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Abstract
We apply transition state theory to coupled Gaussian wave packets and calculate
thermal decay rates of Bose–Einstein condensates with additional long-range
interaction. The ground state of such a condensate is metastable if the contact
interaction is attractive and a sufficient thermal excitation may lead to its
collapse. The use of transition state theory is made possible by describing the
condensate within a variational framework and locally mapping the variational
parameters to classical phase space as has been demonstrated in the preceding
paper (Junginger et al 2012 J. Phys. A: Math. Theor. 45 155201). We apply this
procedure to Gaussian wave packets and present results for condensates with
monopolar 1/r-interaction comparing decay rates obtained by using different
numbers of coupled Gaussian trial wavefunctions as well as different normal
form orders.

PACS numbers: 67.85.Hj, 67.85.Jk, 03.75.Kk

(Some figures may appear in colour only in the online journal)

1. Introduction

Since their first experimental realization in 1995 [1], Bose–Einstein condensates (BECs) have
become an active field of theoretical and experimental investigations. Moreover, BECs with
additional long-range interaction are of special interest, because the interactions can be tuned
from predominantly short-range interaction to the dominance of the long-range interaction by
manipulating the s-wave scattering length via Feshbach resonances. The latter allow varying
the contact interaction in strength as well as in sign. In case of a negative scattering length,
i.e. an attractive interaction, the ground state of the BEC is metastable so that the condensate
may decay by collapsing after a sufficient thermal excitation.

The thermal decay rates of BECs without long-range interaction have already been
estimated by Huepe et al [2, 3] within a simple variational ansatz of a single Gaussian
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wavefunction. This approach can, of course, also be applied to condensates with long-range
interaction, but it will, because of its simplicity, only yield qualitative results.

In this paper, we present an improvement by using an extended variational ansatz
with coupled Gaussian trial wavefunctions, which are described in the framework of a
time-dependent variational principle and which have proven their capability to reproduce
the numerically exact results or even to exceed them [4, 5]. Within this variational ansatz, the
BEC exhibits two stationary states, one of which corresponds to its metastable ground state,
while the other one is an excited state of saddle-centre-· · ·-centre type. The decay rate of the
condensate can, thus, be calculated by means of transition state theory (TST) [6], because
the collapsing BEC has to cross this saddle in the subspace of the variational parameters
and the decay rate is given by the flux over the saddle.

Although classical TST requires the knowledge of a Hamilton function H(q, p) given in
phase space coordinates q, p, its application is made possible by locally mapping the variational
parameters to action variables of the classical phase space in the vicinity of the fixed points.
This local mapping to phase space is performed with the use of a normal form expansion of
the equations of motion determining the time evolution of the variational parameters as well
as the respective mean-field energy functional.

For systems with a known classical Hamiltonian this procedure has been shown to
reproduce the decay rates of the classical and the quantum normal forms in the limits of
narrow and broad wavefunctions, respectively [7]; and, moreover, it applies well to systems
where such a Hamilton function is not directly accessible, as is the case for the variational
approach to BECs with coupled Gaussian wavefunctions.

In order to demonstrate the applicability to BECs and to calculate their decay rates, our
paper is organized as follows. First, we review the description of the variational ansatz in
the framework of a time-dependent variational principle as well as the procedure of locally
mapping the variational parameters to phase space. Then, we illustrate the calculation of the
thermal decay rates by applying TST and at the end present and discuss the results for BECs
with monopolar 1/r-interaction.

2. Theory

We consider a condensate consisting of N bosons which exhibit an additional long-range
1/r-interaction as has been proposed by O’Dell et al [8]. Such systems have not yet been
experimentally realized, but because of the spherical symmetry of this interaction they form
an important model system.

At ultra-low temperatures, this quantum gas can be described by a single wavefunction
ψ(r, t) whose time evolution is given by the extended Gross–Pitaevskii equation (GPE):

Ĥψ(r, t) = i ∂tψ(r, t), (1)

where the mean-field Hamiltonian,

Ĥ = −� + Vt + Vc + Vm, (2)

describes the interaction with an external trapping potential Vt, the inter-atomic contact
interaction Vc with the s-wave scattering length asc, and the long-range monopolar interaction
Vm:

Vt = N4γ 2r2, (3)

Vc = 8πasc |ψ(r)|2 , (4)

Vm = −2
∫

d3r′ |ψ(r′)|2
|r − r′| . (5)
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To obtain the GPE in this dimensionless form, we introduce ‘atomic’ units [9] with the
help of the constant u which determines the strength of the attractive monopolar inter-atomic
interaction V (r, r′) = −u/

∣∣r − r′∣∣ [8]. Lengths are measured by means of the ‘Bohr radius’
au = �

2/(mu), energies in units of the ‘Rydberg energy’ Eu = �
2/(2ma2

u) and times in units
of tu = �/Eu. In addition, we apply a particle number scaling according to

r → N−1aur, (6)

asc → N−2auasc, (7)

t → N−2tut, (8)

E → N2EuE, (9)

ψ → (auN)−3/2ψ, (10)

which eliminates the explicit occurrence of the particle number N in the GPE.

2.1. Application of TST to the GPE

The usual way of solving the GPE, equation (1), is either by performing an imaginary time
evolution on a grid or by integrating it outwards with initial values for the wavefunction and
its derivative [10]. The former method can also be applied to more general geometries and
more complicated interaction potentials such as the dipole–dipole interaction, while the latter
is limited to the case of effectively one-dimensional systems like the radially symmetrical
BEC investigated in this paper.

In order to apply TST it is furthermore essential to precisely define the transition state of
the system, and therefore to find the unstable stationary solution of the GPE. However, since
an imaginary time evolution will only yield the ground state of the system this method cannot
be applied. Thus, the approach may be limited to the simplest case of a monopolar BEC in a
radially symmetrical trap.

If the stable (s) and the unstable (u) solution of the GPE are found, the corresponding
local normal form Hamiltonians are required in addition. Their lowest order quadratic
approximations will take the form [6]

H (s)(q, p) = H (s)
0 +

d∑
j=1

iω(s)
j p jq j, (11)

H (u)(q, p) = H (u)

0 + λp1q1 +
d∑

j=2

iω(u)
j p jq j, (12)

respectively, where λ is the eigenvalue corresponding to the decay channel of the BEC.
Assuming their knowledge, the evaluation of the respective phase space integrals [11] is trivial
and one obtains the decay rate

	 = ω
(s)
1

2π
e−β(E (u)

0 −E (s)
0 )

d∏
j=2

ω
(s)
j

ω
(u)
j

, (13)

which is a generalization of the formula given in [3] to d degrees of freedom.
The frequencies ω

(s,u)
j can, in principle, be obtained by the Bogoliubov–de Gennes (BdG)

equations. However, this would present difficulties since they exhibit an unbounded spectrum
so that the decay rate given by equation (13) will, in general, either diverge or vanish. Moreover
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it is questionable to what extent a local quadratic approximation will yield appropriate results
after integration over the whole phase space.

An extension of the Hamiltonians (11) and (12) to higher order terms would require the
treatment of small perturbations to the solution of the GPE in higher order approximations
than the linear one resulting in the BdG equations. In conclusion, a numerically exact approach
for the application of TST to the GPE does not appear promising.

All these problems can, however, be circumvented if one treats the GPE within a variational
framework. This is, in principle, not limited by any restrictions concerning the geometry of
the system and the number of degrees of freedom, respectively. Moreover, it can be applied to
various interaction potentials, allows a rather simple determination of the stable and unstable
stationary solutions of the GPE and with it a precise definition of the transition state. Even
the problem of unbounded spectra does not occur because one makes use of a finite set of
variational parameters. Furthermore, an extension to higher order normal form Hamiltonians
can be carried out since the respective terms are related to numerically easily computable higher
derivatives of the equations of motion which determine the time evolution of the variational
parameters.

2.2. Variational approach to the GPE

In the following, we will describe the condensate by means of a variational ansatz

ψ(r, t) = ψ(r, z(t)) =
Ng∑

i=1

exp(Air
2 + γi) (14)

in the form of a radially symmetrical Gaussian wave packet. Here, the complex and time-
dependent variational parameters Ai and γi determine the width, phase and weight of each
Gaussian, and we summarize all these parameters in the vector z = (z1, . . . , zNg )

T with
zi = (Ai, γi).

An approximate solution of the time-dependent GPE (1) within the parameter subspace
of the wavefunction (14) is given by the McLachlan variational principle [12]

I = ‖iφ − Ĥψ‖ != min, (15)

where the quantity I is minimized with respect to φ and φ = ψ̇ is set afterwards. Its application
to the parametrized wavefunction (14) yields the set of first-order differential equations [13]

Kż = −ih, (16)

which determines the time evolution of the variational parameters, and where the matrix K
and the vector h are defined by

Kmn =
∫

d3r
(

∂ψ

∂zm

)∗
∂ψ

∂zn
, (17)

hm =
∫

d3r
(

∂ψ

∂zm

)∗
Ĥψ. (18)

The mean-field energy of the condensate is given by the expectation value

E(z) =
∫

d3rψ∗(r)
(

−� + Vt + 1

2
(Vc + Vm)

)
ψ(r) (19)

and is also a function of the variational parameters.
For the ansatz with coupled Gaussian wavefunctions (14), all integrals occurring in

equations (17)–(19) can be calculated analytically. However, since these calculations have
been illustrated in detail elsewhere and are not the subject of this paper, we refer the reader to
[4, 5] for their evaluation.
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2.3. Mapping to phase space

The application of TST in phase space [6] requires knowledge of a (local) Hamilton
function which describes the dynamics of the BEC in the vicinity of the unstable fixed
point corresponding to the ‘activated complex’. Such a Hamiltonian can easily be obtained
even globally if one uses a single Gaussian to approximate the BEC’s wavefunction [9]. In
contrast to that, this is not possible in the case of coupled wavefunctions, as we use them in
this paper. We therefore apply the procedure presented in [7] to construct a local Hamilton
function in the vicinity of the fixed points and, in this section, give a short overview of the
steps performed (see [7] for details).

To obtain the local Hamilton function, which, equivalently to equations (16) and (19),
describes the dynamics and the energy of the system, one first Taylor expands the equations
of motion (16) in the vicinity of a fixed point z0 up to the order nmax and splits the expansion
into its real and imaginary parts. This yields the real vector field

ẋ = a(x) =
nmax∑
n=1

an(x), (20)

with x = (Re(z1 − z01), Im(z1 − z01), . . . , Re(zd − z0d ), Im(zd − z0d )) being the deviation of
the variational parameters from the fixed point and an(x) summarizing all terms homogeneous
of degree n.

In the next step, equation (20) is diagonalized with respect to its linear part a1(x) = A1 · x
and to further ‘simplify’ the higher order terms, a near-identity transformation x → y given
by (cf [14])

x = φε(y), x = φε=0(y) = y (21)

is performed. Here x = φε(y), which gives the identity transformation for ε = 0, is a solution
of the differential equation dx/dε = g(x), and for an appropriate choice of the generating
function g(x) brings equation (20) into the form (i = 1, . . . , d)

ẋ2i−1 =
∑

m

βm(2i−1)x
m2i−1

2i−1 xm2i
2i

∏
j �=i

(x2 j−1x2 j)
m2 j , (22)

ẋ2i =
∑

m

βm(2i)x
m2i
2i−1xm2i−1

2i

∏
j �=i

(x2 j−1x2 j)
m2 j . (23)

This form is due to the fact that the eigenvalues of equation (16) occur pairwise with different
sign and is obtained as long as the eigenvalues are in rational independence and do not fulfil
the condition of ‘resonance’

λm − λi = 0, (24)

for integer vectors m, with |m| � nmax.
Analogously, the energy functional (19) is also Taylor expanded and transformed

according to the change of variables in the equations of motion which results in the expansion

E =
∑

m

ξm

∏
j

(q̃ j p̃ j)
m2 j , (25)

after introducing canonical coordinates q̃i = x2i−1 and momenta p̃i = x2i. Moreover, with the
latter definition, the equations of motion (22) and (23) can easily be integrated to a common
Hamilton function

H̃ =
∑

m

βm(2i)

m2i
(q̃i p̃i)

m2i
∏
j �=i

(q̃ j p̃ j)
m2 j , (26)
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according to Hamilton’s equations, if the coefficients βm satisfy the conditions of integrability

βm(2i−1) = −βm(2i), (27)

βm(2i−1)

m2i
= βm(2i′−1)

m2i′
, (28)

βm(2i)

m2i−1
= βm(2i′ )

m2i′−1
(29)

for all i, i′ = 1, . . . , d (i �= i′). In order to guarantee both the satisfaction of these conditions
of integrability as well as the equivalence of the integrated Hamiltonian H̃ with the energy
functional (25), an additional transformation is necessary. For this purpose, we scale the phase
space variables with time-independent functions νqi (q, p) and νpi (q, p) according to

q̃i = νqi (q, p) qi, p̃i = νpi (q, p) pi. (30)

With the constraint of their product

μi(q, p) = νqi (q, p) νpi (q, p) = 1 +
∑

m

μm

∏
j

(q j p j)
m2 j (31)

to be a formal power series of the products qj p j, an appropriate choice of the μm [7] finally
guarantees the equivalence of the integrated Hamiltonian (26) with the transformed energy
functional

H (J) = E (J) = H̃ (J) . (32)

Here, action variables Ji = qi pi and Ji = iqi pi, respectively, have been introduced depending
on whether the corresponding eigenvalue of the linearized equations of motion is real or purely
imaginary. Equation (32) finally serves as a classical Hamilton function in the sense that it
locally reproduces the energy of the system, and its Hamiltonian equations of motion describe
the dynamics in the vicinity of the fixed point equivalently to equation (16).

2.4. Thermal decay rates

Within the variational approach to monopolar BECs using coupled Gaussian wavefunctions,
the set of differential equations (16) exhibits two fixed points [5]. One of them is stable
corresponding to the metastable ground state of the condensate and the other one is of saddle-
centre-...-centre type corresponding to an unstable excited state.

These properties, of course, also hold after having applied the near-identity transformation
described above in order to locally map the variational parameters to phase space. The
constructed Hamilton function in phase space thus takes the form depicted in figure 1, featuring
a local minimum and a saddle. The latter has precisely one unstable direction and can, therefore,
be used to divide the phase space into a region of ‘reactants’ formed by the metastable BEC and
a region of ‘products’ in the form of the collapsed condensate. Calculating the decay rate is,
thus, possible by applying the TST (see [6]) in association with the constructed Hamiltonian,
because the only possibility for the BEC to collapse is by crossing this saddle, and the decay
rate is given by the flux over it.

At a fixed energy, the directional flux through the dividing surface between ‘reactants’
and ‘products’ is given by [6, 15, 16]

f (E ) = (2π)d−1V(E ), (33)

with V(E ) being the phase space volume of the actions (J2, . . . , Jd ) which is enclosed by the
contour H(0, J2, . . . , Jd ) � E and J1 = 0 corresponding to the ‘unstable direction’ of the

6
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Figure 1. Schematic drawing of the phase space structure of the constructed Hamilton function
in equation (32). The metastable ground state of the BEC corresponds to a local minimum, and
classical decay is possible after thermal excitation. If the only decay channel (solid arrow) requires
crossing a saddle point in phase space, the thermal decay rate is given by the Boltzmann average
of the flux over this saddle.

saddle. If the condensate is in contact to a bath of finite temperature, the thermal decay rate
is then given by the Boltzmann average of equation (33). After a short calculation, this yields
(cf [11])

	 = 1

2π�dβZ0

∫
e−βH(0,J2,...,Jd ) dJ2, . . . , dJd, (34)

where β = 1/kBT , and Z0 is the canonical partition function. Because nearly all states will be
localized in the vicinity of the ground state, we can well approximate the latter by

Z0 = 1

�d

∫
dJ′

1, . . . , dJ′
de−βH ′(J′

1,...,J
′
d ), (35)

with H ′(J′
1, . . . , J′

d ) being the normal form expansion at the local minimum. Furthermore,
taking into account the particle number scaling (10), the thermal decay rate is given by

	 = 1

2πβ

∫
e−N2βH(0,J2,...,Jd )dJ2, . . . , dJd∫
dJ′

1, . . . , dJ′
de−N2βH ′(J′

1,...,J
′
d )

, (36)

where we identify N2β as the particle number scaled inverse temperature.
However, both integrals in equation (36) will, in general, not converge, which is due to

the fact that the normal form expansion has been truncated at the order nmax. We will therefore
restrict the area of integration to the condition

ωi = ∂H

∂Ji
� 0 (37)

for all i, in view of the fact that all frequencies occurring on the tori in phase space have to be
non-negative.
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3. Results and discussion

In order to calculate the thermal decay rate of BECs with monopolar interaction, we first
determine the stable and the unstable fixed point of the equations of motion, equation (16), for
given physical parameters N4γ 2 and asc, and Taylor expand these in the vicinity of the fixed
points up to a chosen order nmax. Then, we proceed as described in section 2.3 to map the
variational parameters to classical phase space variables and obtain the corresponding local
Hamilton functions H(J) and H ′(J′), respectively, from the transformed mean-field energy
functional. With their knowledge, the decay rate is calculated from equation (36) under the
constraint (37).

As has been shown by Rau et al [5], the main contribution from the extended variational
ansatz occurs when the number of wavefunctions is increased from Ng = 1 to Ng = 2. We will,
therefore, restrict ourselves to that case in the following and, moreover, to Hamiltonians up to
fourth order of the action variables where we observe convergence.

For Ng = 2 coupled Gaussians, we have eight real variational parameters x, one of which
is fixed by normalizing the wavefunction to

∫
d3r |ψ(r, t)|2 = 1 and another corresponds to a

global phase that can be set to zero, so that we are left with six independent ones. Determining
the corresponding classical Hamiltonian in fourth-order approximation in J is already non-
trivial since, in this case, the expansion of the mean-field energy functional up to eighth order
in the variational parameters x (scalar-valued polynomial with 3003 terms) and that of the
equations of motions in seventh order of x (vector-valued polynomial with 10 290 terms) are
required. After the mapping to phase space, these are simplified to a fourth-order polynomial
of J with 35 terms, which is a reduction of the number of monomials by altogether 99.74%.

Note that a monopolar BEC, as investigated in this paper, features the phenomenon of
self-trapping under certain conditions [10], i.e. an external trap is not necessary to keep the
condensate stable. However, at least a weak trap is required here to avoid a dissolving of the
BEC, which otherwise would be a second decay channel. An external trap thus guarantees that
the only decay mechanism of the BEC is its collapse.

Figure 2 shows the thermal decay rate of a monopolar BEC calculated in third-order
normal form in J using a single Gaussian trial wavefunction (solid line) and Ng = 2 coupled
Gaussians (dashed-dotted line). For the calculation, we used a particle number scaled inverse
temperature of N2β = 900 and a weak trap with a frequency of N4γ 2 = 1.0 × 10−3.

One consequence of the use of coupled Gaussian wavefunctions is that the critical
scattering length acrit below which the condensate cannot exist is shifted to larger values
(cf [5]). For the parameters used here, this is the case from acrit ≈ −1.145 for a single
Gaussian trial wavefunction to acrit ≈ −1.024 for the two coupled ones. Figure 2 reveals
this behaviour for the whole curve and shows that the thermal decay rate calculated with a
single Gaussian, as it has also been used in [2, 3] for BECs without long-range interaction,
underestimates the result of the extended variational ansatz by several orders of magnitude
for a fixed value of the scattering length asc. Considering the point of the critical scattering
length, the decay rate changes only very little compared to a single Gaussian, and the general
dependence of the decay rate on the scattering length is retained exhibiting a rapid monotonic
increase when decreasing the scattering length. This increase, however, becomes weaker when
one approaches the critical value.

Figure 3(a) shows the thermal decay rates for different normal form orders (NFO).
The calculations have been performed for Ng = 2 coupled Gaussians and for the same
physical parameters used in figure 2. The first-order approximation (dashed line) overestimates
the decay rate over the whole range of the scattering length, whereas using the normal
form Hamiltonian in second order in J (dashed-dotted line) we observe the smallest values

8
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Figure 2. Comparison of the thermal decay rate of a monopolar BEC described with Ng = 1 (solid
line) and Ng = 2 (dashed-dotted line) Gaussian wavefunctions in dependence of the scattering length
asc in third-order normal form of the action variable. The data have been calculated for a particle
number scaled inverse temperature of N2β = 900 and a trap frequency of N4γ 2 = 1.0 × 10−3.
It can be seen that the critical scattering length is shifted to higher values when increasing the
number of Gaussians and that, for a fixed scattering length, the decay rate rises by several orders
of magnitude.

throughout. However, the results calculated by the third- and fourth-order Hamiltonian (dotted
and solid lines) cannot be distinguished within the linewidth of the plot (right inset in figure
3(a)), indicating convergence.

At a scattering length of about asc ≈ −0.999, one observes a strong deviation of the
calculated decay rate in the fourth-order approximation from all the other curves (left inset in
figure 3(a)), which is in contrast to the behaviour all along the rest of the investigated range of
the scattering length. As shown in figure 3(b), the eigenvalues λi of the linearized equations of
motion which are used for the normal form expansion run into ‘resonance’, i.e. equation (24) is
fulfilled within the numerical accuracy for the integer vector m = (0, 0, 1, 0, 6, 0) in seventh
order of the variational parameters, |m| = 7 (corresponding to the fourth order in J after
integration). This leads to the divergence of the fourth-order normal form Hamiltonian and
with it the decay rate at asc ≈ −0.999.

Moreover, the convergence behaviour of the decay rate with increasing NFO strongly
depends on the temperature of the system (see figure 4(a)). While, we observe fast converging
results for low temperatures and large particle numbers, respectively, i.e. large values of N2β,
where the decay rates calculated from the third- and fourth-order normal forms match within
the linewidth for N2β � 800 the convergence becomes worse when decreasing the scaled
inverse temperature N2β. For N2β � 200, the calculations even show a monotonic increase
of the decay rate with higher NFO.

In order to estimate the convergence of our results, we use the relative deviation

δi = (	NFO=i − 	NFO=i−1)/	NFO=i−1 (38)

shown in figure 4(b). The corrections to the decay rate obtained from the second- (i = 2) and
the third- (i = 3) order normal form are significant throughout, while this is only true for low
N2β for the fourth order (i = 4). For large values of N2β the corrections quickly shrink and in
the case of N2β � 1000 these are of the relative order of 10−4 to 10−5, clear evidence again

9



J. Phys. A: Math. Theor. 45 (2012) 155202 A Junginger et al

10-12

10-10

10-8

10-6

10-4

10-2

100

-1.04 -1.02 -1.00 -0.98 -0.96 -0.94 -0.92 -0.90

de
ca

y 
ra

te
 Γ

scattering length a

(a)

NFO = 1
NFO = 2
NFO = 3
NFO = 4

(b)

Figure 3. (a) Thermal decay rate of a monopolar BEC described with Ng = 2 coupled Gaussian
wavefunctions in dependence of the scattering length asc and normal form orders (NFO) 1–4 of
the action variables. Temperature and trap frequency are the same as in figure 2. Right inset: the
thermal decay rates obtained from the third- and fourth-order normal form Hamiltonian cannot
be distinguished any more, indicating convergence. Left inset: at asc ≈ −0.999 the eigenvalues
are close to ‘resonance’ and the normal form expansion as well as the decay rate diverge. As
shown in (b) this is the case because the condition of resonance (24) is numerically fulfilled for
m = (0, 0, 1, 0, 6, 0) for this set of physical parameters.

of the convergence of the decay rate in fourth-order approximation in the low-temperature
regime.

4. Summary and outlook

We have demonstrated the applicability of a variational approach to classical transition
state theory by means of calculating the thermal decay rates of Bose–Einstein condensates
(BECs) with an additional long-range interaction using coupled Gaussian wavefunctions. This
procedure has proven as a powerful tool for that purpose. For the extended variational ansatz
with coupled Gaussians, we observed convergence in eighth order of the variational parameters
at cold temperatures and high particle numbers, respectively. Moreover, the results show that
previous estimations using single Gaussian wavefunctions [2, 3], on the one hand, reveal a
good qualitative agreement with those obtained from the extended ansatz but, on the other

10



J. Phys. A: Math. Theor. 45 (2012) 155202 A Junginger et al

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

  

de
ca

y 
ra

te
 Γ

(a)

 NFO = 1 
 NFO = 2 
 NFO = 3 
 NFO = 4 

 -0.5

  0.0

  0.5

  1.0

  1.5

  100  1000

δ i

N2β

(b)
 i = 2 
 i = 3 
 i = 4 

Figure 4. (a) Thermal decay rate of a monopolar BEC for a fixed scattering length of asc ≈ −0.96,
a trap frequency of N4γ 2 = 1.0 × 10−3 and NFO 1–4 in dependence of the particle number scaled
temperature N2β. The BEC is described with Ng = 2 coupled Gaussian wavefunctions. (b) The
relative deviation δi defined in equation (38) is used in order to estimate the convergence of the
procedure.

hand, underestimate the thermal decay rate by several orders of magnitude for a fixed value of
the scattering length.

To further improve the results and to also achieve convergence for higher temperatures,
the procedure can be extended to the use of more than two coupled Gaussian wavefunctions
and higher normal form orders. This is also necessary in order to compute decay rates of
experimentally accessible dipolar BECs [17], where the symmetry breaking dipole–dipole
interaction and the occurrence of blood-cell-shaped condensates [18] require up to six coupled
and non-radially symmetrical Gaussians to reach the accuracy of the numerical results [5].
Convergence of the decay rate is, finally, expected when increasing both the number of
Gaussians as well as the normal form order.
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