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Abstract

An alternative method for obtaining high and interior eigenvalues of a dense spectrum is presented. The method takes
advantage of the accurate, well-tested and fully understood algorithms for the fast Fourier transform to create, in a natural
manner, a ‘window’ containing only a small number of eigenvalues of the spectrum. The method is easy to implement,
stable, efficient and accurate. q 1999 Elsevier Science B.V. All rights reserved.

1. The DSD method

In this Letter we address the problem of obtaining
all the eigenvalues of a large Hermitian matrix such
as occurs, for example, in the computation of the
rovibrational eigenspectrum of molecules. Our start-

w xing point is the Mandelshtam–Taylor 1 version of
w x Ž .the Wall–Neuhauser 2 filter diagonalization FD

method which has been further developed and inter-
w xpreted by Chen and Guo 3 . The alternative ap-

proach presented here will be called the decimated
Ž .signal diagonalization DSD method. In effect, both

FD and DSD introduce windowing techniques that
reduce the problem of diagonalizing a large data or
signal matrix, the typical elements of which involve
a time auto-correlation function of the propagator
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associated with the matrix to be diagonalized, to one
Žof diagonalizing a number of small data matrices of

.dimension of the order of 100–200 . Each small
matrix represents a window of eigenvalues in the
spectrum. The major difference between FD and
DSD lies in the manner in which the window is
introduced. In FD a basis of energy-localized
wavepackets is used to window the spectrum; these
wavepackets are constructed from the measured or
calculated signal. DSD, on the other hand, windows
the low-resolution spectrum, obtained by subjecting

Ž .the same signal to a fast Fourier transform FFT .
From this windowed low-resolution spectrum, a new

Žband-limited decimated signal or band-limited time
.auto-correlation function is created. This shortened

signal can, in principle, be analyzed by any of the
standard high-resolution signal processing-type tech-
niques. This new signal is obtained from the win-
dowed low-resolution spectrum by using the inverse
FFT. The accuracy, robustness and efficiency of FFT
are, by implication, features automatically shared by
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DSD. Of particular importance, however, is the fact
that the band-limited decimated signal of DSD pre-
serves, throughout the considered window, the full
content of the information contained in the original
signal.

As with FD, which is explained in detail in Refs.
w x1,2 , the starting point for DSD is to create a time

Ž .auto-correlation function c ns0, 1, . . . , Ny1 atn

a sequence of times, t snt , indexed by n with then

constant sampling time, t . As in time propagation
followed by Fourier transform, the c form a signaln

which here is not processed by FFT but by either
DSD or FD. Henceforth, we shall refer to the initial
operator to be diagonalized as the ‘Hamiltonian’ but
note that this can, in principle, be any other dynami-
cal operator. The c are created by a Chebyshevn

iterative propagation involving repeated applications
of the Hamiltonian matrix to an initial vector C '

Ž .C ts0 . When resonant, as opposed to bound, state
eigenvalues are required and where the Hamiltonian
has an absorbing potential, a modified Chebyshev

w xrecursion procedure 4,5 is employed to obtain the
c . The construction of the c is by far the computa-n n

tionally most intensive part of the calculation.
To resolve all eigenvalues, v , FFT would re-n

quire a signal of length N, with NtG2prDvmin

where Dv is the minimum spacing betweenmin

eigenvalues in the given window. For ‘high-resolu-
tion’ methods, such as FD and DSD, it can be shown

w xthat NtG4prDv is required 1,2 , where Dv isav av
Ž .the aÕerage local in the window eigenvalue spac-

ing. Usually Dv )Dv with the result that bothav min

FD and DSD need fewer c than FFT in order ton

resolve the eigenvalues and hence much work is
saved.

w xIn Refs 1,2 it was shown how the problem of
extracting the eigenvalue spectrum from the time
auto-correlation function can be recast in the form of
the generalized eigenvalue problem,

UB su SB . 1Ž .k k k

Ž . Ž .The elements of the Nr2 = Nr2 operator matrix
U and overlap matrix S in the Krylov basis set

w xdepend trivially upon the c 1 :n

U sc , S sc . 2Ž .i j iqjq1 i j iqj

Ž .The eigenvalues, u of Eq. 1 and v of thek k

Hamiltonian, are simply related via u sk
Ž .exp yiv t .k

There are, however, two problems with using Eq.
Ž .1 : first is that Nr2 is usually large and second that
the matrices are often ill-conditioned in that their

Žrank i.e., the number of eigenvalues in the spec-
. Žtrum is usually less than their dimension half the

.signal length . To overcome this, techniques such as
Ž .singular value decomposition SVD or Cholesky

decomposition, etc., can be used but they fail for
matrices of large dimension. Thus, it is essential to
break the single large-dimension problem into a
number of smaller problems that obtain eigenvalues
in windows.

The method used in FD to create, say M, win-
Ždows that cover the spectrum i.e., spectral range or

. w xbandwidth is described in Section 2B of Ref. 1 . It
suffices to say here that FD recognizes that the Ui j

are, in fact, matrix elements of the time propagator
between Krylov basis functions. The latter are them-
selves powers of the propagator on an initial vector

Ž .C 0 . These basis vectors are delocalized over v

causing the U matrix to be full. In order to set up ai j

window, a grid is chosen in a region of the v range;
this can be a Fourier spaced grid. Formally, at the
grid points, localized wavepackets are constructed
from linear combinations of the Krylov basis func-
tions. The resulting formulae for the matrix elements
of the propagator operator in this local basis must
now be evaluated and, of course, depend on linear
combinations of the c . The local nature of the basisn

results in a small size for the new matrix elements
between grid basis functions inside and outside the
window. Thus, a small matrix valid for the window
emerges.

The new windowing procedure employed in DSD,
and known in the field of signal processing as the

w xbeam-space method 6 , is sufficiently simple to be
best described in words. First we apply a FFT, which

� 4scales as N log N, to the c . A low-resolution2 n

spectrum, which does not reveal dense eigenvalues,
will result since, in general, N will not be suffi-
ciently large to resolve them. Again we note that
NtG2prDv is needed for FFT which is usuallymin

larger than NtG4prDv required by both DSDav
Žand FD. Now, using the Fourier grid points for only

.at these points is the FFT accurate as window end
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points, the low-resolution spectrum is divided into M
windows, each containing at most 200 Fourier grid
points. For each window separately we obtain its
spectrum by the creation and processing of a new

w x w xshort signal of length N s NrM , where x is theD

integer part of x. We create this signal for every
Ž .window by ignoring i.e., setting to zero the low-

resolution spectrum outside the window and shifting
that remaining within the window to a position sym-
metric about the frequency origin. That is, if the
center of the window is at vsv , then we subtract0

v from all frequencies in the window. This new0

spectrum is then subjected to an inverse FFT to
create cbl, where the superscript ‘bl’ refers ton

‘band-limited’ signal.
bl ŽAt this stage, c still consists of N points i.e., itn

.is the same length as the original signal, c . How-n

ever, since the window bandwidth has been reduced
by a factor of M, the sampling time, t , can be
increased by a factor of M yielding t sMt . InD

this way, we form a new short signal called the
band-limited decimated signal, cbld. In other words,n

we can recreate the spectrum inside the window
� bld bl bld bl bldexactly using only the set c sc , c sc , c0 0 1 M 2

bl 4sc , . . . of length N . Crucially, no information2 M D

within the window is lost during this process; the
new signal is a function of all the old signal points,
c .n

In principle, we can create in this way M theoreti-
w xcally equivalent signals each of length N s NrM .D

� bl bl bl 4These M signals are the sets c , c , c , . . . ,j jqM jq2 M
Ž .js0, 1, . . . , My1 . In practice, for a noiseless
problem, these signals give the same eigenvalues to
machine accuracy. Since any of these signals is
perfectly valid for the spectrum in the window of
interest, we create a generalized eigenvalue problem

Ž . Ž . Ž .of size N r2 = N r2 exactly as in Eq. 1 ,D D

except with N now replaced by N and the originalD

signal by one of the band-limited decimated signals
discussed above. The matrices are, in general, still
ill-conditioned but, since their dimension is small,
SVD type procedures are effective and the methods

w xdescribed in Section 2B of Ref. 1 can be employed.
The required eigenvalues, v , in the window arek

Ž .then obtained from u sexp yi Mv t and the cen-k k

tral frequency, v , added to the real part of each v0 k
Ž .to obtain the final result. Note that Eq. 12 of Ref.

w x1 for the amplitudes, d , also holds in the contextk

Žof the band-limited or decimated and, therefore,
.DSD signal. In DSD this equation gives excellent

results, while for FD an averaging procedure is
w xneeded 1 . Note also that no matrix element evalua-

tion is needed in DSD as it is in FD; the FFT and
inverse FFT actually replace this and are themselves
very robust and accurate. An exact analytic formula
for the cbld in terms of the original c can be derivedn n

and used to replace the FFT and its inverse. How-
ever, we choose not to use this formula in favor of
the well-tested and accurate FFT routines that are

Ž .available in numerical libraries e.g., NAG, IMSL .
Note that DSD can be viewed as a method which

creates its window prior to processing the signal
whereas FD accomplishes this during processing. As
such, the band-limited signal can be used to reduce
the dimension of the sets of ill-conditioned signal
processing equations, that occur in any non-linear
processing method, so that techniques that overcome
ill-conditioning can be effective.

2. Results

As a first test of DSD, we created a signal of the
form

K

c s D exp yng t cos nw tqf 3Ž . Ž . Ž .Ýn k k k k
ks1

generated for ns0, 1, . . . , N with Ks500 and ts
1. The signal parameters were each chosen randomly
with the real valued frequencies, w , and decay rates,k

w xg , distributed uniformly in the intervals 0, p andk
w x0, 0.01 respectively. The amplitudes, D , were alsok

w xchosen to be uniformly distributed in 0, 100 and the
w xphase, f , in the interval 0,2 p . Such a signal cank

be considered to be typical of the time auto-correla-
tion function one would obtain for a dissipative
system.

In Fig. 1 we compare the complex values for
1 Ž .v sw y ig and d s D exp if obtained us-k k k k k k2

Ž . Ž .ing DSD circles with the exact values plus signs
Ž .for a single small frequency window with Re v g

w x Ž1.5, 1.7 . We see that, even for Ns2000 which is
the minimum value of N needed to ensure that DSD
can resolve all eigenvalues in the frequency interval
w x.yp, p , essentially all eigenvalues, w , are con-k
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Fig. 1. Comparison between exact parameters of a model signal,
Ž . Ž . ŽEq. 3 , denoted by q with those calculated with DSD denoted
. Ž . Ž . Žby ` . In panels a and b the calculated values of complex

1. Ž .valued v sw yig and d s D exp if are obtained usingk k k k k k2

Ž . Ž .a signal with Ns2000; those in panels c and d with Ns2400.

verged and only two of the d show any significantk
Ž Ž ..deviation from the exact values see panel a .

When N is increased by 20%, the calculated results
are indistinguishable from the exact values on the
scale of the figure. A close inspection of the results
reveals that even the two less accurate d from panelk
Ž .a are obtained to at least 5 significant figures in

Ž .panel b .
As a more realistic test of the DSD method for

obtaining the eigenvalues of the Hamiltonian of a
real, physical system, we also calculated the local
mode doublets of SO using the time auto-correla-2

tion functions computed and kindly made available
w xto us by H. Guo 7 . Note that, in this case, the time

auto-correlation functions are both real and time-
symmetric: c sc , ns0, . . . , Ny1. In FD, thisyn n

symmetry is utilized to construct a real symmetric
analogue of the generalized eigenvalue problem, Eq.
Ž . w x1 1 . In DSD, the situation is slightly different: the
band-limiting process is not time-invariant and re-
sults, in general, in complex values for the cbld andn

Ž .hence also for the matrix elements in Eq. 1 . This
admitted drawback is, fortunately, a minor one; since
the matrices themselves are small, the additional

Ž .computational effort required to solve Eq. 1 with
complex arithmetic remains insignificant when com-
pared with the calculation of the time auto-correla-

Table 1
Comparison between calculated energies in cmy1 for local mode

Ždoublets of SO . Calculations: DSD decimated signal diagonal-2
. Žization, this Letter and FD filter diagonalization, H. Guo, Ref.

w x .7 and private communication . Calculated energies were ob-
tained using Ns180000 values of the auto-correlation function
c generated by the Chebyshev wavepacket propagation methodn

and kindly provided to us by H. Guo. The labels n , n and n1 2 3

denote the quantum numbers for symmetric stretch, bend and
antisymmetric stretch, respectively

n n n Parity DSD FD1 2 3

9 0 0 even 10102.41 10102.41
8 0 1 odd 10252.16 10252.16

10 0 0 even 11188.29 11188.29
9 0 1 odd 11327.15 11327.15

11 0 0 even 12266.73 12266.73
10 0 1 odd 12395.30 12395.30

12 0 0 even 13337.64 13337.64
11 0 1 odd 13455.26 13455.26

13 0 0 even 14400.87 14400.87
12 0 1 odd 14506.83 14506.83

14 0 0 even 15456.27 15456.27
13 0 1 odd 15549.76 15549.76

15 0 0 even 16503.49 16503.49
14 0 1 odd 16583.68 16583.68

16 0 0 even 17542.06 17542.06
15 0 1 odd 17608.16 17608.16

17 0 0 even 18571.17 18571.17
16 0 1 odd 18622.48 18622.48

18 0 0 even 19589.48 19589.49
17 0 1 odd 19626.62 19626.62

19 0 0 even 20594.89 20594.89
18 0 1 odd 20618.60 20618.60

20 0 0 even 21584.79 21584.79
19 0 1 odd 21597.97 21597.97

21 0 0 even 22557.23 22557.23
20 0 1 odd 22564.31 22564.31

22 0 0 even 23511.93 23511.93
21 0 1 odd 23514.84 23514.84

23 0 0 even 24449.46 24449.47
22 0 1 odd 24450.94 24450.94
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tion function itself. However, we note that to obtain
accurately all of the energies presented in Table 1, it
is necessary to utilize the ‘negative time’ informa-
tion in the computed c . This can be achievedn

efficiently either by including all 2 Ny1 of these cn

in the construction of the low-resolution spectrum by
standard FFT or by replacing this step with a fast
cosine Fourier transform. Note, however, that the
inÕerse FFT used to compute the band-limited signal
from the windowed low-resolution spectrum cannot
be replaced in this manner.

In Table 1 we compare the energies obtained
using DSD with those using FD presented in Ref.
w x7 . We see that DSD reproduces the FD results
almost exactly, with the only exception being a small

y1 Ž .difference of 0.01 cm for level 23, 0, 0 .

3. Conclusion

The problem of obtaining high and interior eigen-
values of a dense spectrum is studied and an alterna-
tive method called decimated signal diagonalization
Ž .DSD is proposed. The DSD method creates, in a
natural way, a window in the low-resolution spec-
trum by taking advantage of the well-known, accu-
rate and robust fast Fourier transform algorithms that
are widely available and well-tested.
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