the same as in Fig. 4.
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are those that are only given by one packet. The number on
the top of a stick line is the value of the energy that corre-
sponds to either a single line that does not belong to any
bundle or the line that has the highestudku value in a bundle.
Since the line with the largestudku value was assumed to be
the best converged one, we have selected the energy value of
the highest line in a bundle rather than taking their average.

For symmetryA1 ~Fig. 4! we have obtained close results
to all the exact energies except the oneE513 622 cm21

within a maximum deviation of about 45 cm21. Around the
region of 15 300 cm21 there are three lines that are close to
each other within a separation of about 75 cm21. As com-
pared to the other bundles in the spectrum, this group of
three lines has the biggest separation between them. How-
ever, since the group itself is well separated from others, we
assumed they correspond to the same line in the graph. The
other two close lines in this region are missed as compared to
the SC results from Ref. 19.

For the symmetryB2 ~Fig. 5! we also obtained results
close to the exact ones within a maximum deviation about
100 cm21. In the energy region higher than 14 000 cm21,
where the exact results are not available, the results are in an
agreement with the SC ones from Ref. 19. Only one line is
missed in this region.

All the energy values shown on Figs. 4 and 5 are also
listed in Table I.

V. CONCLUDING REMARKS

The aim of the work was to make the semiclassical cal-
culation of molecular dynamics problems more practical by
reducing the number of trajectories needed in a convergent
Monte Carlo averaging procedure. In Ref. 18 and here the
use of the Fourier transform of the semiclassically calculated
correlation function was replaced by the use of the HI
method. The latter method had greater resolution for a given
signal length than the Fourier one. This in turn permitted
acceptable results to be obtained in Ref. 18 from a shorter
propagation time signal. This can be viewed as a first attempt
to minimize the error due to the short-range nature of the HK

propagator. In general, however, the larger the error, the
more trajectories are needed to average it out. In this paper, a
second attack was made even more directly on the error with
the hope of further reducing the need for the use of excessive
number of trajectories.

The noise/error reduction method that has been applied
here is based on the Cadzow regularization of the data ma-
trices constructed from the windowed signals. To ensure the
effectiveness of the noise/error reduction, short time signals
should be collected and averaged until the separation be-
tween noise/error and signal singular value points is clear. In
practice this may leave some signal points below the noise/
error points but at least no noise features will be identified as
signal. To recover these ‘‘lost’’ states we take advantage of
the fact that the noise/error reduction method, for a given
number of trajectories, tends to choose the states with
‘‘larger’’ udku values ~i.e., weight factors!. By judiciously
choosing and semiclassically propagating several initial
packets, the lost states can be recovered.

We believe that in total we have satisfied the aim stated
at the beginning of this section.

Reference 18 and this paper differ from Refs. 17, 19, and
20, i.e., attempts at converging IVR calculations, by working
on the signal and not on the integrand. Combined formula-
tion would be of interest to explore.
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