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Three novel high-resolution nonlinear methods for fast signal processing
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Three novel nonlinear parameter estimators are devised and implemented for accurate and fast
processing of experimentally measured or theoretically generated time signals of arbitrary length.
The new techniques can also be used as powerful tools for diagonalization of large matrices that are
customarily encountered in quantum chemistry and elsewhere. The key to the success and the
common denominator of the proposed methods is a considerably reduced dimensionality of the
original data matrix. This is achieved in a preprocessing stage called beamspace windowing or
band-limited decimation. The methods are decimated signal diagonalization~DSD!, decimated
linear predictor~DLP!, and decimated Pade´ approximant~DPA!. Their mutual equivalence is shown
for the signals that are modeled by a linear combination of time-dependent damped exponentials
with stationary amplitudes. The ability to obtain all the peak parameters first and construct the
required spectra afterwards enables the present methods to phase correct the absorption mode.
Additionally, a new noise reduction technique, based upon the stabilization method from resonance
scattering theory, is proposed. The results obtained using both synthesized and experimental time
signals show that DSD/DLP/DPA exhibit an enhanced resolution power relative to the standard fast
Fourier transform. Of the three methods, DPA is found to be the most efficient computationally.
© 2000 American Institute of Physics.@S0021-9606~00!00440-2#
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I. INTRODUCTION

A novel method called decimated signal diagonalizat
~DSD! has recently been suggested in Ref. 1 to solve a c
of generalized eigenvalue problems with large matri
whose elements are autocorrelation functions stemming f
time propagated wave packets. Successful performanc
DSD was demonstrated with a long noiseless synthes
signal having the known peak parameters as well as wi
theoretically calculated energy spectrum of SO2 for some
;5000 bound vibrational levels below 25 000 cm21. More-
over, in Ref. 1 DSD was shown to agree perfectly with t
results of Ref. 2 obtained using the filter diagonalizati
~FD! method.3,4 Subsequently in Refs. 5 and 6, DSD w
also extended to signal processing. This was made pos
by the well-known equivalence between the autocorrela
functions and exponentially damped time signals associ
with the Lorentzian-type spectra.3,4 Such signals are often
encountered in many experiments performed with, e.g.,
cyclotron resonance~ICR! and Nuclear magnetic resonan
~NMR! techniques.7,8 The results reported in Refs. 5 and
for simulated and measured signals demonstrate the sup
capability of DSD to resolve the spectral features that
practically inaccessible to fast Fourier transform~FFT! at
shorter acquisition times. This conclusion usually holds t
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not only for nearly noise free signals, but also for signals t
are embedded in a considerable noise background. In FF
the frequencies are fixed and restricted to the set of Fou
grid points that are predetermined by the total acquisit
time. By contrast, DSD considers both the complex frequ
cies and amplitudes as the fitting parameters. This ena
higher resolution in DSD whose estimated frequencies co
be much closer to each other than the usual Fourier
spacings.5,6

In its processing stage, DSD effectively uses the ope
tive part of the discrete version of FD,4 which constructs
matrices of a generalized eigenvalue problem directly fr
digitized signal points. Diagonalization first supplies t
peak parameters, e.g., the positions, heights, widths,
phases, so that Lorentzian spectra can subsequently be
puted in any desired mode~absorption, magnitude, powe
etc!. As with FD, the key to the success of DSD is in wi
dowing, the purpose of which is a sizable reduction of t
original large dimensionality of the data matrix to be diag
nalized. Severe numerical instabilities always plague dia
nalization of large matrices and even the Cholesky, Hou
holder or singular value decomposition~SVD! are known to
be unable to bring the mathematical ill-conditioning of t
problem under reasonable control. This, together with
emergence of extraneous peaks, is due to the fact tha
matrix dimension, which equals half the signal lengthN, is
much larger than the matrix rank, i.e., the number of spec
2 © 2000 American Institute of Physics
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Lorentzians. From the numerical viewpoint, DSD share
feature of FD that necessitates the calculation of both eig
frequenciesand eigenfunctions. These are provided by in
tially diagonalizing the overlap matrix over the Krylo
~DSD! or Fourier–Krylov ~FD! basis functions and subse
quently solving the resulting generalized eigenvalue prob
for the time evolution operator.

Windowing is accomplished in DSD while preproces
ing the time signal and, hence, this stage of the analys
completely dissociated from the subsequent diagonaliza
for which the Krylov basis functions suffice.1,5,6 This so-
called beamspace windowing, which is also known as ba
limited decimation, has previously been used in other
search fields, e.g., radar problems,9 etc. The signals that ar
‘‘beamspaced in DSD’’ could equally well be subjected
any other estimators as emphasized in Ref. 1 and illustr
in Ref. 5. This is in contrast to the windowing used in F
which takes placeduring the diagonalization step in th
course of setting up the Fourier–Krylov basis functions3,4

and, as such, cannot be used with any other proces
method.

The present paper explores several possibilities offe
by the reduced dimensionality of beamspaced signals. S
shorter signals could potentially revive the interest in a nu
ber of other signal processing methods whose widesp
applications have thus far been hampered by large data
trices. Here, in addition to a further usage of DSD, we sh
focus our attention on two such techniques known as
linear predictor~LP! and Pade´ approximant~PA!. When em-
ploying band-limited decimated signals, the latter two me
ods will be termed decimated linear predictor~DLP! and
decimated Pade´ approximant~DPA!, in accordance with Ref
5, where they have been applied to the problem of the p
odic orbit quantization.

The LP is well known in signal processing.10 Here, mod-
eling time signals with sums of damped exponentials w
constant amplitudes proceeds through solving two system
linear equations, one for the LP coefficients and the other
the amplitudes. The latter step can only be undertaken w
rooting of the characteristic polynomial, constructed fro
the LP coefficients, has been accomplished. Any rooting
nonlinear problem and, therefore, LP is an inherently non
ear signal processor. The previous applications of LP h
been limited to relatively short signals for the obvious reas
of ill-conditioning of large matrices. This chief obstacle c
be circumvented successfully by subjecting the band-lim
decimated signal to LP, rather than analyzing the origi
one, at no loss of information in the selected frequency
terval. It is in this way that DLP emerges. Its usefulness
already been demonstrated in Ref. 5 and will be further
plored in this paper.

The PA is also a well-known technique which has fr
quently been used to accelerate convergence of slowly
vergent series.11,12 In signal processing it was used befo
under the name autoregressive moving average.10 Addition-
ally, PA is successful in analytically continuing purely dive
gent series or sequences with, e.g., exponentially grow
terms13 or even those with zero radius of convergence.14 In
short, PA maps a given power series into a rational funct
a
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expressed as a quotient of two polynomials. In signal p
cessing, the discrete Fourier transform~DFT! is a polynomial
in a complex exponential~a harmonic! taken at the Fourier
frequencies. Increasing its order, such a polynomial exhi
a rather slow convergence rate which is equal to the inve
of the signal length. This can be significantly accelerated
using PA for relatively short signals. For long signals, co
struction of the numerator and denominator polynomials
PA becomes numerically intractable. It is here that we ne
band-limited decimated signals to create relatively short
manageable DFTs that are subsequently subjected to
which then acquires the acronym DPA, as indicated pre
ously. This new method in signal processing is also a pa
metric estimator. Here, the frequencies sought are rela
simply to the roots of the denominator polynomial. Mor
over, the corresponding magnitudes are obtained without
additional effort from an analytical formula for the residu
of the Pade´ quotient of the polynomials.

For the Lorentzian spectra, DSD, DLP, and DPA a
shown to be mathematically equivalent to each other des
their different numerical algorithms. The demonstration
lies upon the fact that the given eigenvalue problem is b
cally equivalent to its secular equation. The latter is the ch
acteristic polynomial which is identical to the denominat
polynomial of DPA as well as to the DLP polynomial yield
ing the peak frequencies.

Crucially, given the signal length, DSD, DLP, and DP
yield a higher resolution than available in FFT. This is us
ally accomplished with an improved convergence rate, wh
often implies a considerably shorter acquisition time th
that required by FFT. This property might be used advan
geously in conventional ICR and NMR experiments whe
the longer signals required by FFT practically always invo
more noise. The present methods effectively attain the n
essary convergence before exhausting the full length of
signal. These statements are supported in sec. III by the
dence presented for several experimental ‘‘noisy’’ signals
well as a synthesized signal comprised of a number of co
pletely known harmonics. Conclusions are given in Sec.

II. THEORY

In this section we shall describe the DSD, DLP and DP
methods as the new parameter estimators. This will be d
using the generic concept called ‘‘band-limite
decimation’’1 or equivalently ‘‘beamspace windowing,’’6

which has been previously known in the engineering lite
ture as ‘‘beamspace.’’9 These alternative names will be use
interchangeably whenever referring to this specific windo
ing, which is different than that implemented in FD.3,4 Fur-
ther we will show under which conditions these three sig
processing techniques become mathematically equivalen
each other in spite of rather different numerical compu
tions. The present study will be restricted to those time s
nals that are sums of damped exponentials with comp
frequencies and amplitudes,$vk ,dk%. Moreover, we shall be
concerned primarily with the local spectral analysis carr
out in a window of interest,@vmin ,vmax#.
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A. Beamspace windowing

Beamspace windowing is a conceptually simple meth
that enables the construction of a shortened signal whic
amenable to processing by DSD, DLP and DPA. We s
with a digitized time signal$cn%(0<n<N21) which con-
sists ofN points, equidistantly sampled with the ratet and
having a total bandwidth of 2p/t. To initialize windowing,
$cn% is subjected to a discrete Fourier transform using
efficient FFT algorithm to obtain the Fourier spectrum,

Fk5 (
n50

N21

cne2p ikn/N, ~k50,...,N21!, ~1!

which is accurate only at the Fourier grid points,k, corre-
sponding to the frequenciesv̄k52pk/(Nt). In general, the
FFT of Eq.~1! yields only a low-resolution spectrum as th
number of signal points,N, will be insufficient for the FFT
to resolve dense eigenfrequencies. We assume, however
N is sufficiently large for harmonic inversion to be possib
i.e.,N>2K8 whereK8 is the total number of frequency com
ponents contained in the signal.

Next, the frequency window of interest,@v̄kmin
,v̄kmax

#, is
chosen. In order to diminish the ill-conditioning of the su
sequent processing, the number of Fourier grid points,ND

5kmax2kmin11, contained in the window should not exce
more than about 200. TheND elements,Fk , of the low reso-
lution Fourier spectrum located within the window are th
selected and shifted to relocate them symmetrically about
frequency origin,v50. In other words, the central frequenc
of the window,v052pk0 /(Nt) wherek05(kmax1kmin)/2,
is subtracted from every frequencyv belonging to the actua
window. In this way, the band-limited FFT spectrum,$Fk

bld%
(0<k<ND21) is created. Specifically, we haveFk2k0

bld

5Fk for kmin<k<kmax with the periodicity of the FFT used
to identify F j

bld5FND1 j
bld when j ,0. The result is a spectrum

that is centered atv50 with a bandwidth of 2pND /(Nt).
Finally, an inverse FFT is applied to$Fk

bld% to obtain the
so-called ‘‘band-limited decimated’’~bld! signal $cn

bld% (0
<n<ND21) of shorter lengthND and valid for the window
of interest. The new bandwidth is reducedM5N/ND times
from that of the original signal. Hence the ‘‘dwell’’ time o
the band-limited decimated signal is nowtD5Mt giving the
same total acquisition time as used forcn , i.e., T5Nt
5NDtD . Hence the problem has been reduced to one
signal processing a significantly shortened or ‘‘decimate
effective signal.

In order to scan the whole bandwidth of the origin
signal @2p/t,1p/t#, we must form the Fourier spectr
$Fk

bld% and the resulting band-limited decimated signal$cn
bld%

separately for each ofM windows. Note, however, that th
first FFT of the original signal of lengthN is common to
each of theM windows and hence need be performed o
once.

In any of the windows,@v̄kmin
,v̄kmax

#, the resulting FFT

spectra$Fk
bld% created from$cn

bld% are, by construction, iden
tical ~apart from the shift tov50! to the corresponding Fou
rier spectra$Fk% based solely upon$cn%. This establishes the
key feature of the procedure which is the preservation of
d
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hat
,

e
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e

informational content in each of theM individual windows.
We emphasize this crucial feature of theband-limited deci-
mation to avoid any potential confusion with astraightfor-
ward decimationwhich always leads to a loss of informa
tion.

In summary, implementation of the described ‘‘ban
limited decimation’’ ~bld! proceeds through the following
algorithm:

~1! Obtain the whole FFT spectrum, as an array$Fk% of
lengthN, from the original signal$cn%.

~2! Select the window of interest@v̄kmin
,v̄kmax

# spanning a
total of ND5kmax2kmin11 Fourier grid points.

~3! Create the band-limited FFT spectrum,$Fk
bld%, of length

ND by selecting thoseFk that lie within the window and
simultaneously shifting by the central frequency,v0

52pk0 /(Nt) where k05(kmax1kmin)/2, to obtain a
symmetrical redistribution around the origin,v50.

~4! Construct the generally complex-valued band-limit
decimated signal,$cn

bld%, of length ND by subjecting
$Fk

bld% from step 3 to the inverse FFT.

FIG. 1. Schematic of the band-limited decimation process. The orig
signal shown in the upper left-hand panel is first subjected to the F
yielding the low resolution spectrum plotted in the lower left-hand panel
window, indicated by the dashed lines, is chosen. The values of theFk

elements outside the window are set to zero, while the remainingFk ele-
ments within window are shifted in frequency so that the window is sy
metric aboutv50 ~the bottom right-hand panel!. An inverse FFT is then
applied, yielding the real and imaginary parts of the band-limited decima
signal points,cn

bld , denoted by the full and open circles, respectively.



he
in

i-
fo
ag

ls
ti-

ut
ly
tia

r-
se
to

ut

e

e
n

ob

-
e

in
ex

al
f
la-
in

they

-

-

ce
ori-
n-
n

tly

ef-

e
tion
o
e
e

in
ith

s
d

de-

ing
the

s
nt
in
ld

dges
at

6545J. Chem. Phys., Vol. 113, No. 16, 22 October 2000 Fast signal processing
The key steps 1–4 are illustrated in Fig. 1 using a synt
sized signalcn with the known peak parameters listed
Ref. 7.

In our numerical implementation of band-limited dec
mation, we explicitly use the robust numerical routines
FFT and inverse FFT in steps 1 and 4 to take full advant
of the quasi-linear scaling with the signal length,N log2N.
Note, however, that the above-outlined prescription 1–4 a
permits a straightforward derivation of the following analy
cal formula:

cn
bld5

1

N (
n850

N21

cn8e
2p in8k0 /N

sin~pND@n/ND2n8/N# !

sin~p@n/ND2n8/N# !
,

~2!

with 0<n<ND21.

B. Decimated signal diagonalization

Among our three processing methods, DSD will be o
lined first. Just like FD, the technique of DSD is strict
limited to the signals given as sums of damped exponen
built from complex frequencies and amplitudes,$vk ,dk%. Of
course, the real parts of the fitting parametersvk ’s should
belong to the selected window@vmin ,vmax#. We then model
the band-limited decimated signalcn

bld as

cn
bld5 (

k51

K

dke
2 ivkntD, Im~vk!,0, ~3!

where the condition Im(vk),0 selects only the physical ha
monics with decaying exponentials as the time increa
HereK is the so-called local spectral rank which is equal
the number of Lorentzians generated by Eq.~3! in the corre-
sponding spectrum. According to Refs. 1, 3, and 4, the a
correlation functionCn

bld[(F0uexp@2iV̂ntD#F0) is equiva-
lent to the band-limited decimated signal,

cn
bld5~F0uexp@2 i V̂ntD#F0!. ~4!

This is because insertion of the closure relation for the sp
trum of the time evolution operatorU(tD)5exp(2iV̂tD)
into Cn

bld with a specific identification ofdk, leads directly to
the right-hand side of Eq.~3!, so thatcn

bld5Cn
bld .3,4 Such a

circumstance obviates the necessity for an explicit nonlin
fit in Eq. ~3!. Instead we use linear algebra to set up a
solve the following equivalent generalized eigenvalue pr
lem:

UBk5ukSBk . ~5!

Here, the column matrixBk has the elements$Bnk%, where
Bnk is thekth eigenvector ofU corresponding to the eigen
valueuk5e2 ivktD. Note that there is no need for either th
operatorV̂ in U(tD) or the initial stateF0 in Cn

bld to be
given or known explicitly. The inner or scalar product
DSD is of the symmetric nature, i.e., without the compl
conjugation of the bra vector (•u such that (xuc)5(cux).
We diagonalize matrixU using the Krylov basis set$Fn%
with the functionsFn5Un(tD)F0 that produce the follow-
ing matrix elements:1

Unm5cn1m11
bld , Snm5cn1m

bld . ~6!
-

r
e

o

-

ls

s.

o-

c-

ar
d
-

Both Unm andSnm are expressed solely in terms of the sign
points $cn

bld% making obvious that the explicit knowledge o
the pair $F0 ,V̂% is not needed, as alluded to above. Re
tions similar to Eq.~6! have been encountered previously
FD,3,4 where the original signalcn replacescn

bld . Another
interpretation of Eq.~6! is that DSD can equally well be
applied to measured and/or computed signals as long as
obey Eq.~3!. Having the matrix elementsUnm and Snm at
hand, DSD diagonalizes Eq.~5! to extract all the peak pa
rameters$vk ,dk% in the chosen window@vmin ,vmax#. These
parameters enable one to readily construct alocal spectrum
in any desired mode, e.g. magnitudeuF(v)u, poweruF(v)u2

or absorptionA(v). This final step is carried out atany real
frequencyv from the studied window via a linear combina
tion of complex Lorentzians, such as

F~v!52 i (
k51

K
dk

v2v02vk
. ~7!

Note that the real central frequencyv0 of the window
@vmin ,vmax# is explicitly added to every complex resonan
vk . This is necessary to compensate for the shift to the
gin v50 of the band-limited Fourier spectrum used in ge
erating the set$cn

bld%. One of the possible ways to obtain a
absorption spectrum,A(v)>0, which is always positive
definite for any real values ofv, has been suggested recen
in Ref. 6 as

A~v!52 (
k51

K

udku
Im~vk!

@v2v02Re~vk!#
21@ Im~vk!#

2 .

~8!

This absorption mode does not contain any interference
fects, since the signal phase Arg(dk) in udku5udke

iArg(dk)u
has been intentionally omitted from Eq.~8!. In general, di-
agonalization will produce not only the physical, Im(vk)
,0, but also the spurious, Im(vk).0, eigenfrequencies. Th
latter ones could be reflected according to the prescrip
Im(vk)→2uIm(vk)u as done previously in Refs. 4 and 6. T
extract all the magnitudes$dk%, DSD computes the set of th
eigenvectors$Bnk% which are normalized with respect to th
overlap matrixS and employs the formula1

dk5S (
n50

[ND/2]

Bnkcn
bldD 2

, ~9!

which follows from a derivation similar to that established
FD.3,4 When using DSD to analyze noiseless signals w
known parameters, Eq.~9! is found to give excellent result
for thedk’s, while for FD an averaging procedure is neede4

to achieve the same level of accuracy.
Of course, whenever needed the sequence of steps

scribed above can be repeatedM times to cover the whole
Nyquist interval, as already anticipated. When proceed
along these lines, there should be no restrictions to keep
same signal lengthND for every sub-window. Some artifact
can occur in the process of ‘‘gluing’’ together the adjace
frequency intervals due to a sharp rectangular window
‘‘beamspacing.’’ This leads to phase distortions which cou
somewhat deteriorate the shape of the spectrum at the e
of the windows particularly when analyzing windows th
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contain a small number of Fourier grid points~i.e., small
ND!. We adopt the simple procedure of Ref. 6, which allo
a considerable overlap of the neighboring windows so t
the narrow edges of every local spectra can be omitted. N
that the first FFT in the band-limited decimation is comm
to the processing of all individual windows from the Nyqu
interval.

Beamspace windowing enables the passage from
original N/23N/2 matrix U to one of sizeND/23ND/2
whose dimension isM times smaller. Such an achieveme
reduces considerably the intrinsic ill-conditioning of Eq.~3!.
Even the remaining smaller matrices of the typical dime
sion 1003100 are still ill-conditioned since a large numb
of operations lead to inevitable round-off errors. Howev
with such relatively manageable matrices, this computatio
noise is more likely to be under control using several s
cially designed techniques, e.g., singular value decomp
tion ~SVD!, Householder’s, or Cholesky’s decomposition
In DSD we use either SVD or the QZ algorithm as imp
mented in, e.g., the NAG Library15 with the successful out
comes. Numerical performance of the DSD algorithm
found do be highly satisfactory from the standpoints of
curacy, stability and robustness. The latter feature, in f
originates directly from the pre-processing stage,
beamspace windowing, which effectively prepares all
necessary matrix elements$Unm ,Snm% in Eq. ~6! by means
of the two robust processors, FFT and inverse FFT. We g
erate the latter two sequences using the appropriate IM
routine.16 Overall efficient performance of DSD is comp
rable with that of FD, since both methods effectively e
counter only small size;1003100 matrices throughout th
computation. If required, DSD can spectrally analyzethe
wholeNyquist interval in much the same advantageous fa
ion as customarily accomplished in FD.

Similar to FD ~see Sec. 2 C of Ref. 4!, we found that
DSD has better resolving power than FFT for the same
nal length. Alternatively, the resolution of FFT can be
tained by DSD for shorter acquisition time. This is rooted
the uncertainty principles,NFFT}2p/(tDvmin), for FFT and
NDSD}4p/(tDvav), for DSD with Dvmin and Dvav being
the minimum and average spacings between eigenvalue
the given window, respectively. As the inequality,Dvav

.Dvmin , is generally valid, it then necessarily follows th
NDSD,NFFT.

Relative to DSD, which is a parameter estimator, FFT
a spectral estimator, which yields merely the shape of a s
trum. Once a FFT spectrum is available, the peak parame
could be extracted only in a postprocessing stage via non
ear fitting of each of the resonances to some preassig
forms ~Lorentzian, Gaussian, etc!. This might be acceptable
for well-separated peaks, but it is often unsatisfactory
overlapping resonances. Clearly any nonlinear fitting pro
dure requires some initial values for the sought pa
$vk ,dk% from, e.g., Eq.~3!. Since these values are initiall
unknown, they must be estimated and inadequate gue
could produce significant departures from the true results
a consequence, the ensuing results often exhibit conside
unphysical and undesirable structures, e.g., ‘‘ripple
‘‘blips’’ as well as other oscillations and undulations. Su
s
t
te

he

t

-

,
al
-
i-

.

s
-
t,
.
e

n-
L

-

-

-
-

in

s
c-
rs

n-
ed

r
-

s

ses
s

ble
’’

artifacts are usually noise induced and they might give rise
serious difficulties in the interpretation of the spectral fe
tures. It is quite conceivable that this postprocessing in F
is less useful for dense spectra congested with many li
These drawbacks of FFT are by and large nonexisten
DSD, which first extracts all the peak parameters$vk ,dk%
directly from the time signaland then constructs the spe
trum in the frequency domain using Eq.~7! or Eq. ~8!.

C. Decimated linear predictor

The DLP is basically comprised of the following thre
steps:~i! computing the linear prediction coefficients$bk%
(1<k<K) from the band-limited decimated signal poin
$cn

bld%(0<n<ND21), ~ii ! rooting the DLP polynomial con-
structed from all thebk’s to obtain the harmonic frequencie
vk , and ~iii ! generating the corresponding amplitudes,dk .
With such pairs$vk ,dk% at hand, the spectra in any desire
mode can be computed from Eq.~7! or Eq. ~8!.

In order to derive the DLP equations, we begin by wr
ing Eq. ~3! in matrix form for the signal pointscn11

bld to
cn1K

bld ,

S cn11
bld

A
cn1K

bld
D 5S u1

n11
¯ uK

n11

A A

u1
n1K

¯ uK
n1K

D S d1

A
dK

D , ~10!

with uk5exp(2ivktD). From the matrix representation Eq
~10! it follows that, for 0<n<K,

cn
bld5~u1

n
¯uK

n !S u1
n11

¯ uK
n11

A A

u1
n1K

¯ uK
n1K

D 21S cn11
bld

A
cn1K

bld
D

5 (
k51

K

bkcn1k
bld . ~11!

In other words, as in the traditional LP method,10 every sig-
nal pointcn

bld can be predicted by a linear combination of t
others with a fixed set of DLP coefficients$bk% for 1<k
<K. The solutions of the system ofK5@(ND21)/2# linear
equations, Eq.~11!, give all the unknown DLP coefficients
$bk%. Using Eq.~3! we can rewrite Eq.~11! as RK(uk)50,
where the DLP polynomial is given by

RK~u!5 (
k51

K

bku
k21, u5e2 ivtD, uk5e2 ivktD.

~12!

The K roots $uk% of the polynomial,RK(u), provide the
frequencies$vk% needed for the spectra in Eqs.~7! and ~8!.
Rooting ofRK(u) is a nonlinear operation which implies tha
both DLP and LP are nonlinear signal processors. The ro
of RK(u) can be found, in principle, by application of, e.g
Laguerre’s or Newton–Raphson’s method.17 However, when
the polynomial is of high degree (K*60), an alternative
method, i.e., diagonalization of the Hessenberg matrix,
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B5S 2
bK21

bK
2

bK22

bK
¯ 2

b1

bK
2

b0

bK

1 0 ¯ 0 0

0 1 ¯ 0 0

A A

0 0 ¯ 1 0

D , ~13!

for which the characteristic polynomialP(z)5det@B2uI #
coincides withRK(u) of Eq. ~12! with b0521, provides a
numerically more robust technique for finding the requir
zeros.17

To obtain the remaining unknowns, the amplitudes$dk%,
DLP uses the computed set$vk% to solve the system ofK
linear equations condensed in Eq.~3!. It is well known that
the two systems of linear equations contained in Eqs.~3! and
~11! are notoriously ill-conditioned. This is the main obstac
for an implementation of the conventional LP which uses
original long signal$cn%. However, DLP employs the sho
band-limited decimated signal$cn

bld% instead of$cn% and ill-
conditioning, although still present, is less critical, thus
lowing SVD and similar algorithms to be effective in bo
Eqs ~3! and ~11!.

D. Decimated Padé approximant

For the present purpose of the spectral analysis, i
convenient to introduce DPA using the discretized Fou
integralFbld(v), which is defined at any real frequencyv by
the following finite summation:

Fbld~v!5 (
n50

ND21

cn
bldu2n, u5exp~2 ivtD! ~14!

with the same notation as before and where, in particular,
variableu has the same definition as in Eq.~12!. The right-
hand side of Eq.~14! reduces to the familiar DFT for the
values ofv at the Fourier grid,v52pm/T, (0<m<ND

21). It appears thatFbld(v), as an ordinary polynomial
converges slowly with the increasing lengthND of the band-
limited decimated signal$cn

bld%.
In order to proceed further, let us assume for the mom

that the signal pointscn
bld are known up to infinity, 0<n

<`. Recalling that the ultimate goal here is to determine
2K parameters$dk ,vk% in Eq. ~3!, we assume thatN>2K,
which is necessary by the algebraic condition requiring, a
minimum, equality between the numbers of equations
unknowns. Then the above-mentioned completion of
given signal $cn%(0<n<ND21) to the whole intervaln
P@0,̀ # is now equivalent to assuming that a solution for t
2K parameters can be found such that allcn

bld(0<n<`) are
either explicitly known or formally given by Eq.~3!. Hence
we can extend the sum in Eq.~14! to infinity. As such, this
algebraically manageable and consistent procedure will y
the way to solve for the numerical values of the searc
peak parameters$dk ,vk%. Interpreting the members of th
set $cn

bld% as the coefficients of a Maclaurin series in t
variable u21, we can then define the functionGbld(u)
[Fbld(v)5(n50

` cn
bldu2n. With Eq. ~3! and the sum rule for

geometric series we obtain
e

-

is
r

e

nt

e

a
d
e

ld
d

Gbld~u![ (
n50

`

cn
bldu2n5 (

k51

K

dk(
n50

`

~uk /u!n

5 (
k51

K
udk

u2uk
[

PK~u!

QK~u!
. ~15!

The right-hand side of Eq.~15! is the so-calleddiagonal
decimated Pade´ approximant given as a rational functio
with polynomials of degreeK in the numerator and denom
nator. Evidently, the parametersuk5exp(2ivktD) are the
poles ofGbld(u), i.e., the zeros of the polynomialQK(u).

Of course, the assumption that the coefficientscn
bld are

known up to infinity is not fulfilled and, therefore, the su
on the left-hand side of Eq.~15! cannot be evaluated in prac
tice. However, the convergence of the sum can be acce
ated by application of DPA. Indeed, with DPA, calculatio
of the 2K coefficients of the two polynomials~note thatp0

50),

PK~u!5 (
k51

K

pku
k, QK~u!5 (

k51

K

qku
k21, ~16!

can be achieved provided that a sufficient number of sig
points is known, i.e.,ND.2K.

At this point, it is important to define the so-called ‘‘cu
rent order’’ L<K of the actual DPA,PL(u)/QL(u) as the
order of the denominator polynomial,QL(u). The adjective
‘‘current’’ is used to indicate that DPA can converge at som
order L before the actual ‘‘full order’’K5@(ND21)/2# in
Eq. ~16! has been attained. In practice, convergence of D
is reached at someL5Lmax when PL(u)/QL(u) becomes
approximately constant with increasingL in the given inter-
val @L2DL,L1DL# of the estimated lengthDL. This con-
cept will prove crucial for devising a new noise reductio
technique within the so-called variant~I! defined in Sec. II F.

The unknown coefficients$qk% in Eq. ~16! are obtained
by equatingGbld(u), which originates from Eq.~14!, with
the rational fraction of Eq.~15!, subsequently multiplying
both sides byQK(u), and finally comparing the coefficient
of the like powers ofu. Such a procedure leads to the fo
lowing system of linear equations:

cn
bld5 (

k51

K

qkcn1k
bld ~0<n<ND21!, ~17!

which can be solved using either SVD or LU decompositi
with iterative refinement of the solutions, with the results
the two procedures being the same to within machine ac
racy. The coefficients$pk% are then given by theexplicit
formula:

pk5 (
n50

K2k

qk1ncn
bld ~1<k<K !. ~18!

The zeros$uk% of the denominator polynomial,QK(u),
give the required complex frequencies,

vk5
i

tD
ln~uk!. ~19!
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The corresponding amplitudes$dk% are calculated as the res
dues of the DPAansatz, PK(u)/QK(u). This yields, in the
case of distinct zeros$uk%, the following result:

dk5
PK~uk!

ukQK8 ~uk!
, QK8 ~u!5

dQK~u!

du
. ~20!

The analytical expression, Eq.~20!, in DPA should be con-
trasted with the corresponding considerable effort investe
DLP and DSD. In DLP the set$dk% is obtained as a numeri
cal solution of the system of linear equations in Eq.~3!. In
DSD, the values of$dk% necessitate the knowledge of th
whole set of eigenvectors$Bnk% as is clear from Eq.~9!.

In the derivation of the DPA method presented here,
have assumed that the signal takes the form given in Eq.~3!,
i.e., consists of a sum of damped exponentials. However,
important to note that DPA is not restricted to signals of
form of Eq.~3! as opposed to FD, DSD, and DLP. Indeed,
prior assumptions regarding the nature of thecn

bld need be
made in order to solve Eqs.~18! and~17! for the coefficients
pk andqk , respectively. It is only in the determination of th
signal parametersvk anddk that an underlying model for the
cn

bld is required.

E. Equivalence of DSD, DLP, and DPA

Comparison between Eqs.~11! and ~17! reveals that
polynomialRK(u) from DLP is identical to the denominato
polynomialQK(u) in DPA:

RK~u!5QK~u!, $bk%5$qk% ~1<k<K !, ~21!

with the understanding,b05q0521. Therefore, DLP and
DPA share the common set$vk%(1<k<K) of the eigenfre-
quencies. To extend this equivalence to DSD, we rewrite
~11! in the matrix form:

cn
bld5 (

k51

K

bkcn1k
bld , Cbld5B8D

~22!
~0<n<K21, 1<k<K !,

where Cbld and B8 are column matrices with the elemen
$cn

bld% and $B8%[$bk%, whereasD is theK3K matrix built
from the elements$Dnk%[$cn1k

bld %. It is apparent that scaling
the indexk according to,k5m11, in Eq.~22!, together with
the definitionb0521 as in Eq.~21!, yields the following
result:

Dnm5Unm5cn1m11
bld ~0<n<K21, 0<m<K21!.

~23!

This proves that the key matricesD andU in DLP and DSD,
respectively, have the same matrix elements and, there
their eigenfrequencies$vk% are identical to each other
Hence the equivalence between DLP and DSD. By impli
tion, the same set$vk%(1<k<K) is shared by DSD, DLP
and DPA. The polynomialsRK(u) andQK(u) originate from
the secular equation~also known as the characteristic pol
nomial! of the evolution matrixU. As is well known the
eigenvalues ofU coincide with the zeros of the secular equ
tion. This is the basis for the equivalence among the pres
three methods: DSD, DLP, and DPA.
in
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The amplitudes$dk% are obtained in different ways in
each of the three methods. The three sets of$dk% ’s will be
the same, provided that the solutions of Eqs.~5!, ~11!, and
~17! are unique. Uniqueness is guaranteed when the foll
ing two conditions are fulfilled:~i! all the roots$uk% (1<k
<K) are distinct, i.e., nondegenerate (uk8Þuk if k8Þk) and
~ii ! the determinants of matricesU and S are nonzero.
Throughout the present paper, as already mentioned, we
strict our analysis to those signals that are modeled ex
sively by Eq. ~3!. Such a representation with the time
independent amplitudesdk is only possible for the
nondegeneratevk’s. Nondegeneracy ofuk does not imply
nondegeneracy ofvk due to Eq.~19! with a complex loga-
rithm which has infinitely many branches, i.e., values. Ne
ertheless, single-valuedness can be secured by selecting
the principal branch of the complex logarithm so that con
tion ~i! is satisfied. As to condition~ii !, the input data$cn%
must be such that the restrictions detUÞ0 and detSÞ0 are
met for otherwise the generalized eigenvalue problem in
~5! would be singular precluding the existence of the so
tions, as is clear from the Cramer rule. The overall conc
sion which clearly emerges from the above-mentioned co
parative analysis of the three methods is that DPA is fa
and more stable than FD, DSD, and DLP. An enhanced
bility of DPA comes from generation of all the$dk% ’s with-
out any additional effort. By comparison, within, e.g., FD
the set$dk% is computed in a way similar to DSD with
supplementary averaging necessary to reach the require
curacy.

It should be mentioned that, in addition to the genui
frequencies$vk%, each of the three presented methods fin
number of spurious or extraneous resonances. In DSD,
employ an approach used previously with FD4 whereby such
frequencies are identified as those solutions of Eq.~5! that
are different for any two chosen powers of the evoluti
operatorUp(tD), sayp51 andp521. We set a threshold
for this difference and reject all frequencies that do not m
the required accuracy. Similar procedures are also im
mented in DLP and DPA. In DLP, for example, the me
tioned two valuesp561 correspond precisely to th
forward/backward decimated linear predictionscn

bld

5(k51
K bkcn6k

bld , respectively. Likewise, in DPA the firs
upper/lower paradiagonals,PK61(u)/QK(u), relative to the
diagonal decimated Pade´ approximant are related directly t
the two powersp561 of U(tD), respectively.

F. Noise reduction

Our previous experience in Ref. 6 showed that for e
perimentally measured signals which are embedded in no
the above-presented methods find a number of peaks du
noise that, as such, should be removed. To this end, we
pose a simple scheme which works quite well in the ca
studied so far. It is based upon an enhanced sensitivity of
noise peaks relative to the signal peaks. We detect this
sitivity in two alternative variants:~I! varying the ‘‘current
order’’ L<K of DPA from PL(u)/QL(u), and ~II ! adding
some 5%–10% random white noise~zero-mean Gaussia
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distributed! to the original time signal$cn%, which has al-
ready been corrupted with an unspecified level of noise.

This is rationalized by an expectation that random no
possesses widely spread frequencies, nearly a continu
across the whole spectrum and is, therefore, poorly re
sented by any mathematical modeling with an isolated re
nance approximation, i.e., a single poleansatz, as used both
here and in other harmonic inversion signal process
schemes.3,4,10 Changing these parameters, we search
stable spectral structures that can, in turn, be identified as
true signal peaks. The remaining unstable peaks are vie
as noise that, as such, can be discarded from the final sp
in Eqs.~7! and~8!. Here, the practical key problem is to fin
a parameter which can be changed in a physically and c
putationally justifiable manner. Clearly, the ultimate go
would be to automate the whole procedure, such that
variation of the chosen parameter itself selects the n
poles to be dropped without the user’s intervention. In
itively, one would expect that a confident tracking of t
positions of individual poles should be rather subjecti
This is because noise structures generally swing and in
change, precluding the sought correspondence among
poles from successive runs. A more global approach is th
fore needed and the above-mentioned two techniques,
variants~I! and~II ! will be tested presently for this purpos

In variant ~I! the tracking of the spectral peaks is pe
formed as a function of the signal lengthND of the band-
limited decimated signalcn

bld . This is equivalent to varying
the size of the Krylov basis set in DSD or to changing t
‘‘current order’’ L of the actual DPA, which isPL(u)/QL(u)
whereL<K[@(ND21)/2#. As defined in Sec. II D, the or
der of DPA is given by the order of its denominator polyn
mial. Here, gradually increasing the orderL is expected to
lead to convergence of DPA and this has indeed been
firmed for noiseless signals. On the other hand for ‘‘nois
signals the following pattern has been seen to take p
systematically. As we progressively increased the orderL to
a certain valueLmax<K, some peaks began to noticeab
stabilize their parameters. The other structures did not fol
this pattern as they frequently changed their shapes in a
traceable way and eventually disappeared. This simple
cedure seems to be capable of self-selecting the poles t
dropped while using DPA. Equivalently in DSD, an increa
of the value ofL automatically enlarges the size of the da
matrix which represents an upper bound on the dimensio
the implied set of the Krylov basis functions utilized to co
struct the matricesU and S to be diagonalized.4 In other
words, wheneverL increased by a given fraction, the bas
size was augmented by the same amount and hence als
total number of poles. Ultimately, the maximal numb
Lmax<K of Lorentzians in the studied spectrum isone of the
final outcomesof the spectral analysis within DPA or DSD
By contrast, such a number must befixed in advancein DLP
in order to be able to solve Eq.~11! and since it is unknown
it ought to be surmised.

In the described procedure, it is intuitively clear that t
stable poles would be the first to converge. This is beca
any of the signal processors for Eq.~3!, in fact, represents a
fitting of that signal to Lorentzian parameters. In particular
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DSD, such a fit is converted to a diagonalization. This dia
nalization procedure tries to minimize variances in th
variational justification for using, by necessity, incomple
basis sets. They always yield first, as the basis increases
poles that the basis can model well, i.e., the stable peak
the true signal. This is reminiscent of resonance scatterin
physics, where the stabilization method~SM!18,19 can dis-
criminate stable poles for the free resonant states from
stable poles for the background as a function of the ba
size. Exactly like in SM, the situation in signal processi
begins to become unstable again ifL is too short or too large.
Hence we searched for this region of stabilityDL and the
results of variant~I! of SM are presented in Sec. III, Fig. 5
For a cross validation of this procedure, we also check
stability of the peaks in theDL region by varying other pa-
rameters that should leave the spectrum invariant. Such
rameters are, e.g., dropping a given number of the ini
signal points of the original signalcn , changing window
size, etc.

As outlined previously, when applied to signal proces
ing, SM consists of searching for the stabilization diagra
or lines that represent the areas of the constancy of the p
parameters when some of the characteristics of the g
signal processor are varied. Alternative to the described v
ant ~I!, the above-mentioned variant~II ! of SM is imple-
mented by adding a sizable 5%–10% random white nois
the already ‘‘noisy’’ signal. This is followed by searching fo
the stable numerical values of the peak parameters.
found stable structures are interpreted as originating from
true signal and, as such, kept in the final spectra. Likew
the unstable spectral features that could be successfully i
tified are conceived as being due to noise and the co
sponding part of the set$vk ,dk% is discarded from Eqs.~7!
and ~8!. Variant ~II ! of SM is illustrated in Sec. III, Fig. 4.

At first glance, variant~II ! might sound rather paradoxi
cal. Nevertheless, such a procedure can be readily just
by the fact that the additional noise is effectively equivale
to a change of the basis functions in DSD or the order of
rational approximation in DPA. Viewed in this way, varian
~I! and ~II ! of SM are, in fact, theoretically equivalent. O
importance is to realize that, once we conceive DSD a
basis set method, we are entitled tochange the basis func
tionsand thus to manipulate the noise in order to disentan
it from the genuine signal. This latter goal can similarly
setup and ultimately achieved within DPA bychanging the
order of a rational approximationwhich models the true
spectrum.

III. EXAMPLES

Here we present the results of our computations rela
to both the diagonalization and signal processing appl
tions of DSD, DLP, and DPA. The diagonalization aspec
addressed first and for this purpose we present the eigen
ues of the Hamiltonian of SO2 calculated using the corre
sponding time autocorrelation functions.2 In this particular
case, the time autocorrelation functions are both real
time symmetric, i.e.,c2n5cn(0<n<N21). In FD,4 such a
symmetry is exploited advantageously to construct a r
symmetric analog of the generalized eigenvalue problem,



—Ref.
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TABLE I. Comparison between calculated energies in cm21 for local mode doublets of SO2. Calculations: DSD~decimated signal diagonalization!, DLP
~decimated linear predictor!, DPA ~decimated Pade´ approximant!, and FD ~filter diagonalization—Ref. 2!. Calculated energies were obtained usingN
5180 000 values of the autocorrelation functioncn generated by the Chebyshev wave packet propagation method and kindly provided to us by H. Guo
2!. The labelsn1 , n2 , andn3 denote the quantum numbers for symmetric stretch, bend and antisymmetric stretch, respectively.

n1 n2 n3 Parity DSD DLP DPA FD

9 0 0 Even 10 102.408 08 10 102.408 08 10 102.408 08 10 102.41
8 0 1 Odd 10 252.159 32 10 252.159 32 10 252.159 32 10 252.16

10 0 0 Even 11 188.293 52 11 188.293 52 11 188.293 52 11 188.29
9 0 1 Odd 11 327.148 54 11 327.148 54 11 327.148 54 11 327.15

11 0 0 Even 12 266.732 73 12 266.732 73 12 266.732 73 12 266.73
10 0 1 Odd 12 395.303 73 12 395.303 73 12 395.303 73 12 395.30
12 0 0 Even 13 337.637 69 13 337.637 69 13 337.637 69 13 337.64
11 0 1 Odd 13 455.264 91 13 455.264 91 13 455.264 91 13 455.26
13 0 0 Even 14 400.874 30 14 400.874 30 14 400.874 30 14 400.87
12 0 1 Odd 14 506.834 55 14 506.834 55 14 506.834 55 14 506.83
14 0 0 Even 15 456.271 20 15 456.271 20 15 456.271 20 15 456.27
13 0 1 Odd 15 549.760 11 15 549.760 11 15 549.760 11 15 549.76
15 0 0 Even 16 503.491 36 16 503.491 36 16 503.491 36 16 503.49
14 0 1 Odd 16 583.681 06 16 583.681 06 16 583.681 06 16 583.68
16 0 0 Even 17 542.063 13 17 542.063 13 17 542.063 13 17 542.06
15 0 1 Odd 17 608.158 00 17 608.158 00 17 608.158 00 17 608.16
17 0 0 Even 18 571.174 53 18 571.174 53 18 571.174 53 18 571.17
16 0 1 Odd 18 622.483 04 18 622.483 04 18 622.483 04 18 622.48
18 0 0 Even 19 589.491 27a 19 589.491 27 19 589.491 27 19 589.49
17 0 1 Odd 19 626.618 20 19 626.618 20 19 626.618 20 19 626.62
19 0 0 Even 20 594.888 52 20 594.888 52 20 594.888 52 20 594.89
18 0 1 Odd 20 618.595 71 20 618.595 71 20 618.595 71 20 618.60
20 0 0 Even 21 584.788 43 21 584.788 43 21 584.788 43 21 584.79
19 0 1 Odd 21 597.974 32 21 597.974 32 21 597.974 32 21 597.97
21 0 0 Even 22 557.234 51 22 557.234 51 22 557.234 51 22 557.23
20 0 1 Odd 22 564.314 40 22 564.314 40 22 564.314 40 22 564.31
22 0 0 Even 23 511.932 46 23 511.932 46 23 511.932 46 23 511.93
21 0 1 Odd 23 514.839 59 23 514.839 59 23 514.839 59 23 514.84
23 0 0 Even 24 449.460 58 24 449.460 58 24 449.460 58 24 449.47
22 0 1 Odd 24 450.941 35 24 450.941 35 24 450.941 35 24 450.94

aThe DSD result for level~18,0,0! was reported incorrectly in Ref. 1.
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~5!. In DSD, for example, the situation is somewhat diffe
ent, since the band-limiting process is not time invariant
that generally complex values for the$cn

bld% ’s are obtained.
As a result, the associated matrix elements in Eq.~5! are also
complex. However, this apparent drawback turns out to
insignificant in practice. This is because we always enco
ter only small size matrices and the additional computatio
effort required to solve Eq.~5! with complex arithmetic re-
mains negligible relative to the calculation of the time au
correlation functions themselves. Note, however, that the
curate results for all of the energies presented in Table I
only be obtained by using the ‘‘negative time’’ informatio
from the values of$cn% ’s. In principle, this can be accom
plished efficiently either by including all 2N21 of these
$cn% ’s in the construction of the low-resolution spectrum
the standard FFT or alternatively by replacing this step w
a fast cosine Fourier transform. This latter option, howev
cannot be combined with theinverseFFT employed to com-
pute the band-limited signalcn

bld from the windowed low-
resolution spectrum. Previously in Ref. 1 we compared
energies of the local mode doublets of SO2 below
25 000 cm21 calculated with DSD with the corresponding r
sults obtained using FD.2 Table I extends this comparison t
include the corresponding energies obtained with DLP
DPA. We see that DSD, DLP, and DPA are in perfect mut
o
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-
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l

agreement, as expected from the equivalence of these t
methods proven in Sec. II E. Moreover these three meth
reproduce the results of FD almost exactly and the only
ception here is a small difference of 0.01 cm21 for level
~23,0,0!.

Next we display and discuss the results obtained for
performed tests of DSD/DLP/DPA methods in both the ca
of theoretically synthesized model signals of the form giv
in Eq. ~3! with the known complex peak parameters$vk ,dk%
and the case of experimentally measured ICR as wel
NMR data. We systematically compared the present th
techniques with each other and found that they always g
identical results to within machine accuracy as expec
from Sec. II E. Hence it suffices that in the rest of this sect
with the illustrations we refer only to one of them, e.g., DP

First, noiseless spectra obtained by applying FFT a
DPA to a simulated time signal of the form of Eq.~3! taken
from Ref. 7 are shown in Fig. 2. An inspection of Fig.
reveals two obvious differences between DPA and FFT

~i! The DPA resolves the doublet at 0.505–0.510 kH
which is missed in FFT. The intrinsic resolution of FFT, i.e
2p/T, would permit detection of this doublet for the chos
signal lengthN551250.5 K, but the widths are too broad t
separate the two peaks from each other.

~ii ! Some of the peak heights calculated by FFT are
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curate only when using the full signal length ofN5512,
whereas those obtained with DPA are exactly those of
input parameters, even at;N/2050.025 K.

In the second example, a time signal was construc
identical to the one used for Fig. 2, except that Gauss
distributed white noise with zero-mean and standard de
tion s520 is added. This 20% noise contamination of t
signal produces FFT and DPA spectra that are depicte
Fig. 3. The superior frequency resolving power of DPA
clear and, in contrast to FFT, the present method again s
rates the close doublet at 0.505–0.510 kHz, which is furt
magnified in the panels on the right-hand side of Fig. 3. T
spectra calculated by DPA have not been subjected to
noise reduction procedures, and yet the successful resolu
of all six genuine peaks is achieved without any difficulty

In the third example we study a problem of noise red
tion and illustrate the utility of the stabilization metho
~SM!.18,19 For this purpose, we again use the synthesi
signal with 20% noise from the second example. Here, ra
than using model-dependent parameters to detect the s
poles, we employ a ‘‘generic-type feature’’ consisting
adding more noise to the already ‘‘noisy’’ signal. This pr
vides an illustration of variant~II ! from Sec. II F.

Basically, we add an additional 7.5% Gaussian distr
uted, zero-mean white noise on top of the existing 20% no
level, compute the peak parameters, and repeat the same
cedure, each time starting with the original signal. In so
ing we do not introduce progressively more noise, but rat
each time a different 7.5% ‘‘noisy’’ distribution is added
the original signal. Each repeated DPA calculation result
a new set of peak parameters,$vk ,dk%. The parameters
found from this sequence of calculations could be avera

FIG. 2. Spectra for a noiseless synthesized time signal consisting of the
of six exponentially damped sinusoids with the known amplitudes, pha
and damping constants taken from Ref. 7. DSD magnitude and absor
spectra are shown in Figs. 2 and 3. DPA and DLP give the same resu
e
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over in order to produce a somewhat cleaner final spectr
However, we find that plotting the peak positions found
each calculation is far more illuminating.

The absorption spectra depicted in the top panels of F
4 are obtained by the straightforward direct runs of DPA
the two selected windows,vP@0.2,0.35# kHz and v
P@0.45,0.55# kHz, in which we know that we have three an
two signal peaks, respectively. The lower panels repres
the variation of Re(vk) as a function of frequency,v, for
each of 50 different DPA calculations displayed as crosse
the ordinate axis. As seen in the lower panels of Fig. 4,
some of the peaks Re(vk) exhibits an extraordinary stability
along the ordinate and, as such, they appear insensitive to
presence of the additional 7.5% level of noise. Other str
tures, however, appear to be more unstable. The former
recognized to be the known true peaks, whereas the la
ones are identified as noise and can be dropped from
‘‘line list’’ $vk ,dk% to obtain a cleaner spectrum. A clos
inspection of the peak parameters obtained from each dif
ent DPA calculation reveals that those of the true signal
identical to several significant figures, whereas those of
corresponding noise poles are more widely dispersed. Ind
SM appears to work spectacularly well for this synthesiz
signal and it is a straightforward task to distinguish betwe
noise and signal features. This, as an illustration of the v
ant ~II ! from Sec. II F, provides evidence that SM can
used successfully in noise identification for signal proce
ing.

Next we present in Fig. 5 the results of our fourth e
ample concerning a protein isotopic fine structure. The

um
s,
on
.

FIG. 3. Spectra for a ‘‘noisy’’ synthesized time signal consisting of the s
of six exponentially damped sinusoids with the known amplitudes, pha
and damping constants taken from Ref. 7. The Gaussian distributed z
mean random noise of standard deviation 20 is added to the signal.
panels in the right-hand column show magnifications of the double
0.505–0.510 kHz with the full and dashed lines representing the noise
and ‘‘noisy’’ spectra, respectively.
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perimental ICR time signal for bovine insulin was obtain
by means of the external accumulation electrospray ion
tion ~ESI! at NHMFL ~Tallahassee!.20 The measured time
signal contains a considerable level of noise as is clear f
the FFT spectrum. Here, we illustrate the variant~I! for noise
identification as described in Sec. II F. We empirically det
mine the converged orderL of DPA, which leads to rathe
stable spectral features as is evident from the right-hand
of Fig. 5. As can be seen in Fig. 5, the FFT has difficulty
unambiguously resolving some peaks even with the full s
nal length,N532 K. Also from Fig. 5, however, it is obvi-
ous that DPA is distinctly more successful than FFT, sinc
can resolve all the individual elemental compositions w
their correct relative abundances.20 We know this as the pat
tern of peaks and their relative heights seen in the pre
DPA magnitude spectrum is in remarkably good agreem
with a simulated Monte Carlo spectrum which has been
ported previously in Ref. 20~not shown in Fig. 5 to avoid
clutter!.

Our fifth example is the experimental ICR time sign
for equine myoglobin and bovine carbonic anhydrase II t
have been recorded using ESI at NHMFL~Tallahassee!.20

The results for FFT and DPA spectra are depicted in Fig

FIG. 4. Absorption spectra for a ‘‘noisy’’ synthesized time signal consist
of the sum of three~left! and two ~right! exponentially damped sinusoid
with the known amplitudes, phases, and damping constants taken from
7. The Gaussian distributed zero-mean random noise of standard dev
20 is added to the signal. Top panel: The straightforward direct run
DPA. Bottom panel: Variant~II ! of the stabilization method with an addi
tional 7.5% random white noise on top of the already existing 20% no
~see the text!. The crosses represent Re(vk) obtained from 50 different DPA
calculations that are the ordinates.
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FIG. 5. ICR spectra of bovine insulin. Chirped excitation. Signal suppl
by A. Marshall, NHMFL-FSU~Ref. 20! and obtained through a single time
domain data acquisition by means of the external accumulation electros
ionization ~ESI! together with the heterodyne quadrature~Ref. 20!. The
numberL given in each panel in the right column is the ‘‘current order’’ o
DPA ~see the text!.

FIG. 6. ICR spectra of equine myoglobin~left! and bovine carbonic anhy-
drase II~right!. Pulsed excitation. Both signals of lengthN58 K were sup-
plied by A. Marshall, NHMFL-FSU~Ref. 20! and obtained through a single
time-domain data acquisition by means of the external accumulation e
trospray ionization~ESI! together with the heterodyne quadrature~Ref. 20!.
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It is clear from Fig. 6 that DPA is again superior to FFT.
this case, both time signals have rather good signal-to-n
ratios ~SNR! and a further noise reduction is unnecessa
Note that the experimental conditions in recording these t
signals were such that all the peak widths, as predetermi
should come out to be approximately the same. Indeed th
verified to a satisfactory degree of accuracy in our calcula
spectra as seen in Fig. 6.

The sixth example is concerned with the isotopic fi
structure of apotransferrin. This experimental ICR time s
nal was measured at the Ångstro¨m Laboratory of the Univer-
sity of Uppsala~Sweden!. In this measurement, the standa
FFT-ICR method is used together with an accompany
technique called the collisionally induced dissociation.21 The
apotransferrin molecule is rather heavy with mass close
;77 kDa. The sample was electrosprayed in a 50
methanol/water mixture to which 2%~vol/vol! acetic acid
was added.21 In Fig. 7 we display the computed FFT an
DPA spectra together with a magnification of a small f
quency range near a doublet at 61 kHz. With signal leng
of N54 K andN58 K ~not shown!, FFT is unable to resolve
the doublet.Moreover, the expected increase in FFT reso
tion is not obtained when further increasing the signal leng
to N516 K. This is presumably due to the fact that increa
ing the acquisition time to attain the necessary resolution
significantly worsened the SNR. Such an occurrence in

FIG. 7. ICR frequency spectra of the isotopic fine structure of apotra
ferrin. The signal was recorded at the Ångstro¨m Laboratory~Uppsala, Swe-
den! ~Ref. 21!. The panels in the right-hand column show magnifications
the spectra in the region of a doublet located at 61 kHz. The top two pa
show the FFT magnitude spectra obtained usingN54 K and N516 K of
the measured signal points. The bottom panel depicts the correspon
DPA absorption spectrum obtained usingN54 K.
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cording the time signal leads to a considerable deteriora
in quality of the resulting FFT spectra. On the other hand,
superior frequency resolving power of DPA is preserv
here, thus enabling the separation of the doublet withN
54 K signal points as can be seen in the bottom panel of F
7. This example with an excessively ‘‘noisy’’ experiment
signal is particularly important as it clearly demonstrates
capability of DPA to extract information which is otherwis
inaccessible to FFT.

The seventh example is focused on the experimental
time signals for@C59N#1 and@C60#

1 and the associated spe
tra calculated by FFT and DPA. These signals were recor
at Department of Chemistry, University of California San
Barbara~Santa Barbara, CA! by the matrix assisted lase
desorption ionization of admixtures of azafullerene,~C59N!2,
and fullerene, C60.

8 The corresponding spectra are display
in Fig. 8 in order of increasing improvement. It is seen
Fig. 8 that to resolve all of the peaks satisfactorily, FF
needs the full signal length ofN5256 K. On the other hand
DPA arrives at the same result by employing onlyN
532 K. Even with such a signal, which iseight timesshorter
than the one provided with the full acquisition time, DP
resolves the isotopic admixtures to within a fraction of o
Da, given the appropriate conversion from the frequency
mass scale.
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ing

FIG. 8. ICR frequency spectra of singly charged molecular ions@C59N#1

and @C60#
1. The time signal was obtained via a single time-domain d

acquisition using the matrix assisted laser desorption ionization~MALDI !.
Using merely one quarter of the full signal length, DPA obtains the en
elemental structure with the correct relative abundance of all the isoto
The largest peak in the spectrum is associated with the monoisot
@12C59

14N#1 ion. The right-hand column shows magnifications of the tw
smallest peaks.
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Our eighth example shown in Fig. 9 is an extension
the preceding case to the ICR time signal for@C59N#1 which
is now embedded in a background of argon at different p
sures ranging from p;1.031029 Torr to p;1.4
31027 Torr. The signal used in Fig. 8 corresponds to t
casep;1.031029 Torr, which is nearly equivalent to th
situation where the argon buffer is absent during the m
surement. As is clear from Fig. 9, DPA significantly outpe
forms FFT in the resolution power by using only 8–16 tim
shorter signal lengths at all argon pressures displayed.

All of the above-mentioned examples, including t
model problem, fall into a category which is typical for mo
of the ICR time signals. However, this category does
exhaust the type of signals to which DSD/DLP/DPA me
ods could be successfully applied. To illustrate this point,
shall now consider the ninth test as our final example usin
NMR time signal for a commercial standard 0.1% conce
trate sample of ethyl benzene in D-chloroform~CDCl3! sol-
vent. This signal was recorded on a Bruker AC250 NM
Spectrometer at the Department of Chemistry, University
Southern California,~Los Angeles, CA!.22 The correspond-
ing FFT and DPA spectra are depicted in Fig. 10. Ag

FIG. 9. ICR frequency spectra of singly charged molecular ions@C59N#1

and @C60#
1 embedded in the background of argon at different pressu

ranging from p;1.031029 Torr to p;1.431027 Torr. The time signal
was obtained via a single time-domain data acquisition using the m
assisted laser desorption ionization~MALDI !. Left and right columns rep-
resent FFT and DPA, respectively. Using only a small fraction~1/8–1/16! of
the full signal length, DPA obtains all the peak parameters and, in partic
their correct relative heights that are proportional to the relative abund
of the isotopes.
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DPA exhibits a better resolving power than FFT. Moreov
DPA achieves higher quality spectra than FFT with cons
erably shorter lengths of this NMR time signal.

For NMR experiments, the total acquisition time of
single scan is not the time-limiting factor and the requir
resolution is readily attained with FFT. However, to impro
the SNR, it is customary to average the results obtained f
perhaps several thousand separate measurements. By w
ing with a shorter signal, which usually invokes less noi
DPA is able to achieve the same result as FFT but wit
signal generated fromfar fewer separate measurement
Hence, use of DPA will result in a significant decrease in
time needed to perform the experiments.

We reemphasize here that our previous experience w
the stabilization method in resonance quasibound state
atomic and molecular systems helped us to reduce sig
cantly the noise level in realistic experimental signals. T
DPA performs excellently in the sense of converging f
andfirst those poles$vk% that are close to the unit circle. Fo
such poles the DPA represents a remarkably stable pr
dure. The reason for this is that these poles are near the
axis and represent localized wave packets comprised of
a limited number of continuum states~noise background!

s

ix

r,
ce

FIG. 10. NMR frequency spectra for a commercial standard 0.1% con
trate of ethyl benzene in CDCl3 solvent. The signal was recorded on
Bruker AC250 NMR Spectrometer. In the right-hand column, the top t
panels show the FFT magnitude spectra obtained usingN51 K and N
54 K of the measured signal points. The bottom two panels display
corresponding DPA magnitude and absorption spectra obtained usinN
51 K. The left-hand column shows the corresponding spectra for the m
complex aromatic region. In this case DPA needsN52 K to reproduce
accurately all of the features observed in the FFT magnitude spectrum
tained using the fullN54 K of the measured signal points.
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which can be sufficiently well described either by a loca
compact Krylov basis set~DSD! or by a rational approxima
tion ~DPA!. However, the poles far from the imaginary ax
ought to collect a great deal of continuum ‘‘noisy’’ stat
with considerable spreading and, therefore, will not be r
resented adequately by any of our methods. Here we ma
plausible correspondence between resonances, i.e., q
bound states and true signal poles, on the one hand, as
as between continuum states or broad resonances and
poles, on the other hand.

In these ‘‘continuumlike’’ noise poles, some variation
of the global parameters such as decreasing the signal le
ND or increasing the noise level in the given frequency w
dow @vmin ,vmax# would de factochange, e.g., the basis i
DSD and introduce greater instabilities. This is a clearsig-
nature of noise which can afterwards readily be reject
from the spectra in Eqs.~7! and ~8!. The results of a more
detailed study devoted to the noise reduction problem will
reported shortly elsewhere.23

Finally, let us consider what happens in decimated h
monic inversion analysis when the noise removal is ‘‘le
than perfect’’ and contrast it with what occurs when the F
is used. Figure 7 is useful for this comparison despite the
that here we actually find it unnecessary to apply our no
reduction procedures to the DPA spectrum. The second
of Fig. 7 shows features typical of the FFT spectrum whe
significant level of noise is present. There is an increas
the baseline with excessive oscillations in the spectrum a
considerable loss of resolution caused by noise features ‘
ing in’’ between the existing peaks. The corresponding D
absorption spectrum prior to noise reduction is displayed
the bottom row of Fig. 7. The DPA spectrum still show
FFT-type oscillations but these are now concentrated in
modest number of usually small peaks; improved resolu
is the good news. The noise reduction techniques propo
in this paper could reorganize many of these peaks and h
fully categorize them as noise~see, e.g., Fig. 4!.

In situations where the level of noise relative to signa
more significant some noise peaks may remain. Unfo
nately, no reliable method yet exists to determine which
the remaining small peaks are signal and which are du
noise. In many ways the ethos of scientific reporting tend
favor and accept the FFT features as ‘‘unavoidable’’ but c
demns any method that gives ‘‘fake peaks.’’ Hence prude
is called for when dealing with the issue of ‘‘small peaks
such as those found by DPA and displayed, e.g., in the
tom panel of Fig. 3. In a situation with no foreknowledge
lend assurance to an assignment one must simply repor
objective uncertainty of the analysis.

Of course, it could happen that a signal is swamped w
noise. In such a circumstance our methods will fail as
region showing stable and unstable features will be fou
Here the true positions of the peaks are determined by b
signal and noise. Obviously the FFT yields equally dis
trous outcomes when faced with such situations. In su
mary, it should be pointed out that the noise reduction me
ods proposed in Sec. II F are still very much und
development and a further thorough study aimed at dem
-
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strating their full range of usefulness and practicality
needed.23

IV. CONCLUSION

Three new operationally different but mathematica
equivalent, stable user-friendly and robust signal process
methods named decimated signal diagonalization~DSD!,
decimated linear predictor~DLP!, and decimated Pade´ ap-
proximant~DPA! are introduced. They are presently impl
mented for performing the spectral analysis on experime
data for ion cyclotron resonance~ICR! spectroscopy and
nuclear magnetic resonance~NMR! spectroscopy. These pa
rameter estimators are shown to possess several impo
advantages over the fast Fourier transform~FFT!, which is a
spectral estimator.

In contrast to the most frequently used signal proces
FFT, which can provide only the shape of a spectrum, DS
DLP/DPA first determine all the peak parameters~positions,
magnitudes, relaxation times, phases, etc.! and then construc
a spectrum in any of the desired modes~complex, magni-
tude, power, absorption!. Absorption spectra provide a bette
resolution than the other modes. The availability of the pe
parameters in our methods enables an easy phase corre
of the examined complex mode spectrum whenever a cer
number of the signal points should be dropped for the rea
of the experimental limitations. This ability to phase corre
the spectrade facto implies that the well-known ‘‘phase
problem’’ which has plagued ICR and NMR fields for man
years no longer exists. To actually generate the absorp
spectra, the three proposed methods do not need any a
tional experimental work or postprocessing as opposed
FFT.

Moreover, our experience in numerous examples
small part of which is illustrated in the present pap
strongly indicates that the suggested methods are capab
providing highly satisfactory results for a large variety
signals embedded in noise provided caution is exercise
explained in Sec. IV. Excellent quality of the correspondi
spectra is achieved using a novel noise reduction techn
based upon the stabilization method from the resonance s
tering theory. The evidence is presented justifying the us
of an acquisition time which is considerably shorter, by
factor of the order;(8 – 16), than the one customarily use
in FFT to arrive at the required resolving power.

The net conclusion which emerges from our analysis
dicates that experimental ICR and NMR ‘‘noisy’’ time sig
nals might actually contain more information than can
extracted by FFT in the frequency domain. Such a drawb
can be overcome by using, e.g., our three parameter est
tors, DSD/DLP/DPA. Of these three, DPA is recommend
as the optimal method of choice since it requires the le
numerical effort to arrive at the best possible result with
optimal signal-to-noise ratio.
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