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to the semiclassical calculation of molecular vibrational energy levels
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A singular value decomposition based harmonic inversion signal processing scheme is applied to the
semiclassical initial value representatid®R) calculation of molecular vibrational states. Relative

to usual IVR procedure of Fourier analysis of a signal made from the Monte Carlo evaluation of the
phase space integral in which many trajectories are needed, the new procedure obtains acceptable
results with many fewer trajectories. Calculations are carried out for vibrational energy levels of
H,O to illustrate the overall procedure. @004 American Institute of Physics.
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. INTRODUCTION o
c(t)=(27rh)*Ff dPo ddo( €[ Pre){Podol €)
The initial value representatioiVR) of semiclassical

(SO theory has received much attention in recent yéats. X exp(iSi(Po,do)/7)Ci(Po,To), 2
Much of the interest in these studies is stimulated by the fact ) ) ) I
that as compared to the corresponding quantum calculation&n€ré F is the dimension of the systen&(po,do) is the

the SC calculations scale more favorably with increasing deg:fassmal action integral along the clasglcal trajectory With the
grees of freedom. It is desired to develop a practical s¢yalues of the momenta and coordinates at titep;

method capable of calculating problems in challenging mul-=Pt(Po.do) fmqq{E Ge(Po.do). that evolve from the initial
tidimensional molecular dynamics including quantum ef-€onditions 0o,do); Ci(Po.do) i the HK pre-exponential

fects. In the SC—IVR, which shows some promise in achievfactor? |50<io> is a coherent stafe] whose coordinate space
ing this goal, the quantum mechanical time evolutionVave function is given by

operator, exptiHt/#), is approximated by an integral op-

erator with the kernel expressed in terms of only classical  (q|pygo) =
values and coherent states integrated over the initial values

of the momenta and coordinategio(do), for a classical The main advantage of the HK—IVR approach over the
trajectory of the molecular dynamics problem at hand. Thqusual SC methods based on the Van Vieck type SC

present paper is concerned with the determination O_f Vibrargropagator% is that it avoids the notoriously difficult root-
tional energy Iev_els Of_ a bound mole_cular system, wh|ch_ca earch problem, in which all possible classical trajectories
be conveniently identified as peaks in the spectral density, connecting two points in coordinate space by a certain time
interval must be located. To calculate the HK—IVR spectral
density, Egs(1) and (2), one needs to compute a classical
I(E)= E detexp(iEt/h)c(t), 1) traje.ctory for each set of ini.tial conditiorpg,qo), evaluate
7h Jo the integrand along the trajectory, and then to perform the
Fourier transform ovet. For systems of many degrees of
freedom, the phase space average will be an integral of high

wherec(t)E(§|exp(—i|:It/h)|g} is the autocorrelation func- dimgnsionality, SO fchat a Monte Carlo method is the only
tion or signal with |&) being some reference state. The feasible way to do it. There have been a number of calcula-

Herman—KIuR (HK) IVR propagator gives the following tions along th_ese _Iines, most of which have given good re-
expression for the autocorrelation function: sults for the vibrational energy leveler other spectral den-
sities relevant to the photoabsorption cross-section, the
photoelectron spectrum, exd-1° Of concern, however, has

dpermanent address: Institute of Nuclear Physics, Moscow State Universit ; ; ;
119899 Moscow, Russia. Electronic mail: kunikeev@usc.edu been the number of trajectories that must be computed, i.e.,
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can do to reduce the number of trajectories that are neede8gc. lIl. For the latter we used the previously published Pade
the more practical the overall approach will be for an appli-method?*
cation to large molecular systems of interest. Most importantly here we address the problem that the
There have been several approaches suggested to ifesults produced by the harmonic inversion methods are very
prove the efficiency of the IVR phase space average; amongensitive to residual signal error in the sense that false error
them, the Filinov filtering schem&!” the filter- peaks can appear and are often indistinguishable from true
diagonalization techniqu¥,and others.A recent idea is to  pPeaks, and also if the noise/error is too high, true peaks can
use time averaging of the integrand, Ea), to get rid of ~ be undetected. This serious fault, which did not occur in the

much of the oscillatory behavior of the integrafsign prob- ~ simpler H+H problem, will be cured here by applying the

lem), so that many fewer initial condition&e., trajectorie Cadzow regularization method for error reduction which will
are needed for the Monte Carlo phase space average ke introduced in Sec. 1B and also by using different refer-
converge2°Note that all the methods based on the Fourief€NCe States as explained in Sec. IV.

transform spectral analysis are inherently low resolution Here, we apply the Cadzow regularization iterative

methods with resolution being inversely proportional to theProceduré to first reduce tg‘g error in the windowed signal.
length, T=N 7 (r is the time interval between adjacent time Later by using the HI Pad&? solver we extract vibrational

sample of the signalc(t) so that to get spectral features energy levels from the error reduced signal. The error reduc-

resolved they need more signal points sampled. This in turt'9 method applied in the present work is the analogue of a
requires more trajectories to be averaged to achieve conveX

oise reducing method used in signal processing of experi-
mental signals? In this sense, this work can be con-
gence tal NMR signalé2 In th th k b
Th.is happens for two reasons: First. the intearand be_sidered as two step processing: First, noise/error reduction of
comes morggscillatory at IargErSe.cond 7the HK prgopaga- the signal; second, harmonic inversion of the cleaned signal
tor is a short time propagator. This méans thét) for a to obtain harmonic inversion parameters or the line list.
: N ) . tomic units(z=1) are used throughout the rest of the paper
given number of averaged trajectories behaves unphysmalfo‘nless specif‘ied gtherwise 9 pap
at longer times creating more error in the signal. These ef- '
fects necessitate more trajectories to be averaged in the not
always fulfilled hope of reducing the error. Hence it would Il. NOISE/ERROR REDUCTION
clearly be advaptageous to have a time to frequengy Proces; windowing
sor that can yield acceptable results and resolution using _ ) _
shorter time propagations, i.e., shorter signals. The harmonic All processing can be done by breaking the Fourier
inversion(HI) class of processors in its several variants, thdransform spectrum into windows of 100 to 4@800 is
filter diagonalization method(FDM) the linear predictor USu@ Fourier grid points. The reasons for windowing as
method, and the Padmethod supply such an alternatie done here is that for the noise/error reduction part of the
All these methods gain their advantage by assuming a modé?,mblem:(i? yvithout vgzilndowing the so-cglled singular value
namely a linear combination of decaying complex exponengecomposmon(SVD) graphs, to be dlsc_usseq below, be-
tials. When such methods are fed by converged signalgo.me too cIuttergd with S|g'r'1al and' noise smgulgr value
which are nearly free of errgor noise they yield excellent rpnOLJZLS st?mbleere?sllyr::easzzterﬂr)l ((:)?r:tearlg V;L]ngzv(\;? Vv\\//:rI]I dgsvin
and similar results if the harmonic inversion equations are pler 1o p ' g
roperly reaularized unnecessarily ties all features to the features most affected by
properly reg ' noise; andiii) without windowing the dimensiol/2 of the
Hata matrix arising in the Cadzow methoill be explained

resonancesor energ|e}s in collinear FH H s_cattermg. Al- in Sec. 11 By would be so large that a needed SVD calculation
though a systematic study was not given, it was noted tha&ould become too time consuming

acceptable results were obtained with up to a factor of 16 4 edges of the windows are at Fourier grid points.

fewer trajectories_than could pe pbtained using Fourier methTheir placement ideally, based on prior knowledge or hints
ods that as explained above invite more error and which Cagom the noise/error corrupted Fourier transform spectrum,
do nothing but signal averaging to reduce the error. surrounds regions containing signal peaks and begins and
In this paper, in the spirit of Ref. 18 we apply the har- gngs in regions of pure noise. In less than ideal situations a
monic inversion method to the IVR signal, EQ), averaged  gsystematic windowing of the spectrum can be designed for
over Ny, trajectories to obtain the lower vibrational energies g regions. If peaks, because of spectral density reasons,
of H,O molecule. This is a 3D problem that is more chal-ynavoidably appear at window edges where window induced
lenging than the 1D bk H problem. In doing this problem distortions will occur, an additional window should be cho-
we make several changes in methodology from Ref. 18 tw@en so that the edge of the prior window falls interior to the
of which are alternatives to the windowing and the methochew window. This is possible because windows do not know
of extracting the energies. FDM does the former by partition-about each other and can overlap. Choosing windows is gen-
ing a localized Fourier—Krylov basis and the latter by diago-erally not a problem and becomes even less so with experi-
nalizing the Hamiltonian on Fourier—Krylov basis designedence.
to cover the window. Our method of windowing is explained At this point the windowing program takes over and pro-
in Sec. IIA and our method of obtaining the energies andduces a signal of lengtN,,, calledc', “bl” for band lim-
weights of the vibrational states in the signal is explained inted, out of the measured/calculated signal of lengttalled

Downloaded 01 Apr 2004 to 129.69.45.43. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6480 J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 Kunikeev et al.

C,. This is inputted into the Cadzow noise reduction schemeractice, the distribution of the error deviations in time is not
described in Sec. IIB below. The production process, deknown and can be modeled as a uniform or more compli-
scribed with formulas in Ref. 21, is here discussed in wordscated distribution function. Let us consider minimization of
In the Fourier spectrum of a signal averaged over a givetthe following error cost function:

number of trajectories all intensities outside the window of N_1
N,, Fourier grid points are set to zero. The window spectrum min||C—X|2=M min 3 w [ (6)
is then shifted symmetrically about zero frequertepergy oy By P g Ao T

and inverse Fourier transformed to produce a “new” signal.
Since the original bandwidth was2r (7 is the sampling or
dwell time) and now it is reduced by the factd\,,/N, the (n+1)/M, n=0,12,.M-1,
new effective sampling or dwell time will bBl7/N,,= 7, . .

Hence the band limited signal witmth element c! wy=1 L, n=M.M+1..N-M,
=cP(nz,) is just the “new” signal with fewer samples (N=n)/M, n=N-M+1,.N-1.

numberech=0,1,...N,,— 1. AsT=Nr=N,,7,, resolution is Here C is the so-called data matri€..=c and X
not affected by this signal length reduction. After all process-_ N=01..M-1 m=0..N— I\}I1mandn\|+-n|1|F denotes
—An+m: —U,4,... y —U,...

ing the real part of the frequenciésnergies must be shifted the Frobenius matrix normM can be taken adl/2 (small

back tp the original origin. Results near window edges arechanges are not importit so the data matriC will be a
not reliable. N/2x (N/2+ 1) rectangular matrix. Obviousl¥ is a K-rank
matrix, but due to random error@ is usually a full-rank
B. Cadzow regularization matrix. The solution matriX also satisfies the Hankel prop-

_ ) erty, i.e., elements on the antidiagonals are the Jaee Eq.

The Cadzow method is based on the general idea to crg12)]. cadzow suggested an algorithm for approximating this
ate from a given, nonideal, band limited signg ‘k’)‘{'th a  solution. Specifically, the original problem E@) is decom-

signal lengthN (we dropped superscripth” in ¢, and  posed into two simpler subproblems related to each of the

subscript ‘w” in N,, and 7,), which is contaminated by jngividual signal property subsets. In the first step, we are

noise or error perturbations, a new signal that satisfies gyoking for ak-rank matrix,X(X), which is the best approxi-
number ofa priori known properties of the underlying signal mation to the data matri

and at the same time is the closest to the original signal. It is _ )
assumed that the HK—IVR autocorrelation signal, E?), min{|C—X|g, (7
can be decomposed as a sum XCRk

where

K and in the second step, a Hankel matrix is found to minimize
c(t)=x(t)+e(t), x(t) =k21 dy exp(—iEt), (4) min| X — |2 ®)
XCH

whereE, andd, are thekth vibrational energy level and the ) , i
weight amplitude(t) is the error due to nonconvergence of ~ 1he solution of the first step is well knov#fl. For
the Monte Carlo average, which is scaled agNy with the & 9eneral full rank complex valuedX(N-M+1),
number of trajectoried\;, taken into the Monte Carlo aver- M<(N-M+1) _matnxC, its associated SVD representation
age. The HI part of the signai(t) is what we are looking takes the following form:

for, while e(t) is the unwanted part of the signal. The valid- C=XK 4 EM-K)

ity of the decomposition Eq4) is based on the two facts: < "

First, an exact quantum mechanical autocorrelation function

satisfies the HI signal form with the enerfly and amplitude :k; Ui (v +k:;+l odug(vil, ©)
di=|(¥|&)|? defined by the Schdinger equationHW
=EW. Second, the HK semiclassical expression &j.
approximates the corresponding quantum mechanical one d

whereo are the singular values, while,) and(v,| are the
sft and right singular vectors, respectively. The singular val-

to % terms. ues are here ordered in a monotonically decreasing fashion
Let us assume that the signal is given on an equidistarffk+1= k- Z€roing tt\‘ne_ Emalle_zst singular valueg ="
grid c,=c(n7) andx,=x(n7), n=0,..N—1, andN is as- ~9m=0 Or settingE™ "' =0 in Eq.(9), one gets &-rank
sumed to be even. The best that can be done to extract Matrix X!=RyC, whereRy denotes a rank reducirigon-
from c,, is to minimize the fitting error, linean operator transforming— X,
N_1 Estimating the rank, the value &, is the most essential
min E Wy |G — X2 step in our method. For an |dea_l converged signal with no
dy £, N=0 neneon error or noise the ranK could easily be spotted as the num-

ber of K nonzero singular values. For this case, in SVD
) K ) graphs, the signal points could be recognized as some de-
= min Z Wn Cn_z diexp(—iEcn7)| (®)  creasing sequence of points while the noise/error points
dk 'Ek n=0 k=1 ) . . .
could be distinguished as a horizontal line of almost equally
wherew, = 1/sﬁ is a weight coefficient inversely proportional spaced points or a “string of points” close to zero level. If
to the squared error deviatiasﬁ of the nth data point. In  the noise/error level is increased slowly, this effect shows

N—-1 2
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index of the singluar value, i

itself on the SVD graphs as an increase on the height of this " o 1 )
horizontal string of pointgnoise/error pointsrelative to sig- X =x((i+])7)=r r;n Xim s (10
nal points. If noise/error level is increased more, eventually, m+n=i+]

some signal points might be covered by the string of points ) . St
depending on the strength of the noise relative to the signal!th L Pbeing the f!”_‘;']b; (zflé)he elements in mat
=i+ji .(10).

Therefore the K value will simply be taken as the number ofsatisfyingm+n A . .
points above the noise/error points. That is, we will only be These regularization steps have to be applied many times

interested in the singular values that are well above thd® '€ach a convergence in the results; that is the procedures

. . . . i ) i i iy (H)
noise/error points, and those below the noise/error level, ifhould be iteratede, times until a Hankel matrixXy
they exist, will be omitted. The best strategy, up to date, to=(HRy)NeC with only K dominant singular values is ob-
distinguish the signal points from the noise/error points is taained. From the approximated Hankel mamg:ir, better

look for a "gap” in the SVD graphs. The distance from the error-reduced datay,_(n7) can be read off. The conver-
highest noise point to the lowest signal point above the high: ol

. o ! ) L "Jgence of the above iteration can be proved using the theory
est noise point is defined as the “gap.” Figure 1 shows elghgf composite property mapping algoritfiLet X, .= X de-

different sets of singular value graphs from different packet§,jias the true underlying data matrix; then, it can be
(will be explained in Sec. 1Y The “gap” in real cases can proved® that ’ ’

be estimated by recognizing that it always appears near “el-
bow” of the curves as in Fig. 1. In many cases, there is a | X" — X, .dr=<[IX"— XyudlF - (12)
clear separation of signal points from the noise/error points.
When the gap is not clear we hold to a conservative strategyhe equality holds only itX(K) is Hankel. The above in-
and chose a few points more on the elbow by considering &quality demonstrates that™) is always more accurate than
next possible gap towards the region of noise/error pointsX™). If the SVD in the iteration procedures can reduce the
Even though the noise/error points, “string of points,” error effect efficiently, a better estimation o, can be
should theoreticallyin case of a white Gaussian distributed obtained by preserving the Hankel form after each iteration.
nois@ be around a constant value, i.e., zero slope, in thélence, the performance of the Cadzow preprocessed HI al-
SVD graphs, we observe a slight nonzero slope. This igorithm should be better than that of the original HI algo-
caused by the effect of windowing and possible nonwhiteithm as applied to the signal E¢).
nature of noise/error perturbations, but since the near hori- Now, havingxy _(n7), n=0,...N—1 signal, which bet-
zontal character is distinguishable the gap criteria is still apter satisfies the HI model, one can actually apply any form of
plicable. the HI algorithm to perform the spectral analysis of the sig-
After the rank reduction operation the Hankel property isnal with practically the same results on output. In this paper,
lost. The second step is simply to average over the antidiagave have used the Paddl spectral estimator to get the
nal elements or to Hankelize the matrix. The Hankelization{dk,EK}E:1 parameters as described, e.g., in Refs. 21 and 23.

can be formulated a¥") = HX®), whereH denotes a Han- Before proceeding to the next section we give an algo-
kelization (linear operator(not to be confused with Hamil- rithm summarizing the above error reduction signal process-
tonian operator is given by ing scheme.
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Step 1: Create a matri€ from a windowed signat,,, K
n=0,..N—1, as xqsz aXgk (Q=K,K+1,..) (14)
=1
c c o e C .
0 ! 2 N/2 (see Vol. Il, Chap. XV, Sec. 10 in Ref. 27 for proofThe
C1 C2 C3 " Cnpeta linear prediction(LP) equationg(14) enable one to calculate
C= c, C3 Cq4 o Cnpes | (12) all the signal points knowing the firgt signal points and the

K LP equation coefficients; the LP coefficients in turn can be
obtained as a solution of the systemkoLP equations.
Cnr2-1 Cniz Cnpv1r *" 0 Cn-1 If the infinite matrixx,, is of finite rank then the DFT of
Step 2: Make the SVD of the matric—USW! where  the signal can be summed up to a rational functior @fade
U andV are unitary matrices composed from the left andapproximant,”

right singular vectors, respectively, ailis a rectangular (2)
diagonal matrix with the singular values on the diagonal. I(E)= TWE Xz "=r S (15
Step 3: For the first iterationNj,,=1), estimate the n=0 Qk(2)

rank K from the SVD graph. For the following iterations WherePK(z)=EE=1bsz*k“ andQK(Z)=EE=Oasz"‘ are,

(Nier>1), use the same rank. Givéhset to zero all smaller  respectively, numerator and denominator polynomials whose

N/2—K singular valuesS—§'. coefficients can be calculated from the following system of
Step 4: Find a new matri€’:US'VH—-C’. relations:

Step 5: Do Hankelization.

k-1
Step 6: Go to step 2 and replaCdy C’ in Eq.(12) then _ _
iterate the procedurdl;., times until the convergence is by ,Zo AxX-1—r (k=1,..K), (163
achieved. K
Step 7: From théN;,, times iterated matrixC, which is B _ _
of Hankel form, read off an error reduced signa)'" ‘go AXg-k  (A=KK+L,.. K1), (160

= XNy (N7), N=0,..N-1. Setting a,= —ax/ag, k=1,...K, we can write the relations

Eqg. (16b in the form Eq.(14). Therefore, thea,’'s coeffi-
cients can be obtained as a solution of a set of the LP

Ill. PADE HI METHOD equationg’ whereas thé,’s ones from theexplicit relations
Eq. (16a.
The X:”‘”, n=0,..Ny,—1, which are hopefully very The harmonic inversion parameterg, or E,, can be

similar to the exact noiseless signal samplgscan be sub- found, by rooting the denominator polynomial. This problem
jected to a harmonic inversion analysis. The spectt(E) can be effectively reduced to the diagonalization of the com-
which can be represented in the infinite discrete Fouriepanion Hessenberg matix?° The parameterd, are calcu-
transform(DFT) (or z transform of the signal described by lated via the residues of the Paalgproximant Eq(15) at the

Eq. (4) can be obtained via positions of the corresponding complex polgs?!
(E)=1y > X,z " IV. VIBRATIONAL ENERGY LEVELS
n=0 OF THE H,O MOLECULE

K dy To illustrate the overall procedure, calculations for the

vibrational energy levels of O are carried out. We use a
standard normal mode vibrational Hamiltonian that ignores
d vibration—rotation coupling?® and a well-studied potential
(13)  energy surface for which exact quantum-mechanical results
have been reportel. The 3N—6=3 normal mode coordi-
wherez=exp(-iEr,) andz.=exp(-iE,7,). The real part nate are mass-weighted in the usual Wayp thatq;, q,, g3
of Eq. (13) gives the density spectrum E¢Ll). The right- denote mode coordinates for bending, symmetric stretch, and
hand side of Eq(13), obtained as a result of summing up an asymmetric stretch vibrations, respectively. The reference
infinite series of signal points, is the harmonic inversionstate|é) is taken to be a coherent stafg(q;,), Eq. (3) (with
spectral estimator expressed in terms of harmonic inversioly; = w;), centered at the coordinatpotential energyequi-
parameters. If(E—Ey) 7| <1, Eq.(13) reduces to a sum of librium positon ¢,=g. and the momentum p,
complex Lorentzians. In the spectral regions far from reso=(p,1,p,2,Pr3) with component valug,;= (2n;+1)w;
nance lines, RHE)= (TWIZ)Ek 1= 71uXo/2 (if all d's are  corresponding to the vibrational energy specified by har-
real) so that in order to get zero baseline the constgmt/2 ~ monic oscillator quantum number; and normal mode fre-
should be subtracted from E(L3). quencyw; for j=1, 2, 3. According to a specific symmetry
Formally let us construct from the signal Eg) an in-  of the molecular system, the reference state can be made to
finite Hankel matrix Xpm=Xp:im=X((n+mM)7), n,m have + or — symmetry upongs— —qs reflection, which
=0,1,.... Then the matrix,, has a finite rank and there gives a state oA\; or B, symmetry, respectively. The sam-
existK numbersa;, a,,...,ax such that pling function used for the Monte Carlo average over the

=T
Y& 1-20z2

K

:TWE

k=1 1—exdi(E-Ey7y]’
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4

possible different lines in the spectrum so that if one peak is
weak and eliminated by the error reduction procedure from
one packet we expect to catch it from another one. We have
run four different packets with oscillatory quantum numbers
(0,0,0, (1,0,0, (0,0,1, and(0,0,2 and with 5000 trajectories
for each. We will label them as 000, 100, 001, and 002,
respectively.

Due to the short-range nature of the HK propagator after
some time the semiclassical error grows rapidly. It is ob-
served that for all the packets after around a time of 4000 a.u.
(corresponding to 400 signal poihthe signal starts to show
wild oscillations which is an indication of a fast growing
error. In Fig. 2 one of the signals is shown in time domain as
an examplédsee the caption for detajlsHere there is a trade
off. By taking a shorter length signal, one obviously reduces
resolution and accuracy both in the HI techniques and the
Fourier transform. However, a shorter signal contains rela-
FIG. 2. The SC signal for packet 000 symme#y obtained by 5000 tra-  tjvely less error, and so it facilitates the application of Cad-
Jsp}gtnog;es. The full line is the real, the dotted line is the imaginary part oftheZOW regularized HI procedure. In further signal processing

we set the signal lengtN=400 (t=4000a.u.).

For all of the packets a spectral window of interest has
phase space was the Husimi distribution functioas de- been chosen in the ran§@44, 34 744 cm™ %, which contains
scribed in Ref. 19. We use a rejection Monte Carlo algorithmN, =100 Fourier grid points, and the band limited signals
combined with the Box—Muller method to select have been obtained. The inset in Fig. 3 indicates the window
trajectories* The trajectories are propagated for 244 fsof interest. Then, the Cadzow regularized HI spectral estima-
(1000 stepsy=10 a.u). For details on numerical algorithms tor has been applied to this signal. As explained in the pre-
used to propagate classical trajectories and to calculate thseding section, the data matr& has been constructed and
stability matrix (monodromy matrix for the HK prefactor the SVD of C has been calculated. Since the band limited
we refer to Ref. 19. signal had 100 points, the size of the matrices wag %D

Also, it might be advantageous to run several wavewe wish to estimate a rank of the underlying signal data
packetsc, C,,Cn,(N7) with different reference stateisvith  matrix. In Fig. 1 all the singular values versus their numbers
different momentum vectorsspecified by oscillatory quan- are shown for all the packets. The positions of the gaps taken
tum numbers 1i;,n,,n3) in order to maximize the weight are shown in the graphs by arrows. The number of singular
amplitudesd,~ |(£| W )|? for a certain group of vibrational value points above the gap gives tKevalue. Cadzow regu-
states. The higher thé, value is, the better chance the cor- larized HI signal processing has been applied by takind<the
responding line will be above the noise/error level. By run-values shown in Fig. 1, and witN;,,= 20 for each packet.
ning different wave packets we aim to collect as many as In Figs. 4 and 5 the Cadzow regularized HI results are

oL
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FIG. 4. Stick diagram ofd,| values from all packets foh; symmetry. The numbers having lettee™*next to them are exact values of the energies, the
numbers having letters’ next to them are SC values of the energies from Ref. 19, the numbers having no letter next to them are real part of the energies of
the lines having biggest, value in their bundle and obtained by Cadzow regularized HI method by using 5000 trajectories for each packet.

shown for the packets ok, andB, symmetry, respectively,

“g") are the SC results from Ref. 19. Some of the lines on

applied to regularized signals. The heights of the sticks in théhe graphs are bundled very closely. These lines are from
diagrams show thid,| values and their positions correspond different packets and we believe that they correspond to the
to the real parts of the energies. The symbols are used teame point in the spectrum. On the figures, a curly bracket
indicate to which packet they belong. Dark plus signs up tesign, “}”, is used to indicate a bundle. On the other hand,

value 14000 cm?® are the exact quantum-mechanical ener-there are some single lines that can not be ascribed to a

gies(marked by letter €"), and the otherémarked by letter
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TABLE |. The exact and semiclassical vibrational enerdigs %) of the propagator. In general, however, the larger the error, the

water molecule. &" stands for exact energies,s” stands for semiclassical more trajectories are needed to average it out. In this paper, a

energies from Ref. 19. . ' i,

second attack was made even more directly on the error with

SymmetryA, SymmetryB, the hope of further reducing the need for the use of excessive

number of trajectories.

The noise/error reduction method that has been applied
4632 4634 8388 8364 here is based on the Cadzow regularization of the data ma-

Exact/SC E Exact/SC E

622® 6204 995¢ 9882 trices constructed from the windowed signals. To ensure the
7778 7732 11 49e 11389 frocti ¢ th iso/ ducti hort {i ional
806% 5289 11 868 11883 effectiveness of the noise/error reduction, short time signals
9294 9270 13 444 13 401 should be collected and averaged until the separation be-
9862 9903 14928 14 746 tween noise/error and signal singular value points is clear. In
1140@ 11445 15318 15314 practice this may leave some signal points below the noise/
11832 11825 15612 15723 error points but at least no noise features will be identified as
1207® 12028 16 804 16 662 ianal. T th “lost” stat take advant ¢
13 39% 13 402 17 028 signal. To recover these “lost” states we take advantage o
13622 18 520 18 527 the fact that the noise/error reduction method, for a given
14 924 number of trajectories, tends to choose the states with
15296 15471 “larger” |d,| values (i.e., weight factors By judiciously
15596 choosing and semiclassically propagating several initial

packets, the lost states can be recovered.

We believe that in total we have satisfied the aim stated
are those that are only given by one packet. The number oat the beginning of this section.
the top of a stick line is the value of the energy that corre-  Reference 18 and this paper differ from Refs. 17, 19, and
sponds to either a single line that does not belong to anyo, i.e., attempts at converging IVR calculations, by working
bundle or the line that has the highédg| value in a bundle. on the signal and not on the integrand. Combined formula-
Since the line with the large$tl,| value was assumed to be tion would be of interest to explore.
the best converged one, we have selected the energy value of
the highest line in a bundle rather than taking their average.
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