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Three novel nonlinear parameter estimators are devised and implemented for accurate and fast
processing of experimentally measured or theoretically generated time signals of arbitrary length.
The new techniques can also be used as powerful tools for diagonalization of large matrices that are
customarily encountered in quantum chemistry and elsewhere. The key to the success and the
common denominator of the proposed methods is a considerably reduced dimensionality of the
original data matrix. This is achieved in a preprocessing stage called beamspace windowing or
band-limited decimation. The methods are decimated signal diagonaliz&i®b), decimated

linear predictoDLP), and decimated Padgproximan{DPA). Their mutual equivalence is shown

for the signals that are modeled by a linear combination of time-dependent damped exponentials
with stationary amplitudes. The ability to obtain all the peak parameters first and construct the
required spectra afterwards enables the present methods to phase correct the absorption mode.
Additionally, a new noise reduction technique, based upon the stabilization method from resonance
scattering theory, is proposed. The results obtained using both synthesized and experimental time
signals show that DSD/DLP/DPA exhibit an enhanced resolution power relative to the standard fast
Fourier transform. Of the three methods, DPA is found to be the most efficient computationally.
© 2000 American Institute of Physids$0021-9606800)00440-3

I. INTRODUCTION not only for nearly noise free signals, but also for signals that
) ) ) ~are embedded in a considerable noise background. In FFT all
A novel method called decimated signal diagonalizationye frequencies are fixed and restricted to the set of Fourier
(DSD) has recently been suggested in Ref. 1 to solve a clasgyig points that are predetermined by the total acquisition
of generalized eigenvalue problems with large matriceg;,q By contrast, DSD considers both the complex frequen-
whose elements are autocorrelation functions stemming frorg%eS and amplitudes as the fitting parameters. This enables

time propagated wave pac_kets. Succes_sful performanc_e ?ngher resolution in DSD whose estimated frequencies could
DSD was demonstrated with a long noiseless syntheS|zel()j

. . : e much closer to each other than the usual Fourier grid
signal having the known peak parameters as well as with a

H ,6
theoretically calculated energy spectrum of ,SIor some spacings.

~5000 bound vibrational levels below 25 000 ¢ More- . In its processing stage, D.SD effectlvely uses the opera-
tive part of the discrete version of Fbwhich constructs

over, in Ref. 1 DSD was shown to agree perfectly with the ! ; . .
results of Ref. 2 obtained using the filter diagonalizationMatrices of a generalized eigenvalue problem directly from

(FD) method®* Subsequently in Refs. 5 and 6, DSD was digitized signal points. Diagona_li_zation fi_rst supplies the
also extended to signal processing. This was made possibR§ak parameters, e.g., the positions, heights, widths, and
by the well-known equivalence between the autocorrelatio®h@ses, so that Lorentzian spectra can subsequently be com-
functions and exponentially damped time signals associate@Uted in any desired mod@bsorption, magnitude, power,
with the Lorentzian-type spectfd. Such signals are often €t0. As with FD, the key to the success of DSD is in win-
encountered in many experiments performed with, e.g., ioflowing, the purpose of which is a sizable reduction of the
cyclotron resonancdCR) and Nuclear magnetic resonance original large dimensionality of the data matrix to be diago-
(NMR) techniques:® The results reported in Refs. 5 and 6 nalized. Severe numerical instabilities always plague diago-
for simulated and measured signals demonstrate the superipalization of large matrices and even the Cholesky, House-
capability of DSD to resolve the spectral features that aréwolder or singular value decompositi¢g8VD) are known to
practically inaccessible to fast Fourier transfofffFT) at  be unable to bring the mathematical ill-conditioning of the
shorter acquisition times. This conclusion usually holds trugproblem under reasonable control. This, together with the
emergence of extraneous peaks, is due to the fact that the
aElectronic mail: belkic@radfys.ks.se matrix dimension, which equals half the signal lengthis
PElectronic mail: taylor@cheml.usc.edu much larger than the matrix rank, i.e., the number of spectral
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Lorentzians. From the numerical viewpoint, DSD shares axpressed as a quotient of two polynomials. In signal pro-
feature of FD that necessitates the calculation of both eigercessing, the discrete Fourier transfof@T) is a polynomial
frequenciesand eigenfunctions. These are provided by ini- in a complex exponentigla harmoni¢ taken at the Fourier
tially diagonalizing the overlap matrix over the Krylov frequencies. Increasing its order, such a polynomial exhibits
(DSD) or Fourier—Krylov (FD) basis functions and subse- a rather slow convergence rate which is equal to the inverse
quently solving the resulting generalized eigenvalue problenof the signal length. This can be significantly accelerated by
for the time evolution operator. using PA for relatively short signals. For long signals, con-

Windowing is accomplished in DSD while preprocess-struction of the numerator and denominator polynomials in
ing the time signal and, hence, this stage of the analysis iBA becomes numerically intractable. It is here that we need
completely dissociated from the subsequent diagonalizatiohand-limited decimated signals to create relatively short and
for which the Krylov basis functions suffice*® This so- manageable DFTs that are subsequently subjected to PA,
called beamspace windowing, which is also known as bandwhich then acquires the acronym DPA, as indicated previ-
limited decimation, has previously been used in other reously. This new method in signal processing is also a para-
search fields, e.qg., radar problefstc. The signals that are metric estimator. Here, the frequencies sought are related
“beamspaced in DSD” could equally well be subjected to simply to the roots of the denominator polynomial. More-
any other estimators as emphasized in Ref. 1 and illustrate@ver, the corresponding magnitudes are obtained without any
in Ref. 5. This is in contrast to the windowing used in FD additional effort from an analytical formula for the residues
which takes placeduring the diagonalization step in the of the Padeguotient of the polynomials.

course of setting up the Fourier—Krylov basis functitths For the Lorentzian spectra, DSD, DLP, and DPA are
and, as such, cannot be used with any other processi,fdﬁown to be mathematically equivalent to each other despite
method. their different numerical algorithms. The demonstration re-

The present paper explores several possibilities offereties upon the fact that the given eigenvalue problem is basi-
by the reduced dimensionality of beamspaced signals. Sucklly equivalent to its secular equation. The latter is the char-
shorter signals could potentially revive the interest in a numacteristic polynomial which is identical to the denominator
ber of other signal processing methods whose widesprea@pPlynomial of DPA as well as to the DLP polynomial yield-
applications have thus far been hampered by large data m#d the peak frequencies.
trices. Here, in addition to a further usage of DSD, we shall ~ Crucially, given the signal length, DSD, DLP, and DPA
focus our attention on two such techniques known as th&ield a higher resolution than available in FFT. This is usu-
linear predictorLP) and PadeapproximantPA). When em- ally accomplished with an improved convergence rate, which
ploying band-limited decimated signals, the latter two meth-often implies a considerably shorter acquisition time than
ods will be termed decimated linear predict®LP) and  that requ_ired by FFT. This property might be gsed advanta-
decimated Padapproximan{DPA), in accordance with Ref. geously in conventional ICR and NMR experiments where
5, where they have been applied to the problem of the perithe longer signals required by FFT practically always invoke
odic orbit quantization. more noise. The present methods effectively attain the nec-

The LP is well known in signal processifgHere, mod-  €Ssary convergence before exhausting t_he full length of th_e
eling time signals with sums of damped exponentials withsignal. These statements are supported in sec. 11 b_y the evi-
constant amplitudes proceeds through solving two systems &€nce presented for several experimental “noisy” signals as
linear equations, one for the LP coefficients and the other folell as @ synthesized signal comprised of a number of com-
the amplitudes. The latter step can only be undertaken whapletely known harmonics. Conclusions are given in Sec. IV,
rooting of the characteristic polynomial, constructed from
the LP coefficients, has been accomplished. Any rooting is a
nonlir?ear problem and, thereforg, LPis ap in.herently nonlin-“' THEORY
ear signal processor. The previous applications of LP have
been limited to relatively short signals for the obvious reason  In this section we shall describe the DSD, DLP and DPA
of ill-conditioning of large matrices. This chief obstacle can methods as the new parameter estimators. This will be done
be circumvented successfully by subjecting the band-limitedising the generic concept called ‘“band-limited
decimated signal to LP, rather than analyzing the originabecimation”* or equivalently “beamspace windowing®’
one, at no loss of information in the selected frequency inwhich has been previously known in the engineering litera-
terval. It is in this way that DLP emerges. Its usefulness hasure as “beamspace ¥ These alternative names will be used
already been demonstrated in Ref. 5 and will be further exinterchangeably whenever referring to this specific window-
plored in this paper. ing, which is different than that implemented in B Fur-

The PA is also a well-known technique which has fre-ther we will show under which conditions these three signal
guently been used to accelerate convergence of slowly comprocessing techniques become mathematically equivalent to
vergent serie$™? In signal processing it was used before each other in spite of rather different numerical computa-
under the name autoregressive moving avet8geldition-  tions. The present study will be restricted to those time sig-
ally, PA is successful in analytically continuing purely diver- nals that are sums of damped exponentials with complex
gent series or sequences with, e.g., exponentially growinfrequencies and amplitudesy, ,d,}. Moreover, we shall be
terms? or even those with zero radius of convergeftén concerned primarily with the local spectral analysis carried
short, PA maps a given power series into a rational functiorout in a window of interest,  min ,®@maxl-
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A. Beamspace windowing Schematic of the band-limited decimation (bld)

Beamspace windowing is a conceptually simple method
that enables the construction of a shortened signal which is ¢,
amenable to processing by DSD, DLP and DPA. We start
with a digitized time signa{c,}(0=<n<N-1) which con-
sists of N points, equidistantly sampled with the rateand
having a total bandwidth of 2/ 7. To initialize windowing,

{c,} is subjected to a discrete Fourier transform using the
efficient FFT algorithm to obtain the Fourier spectrum,

bld

N—-1
Fk:nZO CnGZWIkn/N, (k=0,,N—1), (1)

Mn
‘ . ‘ ‘
0.0 250.0 500.0 0.0 250.0 500.0

Inverse

which is accurate only at the Fourier grid poinks, corre- FFT T

sponding to the frequencies,=2wk/(N7). In general, the

FFT of Eq.(1) yields only a low-resolution spectrum as the |,
number of signal pointd\, will be insufficient for the FFT !
to resolve dense eigenfrequencies. We assume, however, the
N is sufficiently large for harmonic inversion to be possible,
i.e.,N=2K’ whereK' is the total number of frequency com-
ponents contained in the signal.

Next, the frequency window of intere§iwy w1, is
chosen. In order to diminish the ill-conditioning of the sub-
sequent processing, the number of Fourier grid poiNts,
=Kmax—Kmint1, contained in the window should not exceed
more than about 200. Théy elementsF,, of the low reso-
lution Fourier spectrum located within the window are then
selected and shifted to relocate them symmetrically about thgig. 1. schematic of the band-limited decimation process. The original
frequency originw=0. In other words, the central frequency signal shown in the upper left-hand panel is first subjected to the FFT,
o the window, ;=2 ko/(N7) whereko=(knucrkuli2,  J2008 120 SSon eerum e e o e o e
IS,SUbtraCted ,from every frequepaybelonglng to the aglgual elementys outside thg window are set to, zero, while the remaiRjngle-
window. In this way, the band-limited FFT spectruff, "}

ments within window are shifted in frequency so that the window is sym-
(0=<k=Np—1) is created. Specifically, we havEEijko metric aboutw=0 (the bottom right-hand panelAn inverse FFT is then

_ <K< . T applied, yielding the real and imaginary parts of the band-limited decimated
'.:k for. km”?ﬂd k Iﬁfl‘g,ax with th.e periodicity of t.he FFT used signal pointscP®, denoted by the full and open circles, respectively.
to identify F; =FND+J’ whenj<0. The result is a spectrum

that is centered ab=0 with a bandwidth of ZrNp/(N7).
Finally, an inverse FFT is applied {&2% to obtain the
so-called “band-limited decimated’(bld) signal {c2'% (0
=<n=<Np—1) of shorter lengtiNy and valid for the window
of interest. The new bandwidth is reduckt.=N/Np times
from that of the original signal. Hence the “dwell” time of
the band-limited d_e_dmatgd signal is ney=M T giving the tion
s:a,r\l‘ne tOt?-Ileif:gwtﬂgonrc)ti)Tjnar?a:st?:er]:ofédhiéth?)No;e o In summary, implementation of the described “band-
D7D i prob’ o ,,ﬁmited decimation” (bld) proceeds through the following
signal processing a significantly shortened or “decimated o
. : algorithm:
effective signal.
In order to scan the whole bandwidth of the original (1) Obtain the whole FFT spectrum, as an arf@} of
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informational content in each of thd individual windows.
We emphasize this crucial feature of thand-limited deci-
mationto avoid any potential confusion with straightfor-
ward decimationwhich always leads to a loss of informa-

signal [ — ar/ 7,+ @/ 7], we must form the Fourier spectra lengthN, from the original signafc,}.
{FR and the resulting band-limited decimated sigfel”} ~ (2) Select the window of interegtw, @ _] spanning a
separately for each d¥l windows. Note, however, that the total of Np=Kax—Kmint+21 Fourier grid points.

first FFT of the'original signal of lengtlN is common to  (3) Create the band-limited FFT spectrufi%, of length
each of theM windows and hence need be performed only N, by selecting thos&, that lie within the window and

once. _ L _ simultaneously shifting by the central frequenayg
In any of the W'ndows[‘”kmm’“’kmax]’ the resulting FFT =27ko/(N7) where ko= (Kmaxtkmin)/2, to obtain a
spectra{F'% created from{c{'%} are, by construction, iden- symmetrical redistribution around the origia=0.

tical (apart from the shift tav=0) to the corresponding Fou- (4) Construct the generally complex-valued band-limited
rier spectrg F\} based solely upofc,}. This establishes the decimated signal{c’'®, of length N, by subjecting
key feature of the procedure which is the preservation of the {FE'% from step 3 to the inverse FFT.
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The key steps 1-4 are illustrated in Fig. 1 using a syntheBothU,,,, andS,,, are expressed solely in terms of the signal

sized signalc, with the known peak parameters listed in points{cﬁ'd} making obvious that the explicit knowledge of

Ref. 7. the pair{@o,ﬁ} is not needed, as alluded to above. Rela-
In our numerical implementation of band-limited deci- tions similar to Eq(6) have been encountered previously in

mation, we explicitly use the robust numerical routines forFp 34 where the original signat, replacescﬁ'd. Another

FFT and inverse FFT in steps 1 and 4 to take full advantagﬁ]terpretation of Eq(G) is that DSD can equa”y well be

of the quasi-linear scaling with the signal lengttlog,N.  applied to measured and/or computed signals as long as they

Note, however, that the above-outlined prescription 1-4 alsgbey Eq.(3). Having the matrix elements,, and S, at

permits a straightforward derivation of the fO“OWing analyti- hand, DSD diagona"zes EQS) to extract all the peak pa-

cal formula: rameters{ wy ,d,} in the chosen wWindoWwin,wmax. These

N-1 . , parameters enable one to readily construtical spectrum
1 . sin(7wNp[n/Np—n’/N ; . :
cPd=—"»" ¢, ™ "ko/N m_(Tr ol /No 1) in any desired mode, e.g. magnitudg )|, power|F(w)|?
"N n sin(w[n/Np—n'/N]) ’ i o i ; ;
n’=0 ™ ) or absorptiorA(w). This final step is carried out anyreal
2 frequencyw from the studied window via a linear combina-
with O=<n<Np—1. tion of complex Lorentzians, such as
« d

B. Decimated signal diagonalization Flo)=—i> ——— @)

Among our three processing methods, DSD will be out- k=1 @ 00T Wk
lined first. Just like FD, the technique of DSD is strictly Note that the real central frequenay, of the window
limited to the signals given as sums of damped exponentials®min,@max iS €xplicitly added to every complex resonance
built from complex frequencies and amplitudés, ,d,}. Of . This is necessary to compensate for the shift to the ori-
course, the real parts of the fitting parameteiss should  gin =0 of the band-limited Fourier spectrum used in gen-
belong to the selected Windofw i ,@ma]. We then model ~ erating the sefc?. One of the possible ways to obtain an

the band-limited decimated signg]® as absorption spectrumA(w)=0, which is always positive
K definite for any real values @b, has been suggested recently
CEM: E dkefiwknTD, Im(wk)<o, (3) N Ref 6 as
k=1
here the conditi | ly the physical h A(w)=—§ |di e
w eret e con |t|on_ Img) <0 se e.cts only the physical har- “ UM o= wg— Re ) P+ [IM(w) 12
monics with decaying exponentials as the time increases. ®)

HereK is the so-called local spectral rank which is equal to

the number of Lorentzians generated by B).in the corre- ~ This absorption mode does not contain any interference ef-
sponding spectrum. According to Refs. 1, 3, and 4, the autdects, since the signal phase Adg) in |dy =|d,e""%|
correlation functionCﬁ'dE(¢>O|exq—iﬁnrD]<I>0) is equiva- has been intentionally omitted from E(). In general, di-

lent to the band-limited decimated signal, agonalization will produce not only the physical, b
<0, but also the spurious, Irag)>0, eigenfrequencies. The

= (dylexd —iQn7p] D). (4) latter ones could be reflected according to the prescription

This is because insertion of the closure relation for the spe<:|-m(w")_>_“m(wk)| as done previously in Refs. 4 and 6. To

i ) - o extract all the magnitudgsl,}, DSD computes the set of the
trum g’l‘; the time evolution operatod(7p) =exp(~i{lp) eigenvectorgB,,} which are normalized with respect to the
into C,“ with a specific identification ofl,, leads directly to

overlap matrixS and employs the formuta
the right-hand side of Eq3), so thatc%=cP 34 such a P e

circumstance obviates the necessity for an explicit nonlinear _ (No/2) bid 2
fit in Eq. (3). Instead we use linear algebra to set up and di= nZto BnkCn |

solve the following equivalent generalized eigenvalue prob- S _ _
lem: which follows from a derivation similar to that established in

FD.2* When using DSD to analyze noiseless signals with
UBy = U SB. 4 known parameters, Eq9) is found to give excellent results
Here, the column matriB, has the element&B,,}, where for thed,’s, while for FD an averaging procedure is neetled
B« is thekth eigenvector olU corresponding to the eigen- to achieve the same level of accuracy.
valueu,=e '“k™, Note that there is no need for either the ~ Of course, whenever needed the sequence of steps de-
operatorﬁ in U(rp) or the initial stated, in CE"‘ to be Scribed above can be repeatiidtimes to cover the whole

given or known explicitly. The inner or scalar product in Nyauist interval, as already anticipated. When proceeding
DSD is of the symmetric nature, i.e., without the complexalong these lines, there should be no restrictions to keep the
conjugation of the bra vector-[ such that §|¢)=(#|y). Same signa}l lengtN, for every sup—window. Some artifacts
We diagonalize matriXU using the Krylov basis sefd,} ~ ¢an occur in the process of “gluing” together the adjacent

with the functions®,=U"(p)®, that produce the follow- réquency intervals due to a sharp rectangular window in
ing matrix elements: “beamspacing.” This leads to phase distortions which could

bl bl somewhat deteriorate the shape of the spectrum at the edges
Unm=Cnim+1:  Shm=Cnim- (6)  of the windows particularly when analyzing windows that

(€)
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contain a small number of Fourier grid poinfise., small  artifacts are usually noise induced and they might give rise to

Np). We adopt the simple procedure of Ref. 6, which allowsserious difficulties in the interpretation of the spectral fea-

a considerable overlap of the neighboring windows so thatures. It is quite conceivable that this postprocessing in FFT

the narrow edges of every local spectra can be omitted. Notis less useful for dense spectra congested with many lines.

that the first FFT in the band-limited decimation is commonThese drawbacks of FFT are by and large nonexistent in

to the processing of all individual windows from the Nyquist DSD, which first extracts all the peak parametéss ,d,}

interval. directly from the time signabnd then constructs the spec-
Beamspace windowing enables the passage from thium in the frequency domain using E) or Eq.(8).

original N/2XN/2 matrix U to one of sizeNp/2XNp/2

whose dimension i1 times smaller. Such an achievement

reduces considgrgbly the intrinsic'iII—conditioninglof Ea}. C. Decimated linear predictor

Even the remaining smaller matrices of the typical dimen-

sion 100< 100 are still ill-conditioned since a large number ~ The DLP is basically comprised of the following three

of operations lead to inevitable round-off errors. However,Steps:(i) computing the linear prediction coefficients,}

with such relatively manageable matrices, this computationdi1<k=K) from the band-limited decimated signal points

noise is more likely to be under control using several spe{cn“}(0=n=Np—1), (i) rooting the DLP polynomial con-

C|a||y designed techniqueS, e.g., Singu|ar value decomposﬁtrUCtEd from all thé)k,s to obtain the harmonic frequenCieS

tion (SVD), Householder's, or Cholesky’s decompositions. @k, and (i) generating the corresponding amplitudeg,

In DSD we use either SVD or the QZ algorithm as imple- With such pairs{wy,dy} at hand, the spectra in any desired

mented in, e.g., the NAG Libral with the successful out- Mode can be computed from E@) or Eq. (8).

comes. Numerical performance of the DSD algorithm is  In order to derive the DLP equations, we begin by writ-

found do be highly satisfactory from the standpoints of aciNg Eq. (3) in matrix form for the signal points,y; to

curacy, stability and robustness. The latter feature, in factn+k

originates directly from the pre-processing stage, i.e. " nel et

beamspace windowing, which effectively prepares all the Cni1 up Uk d;
necessary matrix elemenf¥ ,,,S,t in Eqg. (6) by means : = : : . (10)
of the two robust processors, FFT and inverse FFT. We gen- Cg'gK Uitk gtk dg

1 K

erate the latter two sequences using the appropriate IMSL
routme.. Overall efﬂmenF performance of DSD IS compa- \yith U =exp(—iws). From the matrix representation Eq.
rable with that of FD, since both methods effectively en-(10) it follows that, for 0<n<K
counter only small size-100x 100 matrices throughout the ’ '

computation. If required, DSD can spectrally analyhe ur11+1 UEH -1 cbid
wholeNyquist interval in much the same advantageous fash- bid 0o n+i
ion as customarily accomplished in FD. Cn = (ug - ug) ol

Similar to FD (see Sec. 2C of Ref.)4we found that uf itk Ch+k
DSD has better resolving power than FFT for the same sig- K
nal length. Alternatively, the resolution of FFT can be at- _ 2 b, cbld (11)
tained by DSD for shorter acquisition time. This is rooted in &y etk

the uncertainty principleNger< 27/ (7A wpyn), for FFT and

Npso* 47/ (TAw,y), for DSD with Awp, and Aw,, being  In other words, as in the traditional LP methtdevery sig-

the minimum and average spacings between eigenvalues iral pointc?® can be predicted by a linear combination of the

the given window, respectively. As the inequalityw,,  Others with a fixed set of DLP coefficien{®,} for 1<k

>Awnin, IS generally valid, it then necessarily follows that <K. The solutions of the system &f=[(Np—1)/2] linear

Npsp<Nget- equations, Eq(11), give all the unknown DLP coefficients
Relative to DSD, which is a parameter estimator, FFT is{by}. Using Eq.(3) we can rewrite Eq(11) as R¢(u,) =0,

a spectral estimator, which yields merely the shape of a speavhere the DLP polynomial is given by

trum. Once a FFT spectrum is available, the peak parameters

could be extracted only in a postprocessing stage via nonlin- < ‘ Cion o

ear fitting of each of the resonances to some preassigned RK(U):gl but—1, u=e 1%, u=e UK.

forms (Lorentzian, Gaussian, etcThis might be acceptable (12)

for well-separated peaks, but it is often unsatisfactory for

overlapping resonances. Clearly any nonlinear fitting proceThe K roots {u,} of the polynomial,Rx(u), provide the

dure requires some initial values for the sought pairdrequencieqw,} needed for the spectra in Eq§) and(8).

{w,d,} from, e.g., Eq.(3). Since these values are initially Rooting ofRk(u) is a nonlinear operation which implies that

unknown, they must be estimated and inadequate guessbsth DLP and LP are nonlinear signal processors. The roots

could produce significant departures from the true results. Asf R¢(u) can be found, in principle, by application of, e.g.,

a consequence, the ensuing results often exhibit considerablaguerre’s or Newton—Raphson’s methidddowever, when

unphysical and undesirable structures, e.g., “ripples,”the polynomial is of high degreeK&60), an alternative

“blips” as well as other oscillations and undulations. Such method, i.e., diagonalization of the Hessenberg matrix,
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__bK—l __bK—Z __Ei __92
bk bk bk bk
1 0 - 0 0
B= 0 1 0 o |+ @3
0 0o - 1 0

for which the characteristic polynomid?(z) =de{B—ul]
coincides withRg(u) of Eq. (12) with by=—1, provides a

numerically more robust technique for finding the required

zeros'’

To obtain the remaining unknowns, the amplitudeg,
DLP uses the computed sfb,} to solve the system oK
linear equations condensed in E§). It is well known that
the two systems of linear equations contained in Egjsand

(11) are notoriously ill-conditioned. This is the main obstacle
for an implementation of the conventional LP which uses th
original long signakc,}. However, DLP employs the short

band-limited decimated sign&t"% instead of{c,} and ill-

conditioning, although still present, is less critical, thus al-
lowing SVD and similar algorithms to be effective in both

Egs(3) and(11).

D. Decimated Pade approximant

For the present purpose of the spectral analysis, it i
convenient to introduce DPA using the discretized Fourier,

integralFbld(w), which is defined at any real frequeneyby
the following finite summation:
Np-—1

FPld( )= Zo cPdy=n u=exp—iwmp) (14)

I
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) K 9]
GMu)=2> cp%u"=2> d > (u/u)"
n=0 k=1 n=0
K ud Py(u)
k K
=2 o= (15
k=1 U—ug  Qg(u)

The right-hand side of Eq(15) is the so-calleddiagonal
decimated Padapproximant given as a rational function
with polynomials of degre& in the numerator and denomi-
nator. Evidently, the parameters=exp(—iwmp) are the
poles ofGP%u), i.e., the zeros of the polynomi&(u).

Of course, the assumption that the coefficiecl§ are
known up to infinity is not fulfilled and, therefore, the sum
on the left-hand side of Eq15) cannot be evaluated in prac-
tice. However, the convergence of the sum can be acceler-
ated by application of DPA. Indeed, with DPA, calculation
of the 2K coefficients of the two polynomialéote thatpg

e:

K K
Pe(w)= 2, p, Qu(u)= 2 quu*—1, (16
can be achieved provided that a sufficient number of signal
points is known, i.e.Np>2K.
At this point, it is important to define the so-called “cur-

gent order” L<K of the actual DPAP,(u)/Q,(u) as the

order of the denominator polynomia®, (u). The adjective
current” is used to indicate that DPA can converge at some
orderL before the actual “full order’K=[(Np—1)/2] in

Eg. (16) has been attained. In practice, convergence of DPA
is reached at somé =L, when P (u)/Q,(u) becomes
approximately constant with increasihgin the given inter-

val [L—AL,L+AL] of the estimated lengtAL. This con-

with the same notation as before and where, in particular, thgept will prove crucial for devising a new noise reduction

variableu has the same definition as in E42). The right-
hand side of Eq(14) reduces to the familiar DFT for the
values ofw at the Fourier gridw=27m/T, (0=m=<Np
—1). It appears thaF"(w), as an ordinary polynomial,
converges slowly with the increasing lendtly of the band-

limited decimated signglc?'}.

technique within the so-called variaftj defined in Sec. Il F.
The unknown coefficient§q,} in Eg. (16) are obtained
by equatingG®9(u), which originates from Eq(14), with
the rational fraction of Eq(15), subsequently multiplying
both sides byQk(u), and finally comparing the coefficients
of the like powers ofu. Such a procedure leads to the fol-

In order to proceed further, let us assume for the momenbwing system of linear equations:

that the signal points?® are known up to infinity, &n

<o, Recalling that the ultimate goal here is to determine the

2K parametergd, ,w,} in Eq. (3), we assume thdil=2K,

(0<n=<Np—1), (17)

K
bld_ bid
Ch = kE_l AkCn+k

which is necessary by the algebraic condition requiring, as a
minimum, equality between the numbers of equations andvhich can be solved using either SVD or LU decomposition
unknowns. Then the above-mentioned completion of thewith iterative refinement of the solutions, with the results of

given signal{c,}(0<n=<Np—1) to the whole intervain

the two procedures being the same to within machine accu-

e[0,°] is now equivalent to assuming that a solution for theracy. The coefficient{p,} are then given by thexplicit

2K parameters can be found such thatc§if(0<n=<w) are
either explicitly known or formally given by Ed3). Hence

formula:

K-k

we can extend the sum in E(L4) to infinity. As such, this Y bd (<K<K
algebraically manageable and consistent procedure will yield Pk= e OkenCn (1<k=<K).
the way to solve for the numerical values of the searched

peak parameterfd,,w,}. Interpreting the members of the The zeros{u,} of the denominator polynomiaQ(u),
set {c2 as the coefficients of a Maclaurin series in thegive the required complex frequencies,

variable u™?, we can then define the functioG"(u)
=F"Y(w)==7_,cP%". With Eq.(3) and the sum rule for
geometric series we obtain

(18

U)k:T_DIn(uk). (19)
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The corresponding amplitudéd,} are calculated as the resi- The amplitudesd,} are obtained in different ways in
dues of the DPAansatz Py (u)/Qg(u). This yields, in the each of the three methods. The three set$dgf’s will be
case of distinct zero&u,}, the following result: the same, provided that the solutions of E(®, (11), and
P (Uy) 40 (u) (17) are unique. Uniqueness is guaranteed when the follow-
dsz,—k, Qu(u)= =K (200  ing two conditions are fulfilled(i) all the roots{u,} (1=<k
UKQy (Ux) du <K) are distinct, i.e., nondegeneraig (+ u, if k' #k) and

The ana'ytica' expression, E(ﬂo)' in DPA should be con- (||) the determinants of matriced and S are nonzero.
trasted with the corresponding considerable effort invested i hroughout the present paper, as already mentioned, we re-
DLP and DSD. In DLP the sdd,} is obtained as a numeri- Strict our analysis to those signals that are modeled exclu-
cal solution of the system of linear equations in E8). In  Sively by Eq.(3). Such a representation with the time-
DSD, the values ofd,} necessitate the knowledge of the independent amplitudesd, is only possible for the
whole set of eigenvectodB,,} as is clear from Eq(9). nondegenerate’s. Nondegeneracy ofi, does not imply

In the derivation of the DPA method presented here, we'ondegeneracy oby due to Eq.(19) with a complex loga-
have assumed that the signal takes the form given if&gq. fithm which has infinitely many branches, i.e., values. Nev-

i.e., consists of a sum of damped exponentials. However, it i§ftheless, single-valuedness can be secured by selecting, e.g.,
important to note that DPA is not restricted to signals of thethe principal branch of the complex logarithm so that condi-

form of Eq(3) as opposed to FD' DSD’ and DLP. |ndeed’ notion (|) is satisfied. As to ConditiOI(lii), the input datdcn}

prior assumptions regarding the nature of #f¥ need be Must be such that the restrictions det0 and de+0 are
made in order to solve Eq&L8) and(17) for the coefficients Met for otherwise the generalized eigenvalue problem in Eq.
py anday, respectively. It is only in the determination of the (5) would be singular precluding the existence of the solu-

signal parameters, andd, that an underlying model for the tions, as is clear from the Cramer rule. The overall conclu-

2 is required. sion which clearly emerges from the above-mentioned com-

parative analysis of the three methods is that DPA is faster
and more stable than FD, DSD, and DLP. An enhanced sta-

E. Equivalence of DSD, DLP, and DPA bility of DPA comes from generation of all thel,}'s with-

out any additional effort. By comparison, within, e.g., FD,

the set{d,} is computed in a way similar to DSD with a

supplementary averaging necessary to reach the required ac-

curacy.

Rc(u)=Qk(u), {bt={ay (1sk=K), (21 It should be mentioned that, in addition to the genuine
frequencieq w,}, each of the three presented methods find a
number of spurious or extraneous resonances. In DSD, we
employ an approach used previously with“REhereby such

qfrequencies are identified as those solutions of {g.that
are different for any two chosen powers of the evolution
o K o b o operatorUP(7p), sayp=1 andp=—1. We set a threshold

Ch =k21 bcnrk, C°°=B'D for this difference and reject all frequencies that do not meet

the required accuracy. Similar procedures are also imple-

(22) mented in DLP and DPA. In DLP, for example, the men-

tioned two valuesp==*1 correspond precisely to the

forward/backward decimated linear predictiong®¢
==K b, , respectively. Likewise, in DPA the first
upper/lower paradiagonal®y«1(u)/Qk(u), relative to the
diagonal decimated Padgproximant are related directly to
the two powerp=*=1 of U(7p), respectively.

Comparison between Eq$ll) and (17) reveals that
polynomialRg(u) from DLP is identical to the denominator
polynomial Qx(u) in DPA:

with the understandingho=qo= —1. Therefore, DLP and
DPA share the common sgb}(1<k=K) of the eigenfre-
guencies. To extend this equivalence to DSD, we rewrite E
(12) in the matrix form:

(0<n<K-1, 1<k=K),

where CP and B’ are column matrices with the elements
{cP% and{B’}={b,}, whereasD is the K X K matrix built
from the element$D,, }={c 9, }. It is apparent that scaling
the indexk according tok=m+1, in Eq.(22), together with
the definitionby=—1 as in Eq.(21), yields the following

result:

Dym=Unm=c2¥ ., (0=<n=K-1, 0=sm=K-1).
(23

This proves that the key matricBsandU in DLP and DSD,
respectively, have the same matrix elements and, therefore, Our previous experience in Ref. 6 showed that for ex-
their eigenfrequencie§w,} are identical to each other. perimentally measured signals which are embedded in noise,
Hence the equivalence between DLP and DSD. By implicathe above-presented methods find a number of peaks due to
tion, the same sdtw,}(1<k=<K) is shared by DSD, DLP, noise that, as such, should be removed. To this end, we pro-
and DPA. The polynomialR (u) andQg(u) originate from  pose a simple scheme which works quite well in the cases
the secular equatiotalso known as the characteristic poly- studied so far. It is based upon an enhanced sensitivity of the
nomia) of the evolution matrixU. As is well known the noise peaks relative to the signal peaks. We detect this sen-
eigenvalues ob) coincide with the zeros of the secular equa-sitivity in two alternative variants(l) varying the “current

tion. Thisis the basis for the equivalence among the presendrder” L<K of DPA from P, (u)/Q,(u), and (Il) adding
three methods: DSD, DLP, and DPA. some 5%-10% random white noigeero-mean Gaussian

F. Noise reduction
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distributed to the original time signa{c,}, which has al- DSD, such a fit is converted to a diagonalization. This diago-
ready been corrupted with an unspecified level of noise. nalization procedure tries to minimize variances in their

This is rationalized by an expectation that random noisevariational justification for using, by necessity, incomplete
possesses widely spread frequencies, nearly a continuurbasis sets. They always yield first, as the basis increases, the
across the whole spectrum and is, therefore, poorly reprepoles that the basis can model well, i.e., the stable peaks of
sented by any mathematical modeling with an isolated resahe true signal. This is reminiscent of resonance scattering in
nance approximation, i.e., a single palesatz as used both physics, where the stabilization meth¢8M)*8*° can dis-
here and in other harmonic inversion signal processingriminate stable poles for the free resonant states from un-
schemes**® Changing these parameters, we search fostable poles for the background as a function of the basis
stable spectral structures that can, in turn, be identified as thgze. Exactly like in SM, the situation in signal processing
true signal peaks. The remaining unstable peaks are viewdgegins to become unstable agait ifs too short or too large.
as noise that, as such, can be discarded from the final spectrience we searched for this region of stability. and the
in Egs.(7) and(8). Here, the practical key problem is to find results of variantl) of SM are presented in Sec. lll, Fig. 5.

a parameter which can be changed in a physically and confor a cross validation of this procedure, we also check the
putationally justifiable manner. Clearly, the ultimate goalstability of the peaks in thaL region by varying other pa-
would be to automate the whole procedure, such that theameters that should leave the spectrum invariant. Such pa-
variation of the chosen parameter itself selects the noisgameters are, e.g., dropping a given number of the initial
poles to be dropped without the user’s intervention. Intu-Signal points of the original signat,, changing window
itively, one would expect that a confident tracking of the size, etc.

positions of individual poles should be rather subjective. ~As outlined previously, when applied to signal process-
This is because noise structures generally swing and intef?d, SM consists of searching for the stabilization diagrams
change, precluding the sought correspondence among tif lines that represent the areas of the constancy of the peak
poles from successive runs. A more global approach is therdarameters when some of the characteristics of the given
fore needed and the above-mentioned two techniques, i.esignal processor are varied. Alternative to the described vari-
variants(1) and (1) will be tested presently for this purpose. ant (1), the above-mentioned variail) of SM is imple-

In variant (1) the tracking of the spectral peaks is per- mented by adding a sizable 5%—-10% random white noise to
formed as a function of the Signa| |engN|b of the band- the already “nOisy” Signal. This is followed by SearChiﬂg for
limited decimated signat®. This is equivalent to varying the stable numerical values of the peak parameters. The
the size of the Krylov basis set in DSD or to changing thefound stable structures are interpreted as originating from the
“current order” L of the actual DPA, which i®, (u)/Q, (u) true signal and, as such, kept in the final spectra. Likevx_/ise,
whereL<K=[(Np—1)/2]. As defined in Sec. Il D, the or- thg unstable spe_ctral featurgs that could bg successfully iden-
der of DPA is given by the order of its denominator polyno- fified are conceived as being 'due. to noise and the corre-
mial. Here, gradually increasing the orderis expected to SPonding part of the sgiw, ,dyj is discarded from Eqd7)
lead to convergence of DPA and this has indeed been co@nd(8). Variant(ll) of SMis illustrated in Sec. Ill, Fig. 4.
firmed for noiseless signals. On the other hand for “noisy” At first glance, variantil) might sound rather paradoxi-

signals the following pattern has been seen to take placgdl- Nevertheless, such a procedure can be readily justified
systematically. As we progressively increased the otder by the fact that the additional noise is effectively equivalent

a certain valuel,<K, some peaks began to noticeably © 2 change of the basis functions in DSD or the order of the

stabilize their parameters. The other structures did not follovf2tional approximation in DPA. Viewed in this way, variants
and (Il) of SM are, in fact, theoretically equivalent. Of

this pattern as they frequently changed their shapes in a nor_(ll-) s i )
traceable way and eventually disappeared. This simple prdmPortance is to realize that, once we conceive DSD as a

cedure seems to be capable of self-selecting the poles to §&SiS et method, we are entitieddoange the basis func-
dropped while using DPA. Equivalently in DSD, an increas tionsand thus to manipulate the noise in order to disentangle

of the value of_ automatically enlarges the size of the datait from the genuine signal. This latter goal can similarly be

matrix which represents an upper bound on the dimension cictuP and ultimately achieved within DPA lehanging the
the implied set of the Krylov basis functions utilized to con- order of a rational approximatiorwhich models the true

struct the matrices) and S to be diagonalized.In other spectrum.
\;\gg(rad:v,a\évginevet increased by a given fraction, the basis W EXAMPLES
gmented by the same amount and hence also thé

total number of poles. Ultimately, the maximal number Here we present the results of our computations related
L max=K of Lorentzians in the studied spectrumoise of the to both the diagonalization and signal processing applica-
final outcomeof the spectral analysis within DPA or DSD. tions of DSD, DLP, and DPA. The diagonalization aspect is
By contrast, such a number mustfideed in advancén DLP ~ addressed first and for this purpose we present the eigenval-
in order to be able to solve E¢l1) and since it is unknown ues of the Hamiltonian of SQcalculated using the corre-
it ought to be surmised. sponding time autocorrelation functiofdn this particular

In the described procedure, it is intuitively clear that thecase, the time autocorrelation functions are both real and
stable poles would be the first to converge. This is becauseme symmetric, i.e.c_,=c,(0=<n<N-—1). In FD; such a
any of the signal processors for E®), in fact, represents a symmetry is exploited advantageously to construct a real
fitting of that signal to Lorentzian parameters. In particular insymmetric analog of the generalized eigenvalue problem, Eq.
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TABLE |. Comparison between calculated energies in thor local mode doublets of SO Calculations: DSD(decimated signal diagonalizatiprDLP
(decimated linear predictpr DPA (decimated Padepproximant, and FD (filter diagonalization—Ref. 2 Calculated energies were obtained ushg

=180 000 values of the autocorrelation functmpgenerated by the Chebyshev wave packet propagation method and kindly provided to us by H. Guo—Ref.
2). The labelsny, n,, andn; denote the quantum numbers for symmetric stretch, bend and antisymmetric stretch, respectively.

ny n, ng Parity DSD DLP DPA FD

9 0 0 Even 10 102.408 08 10 102.408 08 10102.408 08 10102.41

8 0 1 Odd 10 252.159 32 10 252.159 32 10 252.159 32 10 252.16
10 0 0 Even 11188.293 52 11188.293 52 11188.293 52 11188.29

9 0 1 Odd 11 327.14854 11 327.14854 11 327.14854 11 327.15
11 0 0 Even 12 266.732 73 12 266.732 73 12 266.732 73 12 266.73
10 0 1 Odd 12 395.30373 12 395.30373 12 395.303 73 12 395.30
12 0 0 Even 13 337.637 69 13 337.637 69 13 337.637 69 13337.64
11 0 1 Odd 13455.264 91 13455.264 91 13455.264 91 13 455.26
13 0 0 Even 14 400.874 30 14 400.874 30 14 400.874 30 14 400.87
12 0 1 Odd 14 506.834 55 14 506.834 55 14 506.834 55 14 506.83
14 0 0 Even 15456.271 20 15 456.271 20 15 456.271 20 15 456.27
13 0 1 Odd 15549.760 11 15549.760 11 15549.760 11 15549.76
15 0 0 Even 16 503.491 36 16 503.491 36 16 503.491 36 16 503.49
14 0 1 Odd 16 583.681 06 16 583.681 06 16 583.681 06 16 583.68
16 0 0 Even 17 542.063 13 17 542.063 13 17 542.063 13 17 542.06
15 0 1 Odd 17 608.158 00 17 608.158 00 17 608.158 00 17 608.16
17 0 0 Even 18571.174 53 18571.174 53 18571.17453 18571.17
16 0 1 Odd 18622.483 04 18622.483 04 18 622.483 04 18622.48
18 0 0 Even 19589.491 27 19589.491 27 19589.491 27 19589.49
17 0 1 Odd 19626.618 20 19 626.618 20 19 626.618 20 19 626.62
19 0 0 Even 20594.888 52 20594.888 52 20594.888 52 20594.89
18 0 1 Odd 20618.59571 20618.59571 20618.59571 20618.60
20 0 0 Even 21584.788 43 21584.788 43 21584.788 43 21584.79
19 0 1 Odd 21597.974 32 21597.974 32 21597.974 32 21597.97
21 0 0 Even 22557.23451 22557.23451 22557.23451 22557.23
20 0 1 Odd 22564.314 40 22564.314 40 22 564.314 40 22 564.31
22 0 0 Even 23511.932 46 23511.932 46 23511.932 46 23511.93
21 0 1 Odd 23514.83959 23514.83959 23514.83959 23514.84
23 0 0 Even 24 449.460 58 24 449.460 58 24 449.460 58 24 449.47
22 0 1 Odd 24 450.941 35 24450.941 35 24 450.941 35 24 450.94

#The DSD result for leve(18,0,0 was reported incorrectly in Ref. 1.

(5). In DSD, for example, the situation is somewhat differ- agreement, as expected from the equivalence of these three
ent, since the band-limiting process is not time invariant sanethods proven in Sec. Il E. Moreover these three methods
that generally complex values for tHe“'s are obtained. reproduce the results of FD almost exactly and the only ex-
As a result, the associated matrix elements in(Bgare also  ception here is a small difference of 0.01¢chfor level
complex. However, this apparent drawback turns out to bé&23,0,0.

insignificant in practice. This is because we always encoun- Next we display and discuss the results obtained for the
ter only small size matrices and the additional computationaperformed tests of DSD/DLP/DPA methods in both the case
effort required to solve Eq5) with complex arithmetic re- of theoretically synthesized model signals of the form given
mains negligible relative to the calculation of the time auto-in Eg. (3) with the known complex peak parametéts, ,d,}
correlation functions themselves. Note, however, that the acand the case of experimentally measured ICR as well as
curate results for all of the energies presented in Table | caNMR data. We systematically compared the present three
only be obtained by using the “negative time” information techniques with each other and found that they always give
from the values of(c.}’s. In principle, this can be accom- identical results to within machine accuracy as expected
plished efficiently either by including alli2—1 of these from Sec. Il E. Hence it suffices that in the rest of this section
{cn}'s in the construction of the low-resolution spectrum by with the illustrations we refer only to one of them, e.g., DPA.
the standard FFT or alternatively by replacing this step with  First, noiseless spectra obtained by applying FFT and
a fast cosine Fourier transform. This latter option, howeverDPA to a simulated time signal of the form of E@) taken
cannot be combined with thiaverseFFT employed to com- from Ref. 7 are shown in Fig. 2. An inspection of Fig. 2
pute the band-limited signaiﬁ'd from the windowed low- reveals two obvious differences between DPA and FFT
resolution spectrum. Previously in Ref. 1 we compared the (i) The DPA resolves the doublet at 0.505-0.510 kHz,
energies of the local mode doublets of SMelow  which is missed in FFT. The intrinsic resolution of FFT, i.e.,
25000 cm* calculated with DSD with the corresponding re- 27/T, would permit detection of this doublet for the chosen
sults obtained using FBTable | extends this comparison to signal lengthtN=512=0.5K, but the widths are too broad to
include the corresponding energies obtained with DLP andeparate the two peaks from each other.

DPA. We see that DSD, DLP, and DPA are in perfect mutual (i) Some of the peak heights calculated by FFT are ac-
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NOISELESS SYNTHESIZED SIGNAL SYNTHESIZED SIGNAL with 20% RANDOM NOISE
(SIGNAL LENGTH: 0.5K and 0.025K) (SIGNAL LENGTH: 0.5K)
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FIG. 2. Spectra for a noiseless synthesized time signal consisting of the sumG. 3. Spectra for a “noisy” synthesized time signal consisting of the sum
of six exponentially damped sinusoids with the known amplitudes, phasessf six exponentially damped sinusoids with the known amplitudes, phases,
and damping constants taken from Ref. 7. DSD magnitude and absorptiognd damping constants taken from Ref. 7. The Gaussian distributed zero-
spectra are shown in Figs. 2 and 3. DPA and DLP give the same results. mean random noise of standard deviation 20 is added to the signal. The
panels in the right-hand column show magnifications of the doublet at
0.505-0.510 kHz with the full and dashed lines representing the noiseless
and “noisy” spectra, respectively.
curate only when using the full signal length bf=512,
whereas those obtained with DPA are exactly those of the
input parameters, even atN/20=0.025 K. over in order to produce a somewhat cleaner final spectrum.
In the second example, a time signal was constructetiowever, we find that plotting the peak positions found in
identical to the one used for Fig. 2, except that Gaussiaeach calculation is far more illuminating.
distributed white noise with zero-mean and standard devia- The absorption spectra depicted in the top panels of Fig.
tion =20 is added. This 20% noise contamination of the4 are obtained by the straightforward direct runs of DPA for
signal produces FFT and DPA spectra that are depicted ithe two selected windowswe[0.2,0.33kHz and o
Fig. 3. The superior frequency resolving power of DPA is €[0.45,0.53 kHz, in which we know that we have three and
clear and, in contrast to FFT, the present method again sepawo signal peaks, respectively. The lower panels represent
rates the close doublet at 0.505-0.510 kHz, which is furthethe variation of Reafy) as a function of frequencyy, for
magnified in the panels on the right-hand side of Fig. 3. Theeach of 50 different DPA calculations displayed as crosses at
spectra calculated by DPA have not been subjected to anye ordinate axis. As seen in the lower panels of Fig. 4, for
noise reduction procedures, and yet the successful resolutimome of the peaks Rgf) exhibits an extraordinary stability
of all six genuine peaks is achieved without any difficulty. along the ordinate and, as such, they appear insensitive to the
In the third example we study a problem of noise reducpresence of the additional 7.5% level of noise. Other struc-
tion and illustrate the utility of the stabilization method tures, however, appear to be more unstable. The former are
(SM).1819 For this purpose, we again use the synthesizedecognized to be the known true peaks, whereas the latter
signal with 20% noise from the second example. Here, ratheones are identified as noise and can be dropped from the
than using model-dependent parameters to detect the stabline list” {w,,d,} to obtain a cleaner spectrum. A closer
poles, we employ a ‘“generic-type feature” consisting of inspection of the peak parameters obtained from each differ-
adding more noise to the already “noisy” signal. This pro- ent DPA calculation reveals that those of the true signal are
vides an illustration of varianl) from Sec. Il F. identical to several significant figures, whereas those of the
Basically, we add an additional 7.5% Gaussian distrib-corresponding noise poles are more widely dispersed. Indeed
uted, zero-mean white noise on top of the existing 20% nois&M appears to work spectacularly well for this synthesized
level, compute the peak parameters, and repeat the same pgignal and it is a straightforward task to distinguish between
cedure, each time starting with the original signal. In so donoise and signal features. This, as an illustration of the vari-
ing we do not introduce progressively more noise, but ratheant (Il) from Sec. IIF, provides evidence that SM can be
each time a different 7.5% “noisy” distribution is added to used successfully in noise identification for signal process-
the original signal. Each repeated DPA calculation results iring.
a new set of peak parametersy,,d,}. The parameters Next we present in Fig. 5 the results of our fourth ex-
found from this sequence of calculations could be averagedmple concerning a protein isotopic fine structure. The ex-
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SYNTHESIZED SIGNAL with 20% RANDOM NOISE
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FIG. 5. ICR spectra of bovine insulin. Chirped excitation. Signal supplied
by A. Marshall, NHMFL-FSU(Ref. 20 and obtained through a single time-
domain data acquisition by means of the external accumulation electrospray
ionization (ESI) together with the heterodyne quadratyfef. 20. The
numberL given in each panel in the right column is the “current order” of
FIG. 4. Absorption spectra for a “noisy” synthesized time signal consisting DPA (see the tejt

with the known amplitudes, phases, and damping constants taken from Ref.
7. The Gaussian distributed zero-mean random noise of standard deviation
20 is added to the signal. Top panel: The straightforward direct runs of

DPA. Bottom panel: Variantll) of the stabilization method with an addi-

tional 7.5% random white noise on top of the already existing 20% noise

(see the text The crosses represent [ obtained from 50 different DPA
calculations that are the ordinates.

perimental ICR time signal for bovine insulin was obtained 2|
by means of the external accumulation electrospray ioniza-
tion (ESI) at NHMFL (Tallahassee’® The measured time

40

signal contains a considerable level of noise as is clear from

the FFT spectrum. Here, we illustrate the varidhfor noise

identification as described in Sec. Il F. We empirically deter-

mine the converged ordér of DPA, which leads to rather
stable spectral features as is evident from the right-hand side, |
of Fig. 5. As can be seen in Fig. 5, the FFT has difficulty in

unambiguously resolving some peaks even with the full sig- ,,

nal length,N=32K. Also from Fig. 5, however, it is obvi-

ous that DPA is distinctly more successful than FFT, since it
can resolve all the individual elemental compositions with |
their correct relative abundanc&sWe know this as the pat-
tern of peaks and their relative heights seen in the present, |

0

DPA magnitude spectrum is in remarkably good agreement
with a simulated Monte Carlo spectrum which has been re- ,

ported previously in Ref. 20not shown in Fig. 5 to avoid

clutten.
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Our fifth example is the experimental ICR time signal FIG. 6. ICR spectra of equine myoglobiteft) and bovine carbonic anhy-

for equine myoglobin and bovine carbonic anhydrase I thaf
have been recorded using ESI at NHMFLallahassee’®

rase ll(right). Pulsed excitation. Both signals of lendth=8 K were sup-
plied by A. Marshall, NHMFL-FSURef. 20 and obtained through a single

c ! ] time-domain data acquisition by means of the external accumulation elec-
The results for FFT and DPA spectra are depicted in Fig. 6trospray ionizatioESI) together with the heterodyne quadrat(Ref. 20.



J. Chem. Phys., Vol. 113, No. 16, 22 October 2000 Fast signal processing 6553

Isotopic Fine Structure of Apotransferrin MOLECULAR CLUSTER IONS
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FIG. 7. ICR frequency spectra of the isotopic fine structure of apotrans-

ferrin. The signal was recorded at the Angatrbaboratory(Uppsala, Swe-  FIG. 8. ICR frequency spectra of singly charged molecular ighgN]"

den (Ref. 21). The panels in the right-hand column show magnifications of and [Cgo]*. The time signal was obtained via a single time-domain data

the spectra in the region of a doublet located at 61 kHz. The top two panelacquisition using the matrix assisted laser desorption ioniz&NoALDI ).

show the FFT magnitude spectra obtained udihg4 K and N=16 K of Using merely one quarter of the full signal length, DPA obtains the entire

the measured signal points. The bottom panel depicts the correspondireglemental structure with the correct relative abundance of all the isotopes.

DPA absorption spectrum obtained usiNg-4 K. The largest peak in the spectrum is associated with the monoisotopic
[*2Csg!*N]™ ion. The right-hand column shows magnifications of the two
smallest peaks.

It is clear from Fig. 6 that DPA is again superior to FFT. In
this case, both time signals have rather good signal-to-noiseording the time signal leads to a considerable deterioration
ratios (SNR) and a further noise reduction is unnecessaryin quality of the resulting FFT spectra. On the other hand, the
Note that the experimental conditions in recording these timsuperior frequency resolving power of DPA is preserved
signals were such that all the peak widths, as predeterminetiere, thus enabling the separation of the doublet Wth
should come out to be approximately the same. Indeed this is 4 K signal points as can be seen in the bottom panel of Fig.
verified to a satisfactory degree of accuracy in our calculated. This example with an excessively “noisy” experimental
spectra as seen in Fig. 6. signal is particularly important as it clearly demonstrates the
The sixth example is concerned with the isotopic finecapability of DPA to extract information which is otherwise
structure of apotransferrin. This experimental ICR time sig-inaccessible to FFT.
nal was measured at the Angstra.aboratory of the Univer- The seventh example is focused on the experimental ICR
sity of Uppsala(Sweden. In this measurement, the standard time signals fof CsgN]* and[Cg,]™ and the associated spec-
FFT-ICR method is used together with an accompanyingra calculated by FFT and DPA. These signals were recorded
technique called the collisionally induced dissociatibihe  at Department of Chemistry, University of California Santa
apotransferrin molecule is rather heavy with mass close t®arbara(Santa Barbara, CAby the matrix assisted laser
~77kDa. The sample was electrosprayed in a 50:5@esorption ionization of admixtures of azafullere(@;gN),,
methanol/water mixture to which 2%vol/vol) acetic acid and fullerene, G,.® The corresponding spectra are displayed
was added! In Fig. 7 we display the computed FFT and in Fig. 8 in order of increasing improvement. It is seen in
DPA spectra together with a magnification of a small fre-Fig. 8 that to resolve all of the peaks satisfactorily, FFT
guency range near a doublet at 61 kHz. With signal lengthsieeds the full signal length &§=256 K. On the other hand,
of N=4 K andN=8 K (not shown, FFT is unable to resolve DPA arrives at the same result by employing orily
the doubletMoreover, the expected increase in FFT resolu-=32 K. Even with such a signal, which é&ght timesshorter
tion is not obtained when further increasing the signal lengththan the one provided with the full acquisition time, DPA
to N=16 K. This is presumably due to the fact that increas-resolves the isotopic admixtures to within a fraction of one
ing the acquisition time to attain the necessary resolution haBa, given the appropriate conversion from the frequency to
significantly worsened the SNR. Such an occurrence in remass scale.
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MOLECULAR CLUSTER IONS 250MHz NMR Spectra of Ethyl Benzene
C.,N* WITH ADMIXTURES 8 s
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Frequency (kHz) Frequency (kHz) FIG. 10. NMR frequency spectra for a commercial standard 0.1% concen-
trate of ethyl benzene in CDglsolvent. The signal was recorded on a
FIG. 9. ICR frequency spectra of singly charged molecular {@@gN]" Bruker AC250 NMR Spectrometer. In the right-hand column, the top two
and [Cg]" embedded in the background of argon at different pressureganels show the FFT magnitude spectra obtained ubirgl K and N

ranging from p~1.0x 3_L079T9” to p~1.4% 10’7Tor_r._ The time signal =4 K of the measured signal points. The bottom two panels display the
was obtained via a single time-domain data acquisition using the matrixorresponding DPA magnitude and absorption spectra obtained bsing
assisted laser desorption ionizatiMALDI ). Left and right columns rep- =1 K. The left-hand column shows the corresponding spectra for the more

resent FFT and DPA, respectively. Using only a small fractid8—1/16 of complex aromatic region. In this case DPA neddis 2 K to reproduce

the full signal length, DPA obtains all the peak parameters and, in particularaceyrately all of the features observed in the FFT magnitude spectrum ob-
their correct relative heights that are proportional to the relative abundancgyined using the fulN=4 K of the measured signal points.

of the isotopes.

DPA exhibits a better resolving power than FFT. Moreover,

Our eighth example shown in Fig. 9 is an extension ofDPA achieves higher quality spectra than FFT with consid-
the preceding case to the ICR time signal[iGgN]* which  erably shorter lengths of this NMR time signal.
is now embedded in a background of argon at different pres- For NMR experiments, the total acquisition time of a
sures ranging from p~1.0x10 °Torr to p~1.4 single scan is not the time-limiting factor and the required
X 10 " Torr. The signal used in Fig. 8 corresponds to theresolution is readily attained with FFT. However, to improve
casep~1.0x10 ° Torr, which is nearly equivalent to the the SNR, itis customary to average the results obtained from
situation where the argon buffer is absent during the meaperhaps several thousand separate measurements. By work-
surement. As is clear from Fig. 9, DPA significantly outper-ing with a shorter signal, which usually invokes less noise,
forms FFT in the resolution power by using only 8—16 timesDPA is able to achieve the same result as FFT but with a
shorter signal lengths at all argon pressures displayed. signal generated fronfar fewer separate measurements.

All of the above-mentioned examples, including theHence, use of DPA will result in a significant decrease in the
model problem, fall into a category which is typical for most time needed to perform the experiments.
of the ICR time signals. However, this category does not We reemphasize here that our previous experience with
exhaust the type of signals to which DSD/DLP/DPA meth-the stabilization method in resonance quasibound states of
ods could be successfully applied. To illustrate this point, weatomic and molecular systems helped us to reduce signifi-
shall now consider the ninth test as our final example using aantly the noise level in realistic experimental signals. The
NMR time signal for a commercial standard 0.1% concenDPA performs excellently in the sense of converging fast
trate sample of ethyl benzene in D-chlorofof@DCl;) sol-  andfirst those polegw,} that are close to the unit circle. For
vent. This sighal was recorded on a Bruker AC250 NMRsuch poles the DPA represents a remarkably stable proce-
Spectrometer at the Department of Chemistry, University ofdure. The reason for this is that these poles are near the real
Southern California(Los Angeles, CA??> The correspond- axis and represent localized wave packets comprised of only
ing FFT and DPA spectra are depicted in Fig. 10. Againa limited number of continuum stat€soise background
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which can be sufficiently well described either by a locally strating their full range of usefulness and practicality is
compact Krylov basis séDSD) or by a rational approxima- needed?

tion (DPA). However, the poles far from the imaginary axis

ought to collect a great deal of continuum “noisy” states|v. CONCLUSION

with considerable spreading and, therefore, will not be rep- . . .
resented adequately by any of our methods. Here we make a Three new operationally different but mathematically

plausible correspondence between resonances, i.e., quagﬂuwalent, stable user-friendly and robust signal processing

bound states and true signal poles, on the one hand, as Wg“ethods named decimated signal diagonalizaD&D),

. decimated linear predictaiDLP), and decimated Padap-
as between continuum states or broad resonances and noise_ . . .

proximant(DPA) are introduced. They are presently imple-
poles, on the other hand.

. ) o L mented for performing the spectral analysis on experimental
In these “continuumlike” noise poles, some variations ci1

! : ata for ion cyclotron resonanc@CR) spectroscopy and
of the global parameters such as decreasing the signal Iengllluclear magnetic resonandeMR) spectroscopy. These pa-
Np or increasing the noise level in the given frequency win-

q d de h he basis i rameter estimators are shown to possess several important
ow [wmi”.’wm’”‘] would de a.CtOC ange, €.g., t € basis in advantages over the fast Fourier transf@FRT), which is a
DSD and introduce greater instabilities. This is a clsigr

. . X ) spectral estimator.
nature of noise which can afterwards readily be rejected = |, ~ontrast to the most frequently used signal processor,

from the spectra in Eqe7) and (8). The results of a more - ger \yhich can provide only the shape of a spectrum, DSD/
detailed study devoted to the noise reduction problem will bgy| p/ppA first determine all the peak parametéesitions,
reported shortly elsewhef8. magnitudes, relaxation times, phases,)&tnd then construct
Finally, let us consider what happens in decimated hary spectrum in any of the desired modesmplex, magni-
monic inversion analySiS when the noise removal is Hlessn_ide, power, absorpti()nAbsorption Spectra provide a better
than perfect” and contrast it with what occurs when the FFTresolution than the other modes. The availability of the peak
is used. Figure 7 is useful for this comparison despite the fagsarameters in our methods enables an easy phase correction
that here we actually find it unnecessary to apply our noisef the examined complex mode spectrum whenever a certain
reduction procedures to the DPA spectrum. The second rowumber of the signal points should be dropped for the reason
of Fig. 7 shows features typical of the FFT spectrum when af the experimental limitations. This ability to phase correct
significant level of noise is present. There is an increase ithe spectrade factoimplies that the well-known “phase
the baseline with excessive oscillations in the spectrum and problem” which has plagued ICR and NMR fields for many
considerable loss of resolution caused by noise features “fillyears no longer exists. To actually generate the absorption
ing in” between the existing peaks. The corresponding DPAspectra, the three proposed methods do not need any addi-
absorption spectrum prior to noise reduction is displayed irtional experimental work or postprocessing as opposed to
the bottom row of Fig. 7. The DPA spectrum still shows FFT.
FFT-type oscillations but these are now concentrated into a Moreover, our experience in numerous examples, a
modest number of usually small peaks; improved resolutiosmall part of which is illustrated in the present paper,
is the good news. The noise reduction techniques proposeiirongly indicates that the suggested methods are capable of
in this paper could reorganize many of these peaks and hop@roviding highly satisfactory results for a large variety of
fully categorize them as noidsee, e.g., Fig. 4 signals embedded in noise provided caution is exercised as
In situations where the level of noise relative to signal isexPlained in Sec. IV. Excellent quality of the corresponding
more Significant some noise peaks may remain. Unfortuspectra is achieved USing a novel noise reduction teChnique
nately, no reliable method yet exists to determine which ofP@sed upon the stabilization method from the resonance scat-
the remaining small peaks are signal and which are due t"ng theory. The evidence is presented justifying the usage

noise. In many ways the ethos of scientific reporting tends t§f n acquisition time which is considerably shorter, by a

favor and accept the FFT features as “unavoidable” but confactor of the order~(8~16), than the one customarily used

demns any method that gives “fake peaks.” Hence prudencd! FFT to arrive at the required resolving power. .
is called for when dealing with the issue of “small peaks” . The net conclgsmn which emerges f“{!m 9“r,,ar_‘a'ys'? in-
such as those found by DPA and displayed, e.g., in the bo{q'cateS that experimental ICR and NMR “noisy” time sig-

tom panel of Fig. 3. In a situation with no foreknowledge to nals might actually contain more information than can be

lend assurance to an assignment one must simply report tﬁaé(tracted by FFT in the _frequency domain. Such a drawb_ack
o . . can be overcome by using, e.g., our three parameter estima-
objective uncertainty of the analysis.

. . . .. tors, DSD/DLP/DPA. Of these three, DPA is recommended
Of course, it could happen that a signal is swamped with . . ; ) .
. ) S as the optimal method of choice since it requires the least
noise. In such a circumstance our methods will fail as no

) ) . numerical effort to arrive at the best possible result with the
region showing stable and unstable features will be found P

o . timal signal-to-noise ratio.
Here the true positions of the peaks are determined by botﬂp g

signal and noise. Obviously the FFT yields equally disas-

trous outcomes when faced with such situations. In sum'—A‘CK’\IOV\”‘EDG'vIENTS
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