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Verification of exceptional points in the collapse dynamics of Bose-Einstein condensates
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In Bose-Einstein condensates with an attractive contact interaction the stable ground state and an unstable
excited state emerge in a tangent bifurcation at a critical value of the scattering length. At the bifurcation point
both the energies and the wave functions of the two states coalesce, which is the characteristic of an exceptional
point. In numerical simulations signatures of the exceptional point can be observed by encircling the bifurcation
point in the complex extended space of the scattering length, however, this method cannot be applied in an
experiment. Here we show in which way the exceptional point effects the collapse dynamics of the Bose-Einstein
condensate. The harmonic inversion analysis of the time signal given as the spatial extension of the collapsing
condensate wave function can provide clear evidence for the existence of an exceptional point. This method can
be used for an experimental verification of exceptional points in Bose-Einstein condensates.
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I. INTRODUCTION

In Bose-Einstein condensates with attractive interactions
stationary solutions to the Gross-Pitaevskii equation exist only
in certain regions of the parameter space governing the physics
of the condensates. For the case of an attractive s-wave contact
interaction the condensate collapses when, for given negative
scattering length, the number of particles becomes too large
[1,2]. Alternatively, the collapse can be induced experimen-
tally by tuning the scattering length in the vicinity of Feshbach
resonances by adjusting an external magnetic field [3]. The
critical parameter values where collapse occurs correspond to
solutions to the stationary Gross-Pitaevskii equation, where the
stable ground state and an unstable excited state emerge in a
tangent bifurcation [4,5]. The coalescence of two or even more
eigenstates at critical points in the parameter space, where
both the eigenvalues and the eigenvectors of the states pass
through a branch point singularity and become identical, is a
characteristic property of an “exceptional point” [6,7].

Exceptional points cannot occur in quantum systems
described by the linear Schrödinger equation with Hermitian
operators. However, they can appear in systems described
by non-Hermitian matrices or in nonlinear systems which
depend on a multidimensional parameter space. Examples
are discussed, e.g., for complex atoms in laser fields [8], a
double δ well [9], the scattering of a beam of particles by a
double barrier potential [10], non-Hermitian Bose-Hubbard
models [11], or models used in nuclear physics [12]. The
resonant behavior of atom waves in optical lattices [13]
also shows structures originating from exceptional points.
However, the phenomenon of exceptional points in physics
is not restricted to quantum mechanics. Acoustic modes in
absorptive media [14] represent a mechanical system in which
branch-point singularities appear. Furthermore, manifestations
of exceptional points can be seen in optical devices [15–17].
The most detailed experimental analysis of exceptional points
has been carried out for the resonances of microwave cavities
[18–20], which open the possibility of studying the properties
of the complex resonance frequencies and the wave functions.

Critical phenomena also occur in nonlinear systems. Var-
ious types of bifurcations which are classified in catastrophe
theory [21] are branch point singularities and resemble

exceptional points in many aspects. Bose-Einstein condensates
are described in a mean-field approach by the nonlinear Gross-
Pitaevskii equation. The stationary solutions of this equation
exhibit a coalescence of two states due to the nonlinearity of the
equation, which turns out to be a branch-point singularity of the
energy eigenvalues and wave functions [22,23]. There is only
one linearly independent eigenvector of the coalescing states
at the exceptional point. These systems exhibit the typical
consequences of exceptional points, viz. the permutation of
eigenstates when an exceptional point is encircled in the
parameter space and a special type of geometric phase.

For condensates with an attractive gravitylike 1/r inter-
action [22,24,25] and for dipolar condensates [26–31] the
bifurcation points of the ground and excited state have been
analyzed in theoretical computations to verify that they show
signatures of exceptional points. The occurrence of exceptional
points in Bose-Einstein condensates is possible because of the
nonlinearity of the Gross-Pitaevskii equation, which implies
that different stationary states need not be orthogonal. The
stationary states of the nonlinear system can be simulated by
a linear matrix model with a non-Hermitian matrix. However,
the dynamics cannot be described by a linear model because
the superposition principle is not valid in nonlinear systems,
i.e., although the particle number and thus the norm of the
wave function is conserved the overlap between different states
can vary with time which means that there is no unitary time
evolution of the condensate wave function.

The stability properties of Bose-Einstein condensates are
determined by the eigenvalues of the Bogoliubov–de Gennes
equations which are obtained by linearization of the Gross-
Pitaevskii equation around the stationary states. The existence
of complex frequencies in the Bogoliubov spectrum indicates
a dynamical instability of the condensate [32–35]. Typically
a stable and an unstable state are created in a tangent
bifurcation, and a state changes its stability properties when
running through an exceptional point at a pitchfork bifurcation.
However, there are counterexamples where the occurrence of
an exceptional point and the stability change do not match. A
discrepancy between the occurrence of a pitchfork bifurcation
and the stability change has been observed in PT -symmetric
states of a condensate where atoms are incoupled to one side
and extracted from the other [36,37].
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An important property of exceptional points, which follows
from the branch point singularity structure, is the permutation
of the eigenvalues if the exceptional point is encircled in
the parameter space [6]. Using an analytic continuation of
the Gross-Pitaevskii equation the bifurcation points in Bose-
Einstein condensates can be encircled in the complex plane
of the scattering length. Indeed, after one circle around the
critical point a permutation of the two states is present clearly
indicating the existence of an exceptional point [22,30,31].
However, complex scattering lengths within the analytically
continued Gross-Pitaevskii equation are not experimentally
accessible, and thus the method mentioned above cannot be
used for an experimental verification of exceptional points in
Bose-Einstein condensates. The aim of this paper is to present
an alternative method for the verification of the exceptional
points. It is based on dynamical properties of the condensates
and can also be applied in an experiment.

While the investigations of exceptional points mentioned
above are related to non-Hermitian time-independent Hamil-
tonians effects of exceptional points also occur in time-
dependent systems [8,38–40]. Uzdin et al. [40] have shown
that a sharp transition from an oscillatory to a monotonic
exponential dynamics occurs in the time evolution of a single
particle in a harmonic trap with a certain time-dependent
frequency ω(t), and that this transition corresponds to an
exceptional point. The time evolution of the particle can be
analyzed with the harmonic inversion method as shown in [41].
Here an exceptional point is characterized by the degeneracy
of two or more frequencies in the frequency spectrum of the
time signal.

The dynamics of a Bose-Einstein condensate described by
the nonlinear time-dependent Gross-Pitaevskii equation differs
fundamentally from the dynamics of a linear quantum system.
Nonetheless, we will show that the existence of exceptional
points can be verified in the dynamics of the condensate when
the harmonic inversion analysis is applied to a restricted region
of the time evolution. Starting with a condensate in the stable
region of the parameter space the scattering length can be
decreased and then the spatial extension of the condensate
wave function is observed as a function of time. At the critical
scattering length the time signal of the collapsing condensate
exhibits characteristic features in a local time domain which
indicates an exceptional point.

The paper is organized as follows. The dynamics of
Bose-Einstein condensates using a variational approach to the
condensate wave function is discussed in Sec. II. In Sec. III we
show that signatures of exceptional points can be obtained by
a local harmonic inversion analysis of time signals. The results
are presented in Sec. IV and conclusions are drawn in Sec. V.

II. VARIATIONAL APPROACH TO THE
CONDENSATE DYNAMICS

In this paper we investigate Bose-Einstein condensates with
an s-wave contact interaction between particles with mass m in
a spherically symmetric harmonic trap with frequency ω. With
the particle number N , the scattering length a, and the units
�u = √

�/(mω) for length, mu = 2m for mass, Eu = �ω/2 for
energy, and tu = 2/ω for time the dynamics of the condensate
wave function is described in a mean-field approach by the

time-dependent Gross-Pitaevskii equation [42],

i
d

dt
ψ(r,t) = [−� + r2 + 8πNa|ψ(r,t)|2]ψ(r,t). (1)

For the wave function we use an ansatz given as superposition
of Ng Gaussian functions,

ψ(r,t) =
Ng∑
k=1

exp(−Akr
2 − Bk) ≡

Ng∑
k=1

gk, (2)

where the Ak and Bk are time-dependent complex variational
parameters. Variational approaches with coupled Gaussian
functions have already been established in a large variety of
applications as a powerful tool for numerical computations
of Bose-Einstein condensates [25,31,43–47]. Equations of
motion for the variational parameters Ak and Bk are obtained
with the time-dependent variational principle [48], and read

Ȧk = −4iA2
k + iV2,k, (3a)

Ḃk = 6iAk + iV0,k, (3b)

for k = 1, . . . ,Ng . The parameters V0,k and V2,k in Eq. (3) are
solutions of the linear set of equations (for l = 1, . . . ,Ng)

Ng∑
k=1

( 〈gl|gk〉 〈gl|r2|gk〉
〈gl|r2|gk〉 〈gl|r4|gk〉

)(
V0,k

V2,k

)

=
Ng∑
k=1

( 〈gl|r2 + 8πNa|ψ |2|gk〉
〈gl|r4 + 8πNar2|ψ |2|gk〉

)
. (4)

All integrals with the Gaussian functions gk in Eq. (4) can be
solved analytically and are listed in the Appendix. For more
details of the variational approach and derivations see [44].

The stationary states of the condensates are obtained by
a numerical root search as fixed points of the equations of
motion (3) with the normalization condition 〈ψ |ψ〉 = 1. The
mean-field energy of the ground and excited state computed
with Ng = 1 to 4 coupled Gaussian functions is presented
in Fig. 1. As can be seen the mean-field energy converges
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FIG. 1. (Color online) Mean-field energy of the ground and
excited state of the BEC as a function of the scattering length
computed with Ng = 1 to 4 coupled Gaussian functions. (Results
obtained with more than two Gaussian functions agree within the
linewidths.) The two states emerge in a tangent bifurcation at a critical
value of the scattering length.
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TABLE I. Numerical values of the critical scattering lengths of
the tangent bifurcations computed with one to five coupled Gaussian
functions.

Ng (Na)cr

1 −0.67051
2 −0.57912
3 −0.57510
4 −0.574970
5 −0.574966

rapidly with increasing number of Gaussian functions, and
the results obtained with three or more Gaussian functions
fully agree with numerically exact simulations. The ground
and excited states emerge in a tangent bifurcation at a critical
value (Na)cr of the scattering length which depends on
the number of Gaussians Ng used in the computation. The
numerical values of (Na)cr are given in Table I. Like the mean-
field energy the critical scattering length converges rapidly
with increasing number of Gaussian functions used in the
computations.

For the special case of the variational ansatz (2) using a
single Gaussian function (Ng = 1) the linear set of equations
(4) can be solved in closed form and the equations of motion
(3) can be written as (here we drop the index k)

Ȧ = i − 8iNa√
π

(Re A)5/2 − 4iA2, (5a)

Im Ḃ = 14Na√
π

(Re A)3/2 + 6Im A. (5b)

The real part of B is determined by the normalization
condition 〈ψ |ψ〉 = 1,

Re B = 3

4
ln

(
π

2Re A

)
. (6)

In this case the dynamics of the wave function can be obtained
as the canonical equations of the Hamiltonian

H (q,p) = p2 + 9

4q2
+ 3

√
3Na

2
√

πq3
+ q2 = Emf, (7)

with the canonical coordinates

q =
√

〈r2〉 = 1

2

√
3

Re A
, (8a)

p = −Im A

√
3

Re A
. (8b)

It is important to note that the coordinate q =
√

〈r2〉
describes the extension of the condensate wave function,
which means that the time evolution q(t) can be determined
experimentally by measuring the extension of the wave
function.

III. LOCAL HARMONIC INVERSION ANALYSIS
OF TIME SIGNALS

Are the critical scattering lengths in Fig. 1, where the ground
and excited state of a Bose-Einstein condensate emerge in a
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FIG. 2. (Color online) Potential V (q) in Eq. (9) for parameters
Na above, at, and below the critical value (Na)cr of the tangent
bifurcation.

tangent bifurcation, exceptional points? As already mentioned
in the Introduction this question can be answered by encircling
the critical points in the plane of complex scattering lengths
using an analytic continuation of the Gross-Pitaevskii equation
(1). The two states permute after one cycle around the
bifurcation point indicating the existence of an exceptional
point, as has been shown for condensates with long-ranged
interactions in [22,30,31]. Here we want to verify the existence
of exceptional points without resorting to the mathematically
but not experimentally feasible analytic continuation of the
Gross-Pitaevskii equation. The idea is to analyze the time
evolution of the extension of the condensate wave function.
The method is first illustrated for the condensate dynamics
described by a single Gaussian function and then extended to
the approach with coupled Gaussians.

As shown in Sec. II the time evolution of the wave function
(2) with Ng = 1 can be described by the Hamiltonian (7),
which is effectively the classical dynamics of a particle in the
one-dimensional potential,

V (q) = 9

4q2
+ 3

√
3Na

2
√

πq3
+ q2, (9)

depending on the strength Na of the contact interaction. The
potential V (q) is illustrated in Fig. 2 for scattering lengths
above, at, and below the critical value (Na)cr = −0.670 51
of the tangent bifurcation. For (Na)cr < Na < 0 the potential
exhibits a local minimum and maximum. These two points
characterize a stable and an unstable equilibrium of the
dynamics and thus can be identified as the ground and excited
state of the condensate, respectively. The two extrema merge
at the critical value Na = (Na)cr, thereby forming a saddle
with vanishing first and second derivatives in the potential.
For Na < (Na)cr there are no stationary points and the time
evolution q(t) → 0 with increasing time indicates the collapse
of the condensate.

We now show that the exceptional point at the critical value
Na = (Na)cr can be observed in the time evolution q(t) of
the condensate extension. In what follows we assume that
the condensate is initially prepared in a stationary ground
state at scattering length Na � (Na)cr and then the scattering
length is decreased, in the computation or experimentally
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via tuning of a Feshbach resonance, in such a way that the
mean-field energy of the excited state is below the energy of
the initial state or the stationary states do not exist any more.
In that case the condensate collapses, thereby crossing the
inflection point of the potential V (q) with vanishing second
derivative.

To simplify the discussion we approximate V (q) in the local
vicinity of the inflection point by the parameter dependent
cubic potential

Uα(x) = x3 − αx, (10)

where the inflection point has been shifted to the origin.
For α > 0 two stationary points exist at x1,2 = ±√

α/3 and
degenerate at the critical value α = αcr = 0. The nonlinear
equation of motion ẍ = −3x2 + α for a particle (with mass
m = 1) moving in the potential (10) cannot be solved globally
in terms of elementary functions. For initial conditions x(0) =
0, ẋ(0) = v0 and short times the solution can be expanded in
a Taylor series

x(t) = v0t + α

2
t2 + O(t4). (11)

The Taylor expansion (11) does not show any special properties
at the critical value α = 0. However, the properties of an
exceptional point become evident when x(t) is approximated
by a sum of exponential functions,

x(t) ≈
n∑

k=1

dk exp(−iωkt), (12)

where the dk and ωk are the amplitudes and frequencies of
the signal, respectively (which both can be complex valued
in general). Using the ansatz (12) is motivated by the fact
that time signals for systems where the time propagation is
described by linear operators are exactly given by a sum of
exponential functions. The amplitudes and frequencies of a
signal (12) can be extracted, even for large values of n, with
the harmonic inversion method [41,49–53]. Here we choose
n = 2 which is sufficient to observe the degeneracy of two
frequencies and obtain

d1,2 = ± iv2
0√

3α
, ω1,2 = (i ±

√
3)

α

2v0
. (13)

The Taylor expansion of x(t) in Eq. (12) with the parameters
given in Eq. (13) agrees up to order t3 with the Taylor series
in Eq. (11). The existence of an exceptional point at the
critical value α = 0 now becomes obvious from the amplitudes
and frequencies of the signal (12) given in Eq. (13). For
α = 0 the two frequencies coalesce at ω1 = ω2 = 0 and both
amplitudes d1 and d2 diverge. However, in the limit α → 0
the signal (12) converges to x(t) ≈ v0t which can formally be
written as

x(t) ≈ (d̃0 + d̃1t) exp(−iωt), (14)

with the single frequency ω = 0 and a prefactor in front of
the exponential function which is a polynomial of degree 1
in t with the coefficients d̃0 = 0 and d̃1 = v0. Exceptional
points in time signals have been investigated in [41], where
it has been shown that the failure of the ansatz (12) due to
diverging amplitudes and the occurrence of a term in the time

signal given as the product of a polynomial of degree n − 1 in
time and an exponential function exp(−iωkt) is a clear
signature of an exceptional point of order n. The frequencies
and the coefficients of the polynomials can be extracted
from the signal by the extended harmonic inversion method
developed in [41]. The time evolution of x(t) in Eq. (14) thus
indicates the existence of a second-order exceptional point.

The analysis of the motion of a particle in the cubic
potential (10) can now be carried over to the analysis of the
time-dependent extension of a condensate described by the
potential (9) (see Fig. 2). A trajectory q(t) crosses the potential
region where the ground and excited state can coalesce at time
t0 determined by the condition

...
q (t0) = 0. When that point is

shifted to the origin, i.e., t → t − t0 and q(t) → q(t) − q(t0),
the analysis can be performed in the same way as described
above for the cubic potential (10). The difference between
the common applications of the harmonic inversion method to
systems with linear time propagators and the analysis of the
nonlinear dynamics of a particle, e.g., in the cubic potential
(10), is that the time signal in the latter case is not globally
given as a superposition of exponential functions, and therefore
the analysis must be restricted to a local area in the time
domain. For the numerical computation of the amplitudes and
frequencies we resort to the harmonic inversion method as
introduced in [41].

As explained in Sec. II the description of the condensate
dynamics with canonical coordinates and the Hamiltonian (7)
is only possible for the simple but not very accurate variational
approach to ψ(r,t) using a single Gaussian function (Ng = 1)
in Eq. (2). Using the improved ansatz with coupled Gaussian
functions the dynamics obtained from the equations of motion
(3) for the variational parameters Ak and Bk cannot be de-
scribed by an effective potential. However, we can still analyze
the time evolution of the extension of the condensate wave
function given as the root of the variance of the operator r ,
i.e.,

q(t) ≡
√

〈ψ(t)|r2|ψ(t)〉, (15)

which can be expressed in terms of the variational parameters
[see Eq. (A2) in the Appendix]. We use the notation q(t) as
in Eq. (8) although q is not a canonical variable for coupled
Gaussians. However, it is important to note that the extension
of the condensate as defined in Eq. (15) is an observable and
can be measured experimentally. The time evolution of q(t)
obtained with a single Gaussian function and with coupled
Gaussians should qualitatively show a similar behavior, and
thus can be analyzed in the same way using the harmonic
inversion method to verify the existence of exceptional points.
The results are presented and discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

To analyze the time evolution of the condensate a well
defined initial wave function must be prepared which is
not a stationary state of the Gross-Pitaevskii equation (1).
A procedure which can be applied theoretically as well as
experimentally is to prepare the stationary ground state of the
condensate for a parameter Na = s of the contact interaction
and then suddenly to change the scattering length a. In an
experiment the scattering length can be varied using Feshbach
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FIG. 3. (Color online) (a) Trajectories q(t) for the time evolution
of the condensate extension computed with a single Gaussian
function, Ng = 1, and for various strengths Na of the contact
interaction in the range −0.675 � Na � −0.664. A few trajectories
are highlighted and labeled. The initial state of the condensate is
prepared at s = Na = −0.665. The plus symbols indicate for some
trajectories the points with vanishing third derivatives

...
q (t0) = 0.

(b) Time derivatives q̇(t) of the trajectories in (a).

resonances. In what follows we present the results of numerical
simulations with a condensate wave function described first by
a single Gaussian function and then with coupled Gaussians.

A. Approach with a single Gaussian function

In the case of an ansatz with a single Gaussian function the
ground state of the condensate for Na = s can be determined
as the local minimum of the potential V (q) in Eq. (9).
After changing the scattering length the equations of motion
for the canonical coordinates q and p are obtained from
the Hamiltonian (7) and can be integrated numerically. The
trajectories q(t) and the first derivatives q̇(t) for an initial
state with s = −0.665 and various values of Na in the
range −0.675 � Na � −0.664 are presented in Fig. 3. If the
scattering length is not changed, i.e., Na = s = −0.665 then
the extension of the condensate stays constant at q(t) = 0.8647
in Fig. 3(a). A small change of the scattering length results
in a breathinglike dynamics of the wave function, a particle
moving in the potential (9) (see Fig. 2) oscillates around the
local minimum but the energy is not high enough to cross
the barrier with the local maximum. That crossing is possible
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FIG. 4. (Color online) (a) Frequencies and (b) and (c) amplitudes
obtained by the local harmonic inversion analysis of trajectories q(t)
computed with a single Gaussian function, Ng = 1, and an initial state
prepared at s = Na = −0.57. Note that Im ω1 = Im ω2 and Re d1 =
Re d2 = 0 and thus the corresponding lines cannot be distinguished.
See text for discussion.

when Na is reduced below Na = −0.6693. In this case q(t)
decreases monotonically and reaches q = 0 [not shown in
Fig. 3(a)] within finite time, which indicates the collapse of
the condensate.

Are signatures of the exceptional point visible in Fig. 3?
When the ground and excited states coalesce in the potential
V (q) in Fig. 2 the dynamics around the critical point is
nearly a free motion linear in time, i.e., q(t) = q(t0) +
v0(t − t0) + O[(t − t0)4]. The nearly linear behavior can be
seen when following the trajectory with Na = −0.6705 in
Fig. 3(a) around t = t0 = 1.22. The time derivative q̇(t) of
that trajectory in Fig. 3(b) exhibits a saddle indicating the
vanishing second and third derivative of q(t) at t = t0.

The clear identification of the exceptional point and the
precise determination of the critical scattering length (Na)cr

is possible by analyzing the functions q(t) as described in
Sec. III. For each trajectory the time t0 is computed where...
q (t0) = 0. Some of these points are marked by plus symbols in
Fig. 3(a). For the local harmonic inversion analysis we use only
four signal points cj = q(t0 + j�t) − q(t0) with �t = 10−3

and j = 0,1,2,3 to express this signal around t = t0 as the
sum of two exponential functions with two frequencies ω1,2
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FIG. 5. (Color online) (a) Trajectories q(t) and (b) time deriva-
tives q̇(t) as in Fig. 3 but computed with Ng = 4 coupled Gaussian
functions and the initial state prepared at s = Na = −0.57.

and amplitudes d1,2. The results of the local harmonic inversion
analysis are presented in Fig. 4. The states have been prepared
with the initial parameter Na = s = −0.57 and then the time
evolution of that state at a modified value Na has been
analyzed. As can be seen in Fig. 4(a) the real and imaginary
parts of the frequencies intersect at the critical parameter
(Na)cr = −0.670 51; at that point the degenerate frequency
is ω = 0. Note that the critical parameter agrees perfectly with
the value given for Ng = 1 in Table I. The amplitudes d1 and
d2 for the harmonic inversion analysis with an ansatz of two
nondegenerate exponential functions are shown in Fig. 4(b).
Both amplitudes diverge at Na = (Na)cr. By contrast, the
coefficients d̃0 and d̃1 in a linear polynomial in t for the ansatz
(14) with a twofold degenerate frequency do not show any
singularities, as can be seen in Fig. 4(c), where the amplitudes
d̃0 and d̃1 have been computed under the assumption of a single
degenerate frequency ω ≡ (ω1 + ω2)/2. As outlined in [41]
the nonzero linear coefficient d̃1 = v0 at the critical parameter
Na = (Na)cr, where the two frequencies are degenerate, is the
signature of a second-order exceptional point.

B. Approach with coupled Gaussians

The accuracy of the condensate wave function increases
rapidly when using the ansatz in Eq. (2) with Ng � 2 coupled
Gaussian functions. In that case the ground state of the BEC
for Na = s is computed as a fixed point of the equations
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FIG. 6. (Color online) (a) Frequencies and (b) and (c) amplitudes
obtained by the local harmonic inversion analysis of trajectories q(t)
as in Fig. 4 but computed with Ng = 3 coupled Gaussian functions
and the initial state prepared at s = Na = −0.57.

of motion (3) with a numerical root search as described
in [44,45]. After changing the scattering length the time
dependence of the variational parameters Ak and Bk is obtained
by numerical integration of the equations of motion (3). As
shown in Fig. 1 and Table I the stationary states and the
critical parameter (Na)cr converge rapidly with increasing
number Ng of Gaussian functions. Our calculations show a
similar convergence behavior also for the time dependence of
the trajectories q(t), i.e., for given values s and Na trajectories
computed with three or more Gaussian functions are nearly
identical [54].

For an ansatz with Ng = 4 coupled Gaussian functions
and the parameter s = Na = −0.57 of the initial state the
extension of the condensate as defined in Eq. (15) has
been computed and the resulting trajectories q(t) and first
derivatives q̇(t) are presented in Fig. 5. The trajectories q(t)
computed with a single Gaussian function in Fig. 3(a) and with
Ng = 4 coupled Gaussians in Fig. 5(a) qualitatively appear to
be very similar, however, subtle differences in the derivatives
q̇(t) can be observed when comparing Figs. 3(b) and 5(b).
The functions q̇(t) in Fig. 5(b) exhibit small fluctuations with
higher frequencies which are absent in Fig. 3(b). The reason
is that the dynamics of the condensate when computed with
coupled Gaussian functions does not run exactly along the
“reaction coordinate” corresponding to the coordinate q in the
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FIG. 7. (Color online) Dependence of the critical parameter
(Na)cr on the strength s = Na of the contact interaction of the
initial state and the number of Gaussian functions Ng used for the
computations. The lines mark the values given in Table I for Ng = 2
and Ng = 3.

one-dimensional potential (9) but oscillations in other degrees
of freedom are slightly excited. Nonetheless, points with
vanishing third derivatives

...
q (t0) = 0 can be determined and

some of these points are marked by plus symbols in Fig. 5(a).
The results of the local harmonic inversion analysis of tra-

jectories computed with Ng = 3 coupled Gaussian functions
are shown in Fig. 6. The degeneracy of the two frequencies
at a critical value Na = (Na)cr in Fig. 6(a) and the behavior
of the amplitudes in Figs. 6(b) and 6(c) is similar to those
in Fig. 4, however, the exceptional point is shifted to the
critical parameter value (Na)cr = −0.575 34, which agrees
very well with the value (Na)cr = −0.575 10 for Ng = 3 given
in Table I.

We have analyzed the collapse dynamics of condensates
initially prepared at various strengths s = Na of the contact
interaction and computed the critical parameters (Na)cr where
the two frequencies ω1,2 coalesce and the amplitudes d1,2

diverge. For Ng = 1 the critical value of the exceptional point
does not depend on the initial state, however, for coupled
Gaussian functions the value of (Na)cr slightly depends on
s. This can be seen in Fig. 7 for Ng = 2 and Ng = 3. The
dependence is caused by the excitation of fluctuations of the
condensate in the various degrees of freedom as discussed
above. However, the analysis of the collapse dynamics with
Ng = 3 coupled Gaussian functions allows one to determine
the position of the exceptional point as (Na)cr = −0.575 ±
0.001, i.e., with an accuracy of about three significant
digits.

The local harmonic inversion analysis of the collapse
dynamics can be applied to verify experimentally the existence
of an exceptional point in a BEC. In an experiment the initial
state of the condensate can be prepared for a given parameter
value s = Na of the contact interaction, and then the scattering
length is quickly ramped to a new value by using Feshbach
resonances. The variance 〈ψ(t)|r2|ψ(t)〉 of the condensate
wave function after a delay time t can be determined with
the help of absorption images. Since the BEC is destroyed
at the snapshot a sufficient number of identical condensates
must be produced and absorption images must be taken at

various delay times t to obtain the time evolution q(t) in
Eq. (15).

V. CONCLUSION

The time evolution of Bose-Einstein condensates described
in the mean-field limit by the time-dependent nonlinear Gross-
Pitaevskii equation differs completely from the behavior of
quantum systems obeying the linear Schrödinger equation.
Nevertheless, we have shown that signatures of exceptional
points which are well-known phenomena in non-Hermitian
linear operators can be observed in the collapse dynamics of
Bose-Einstein condensates. The verification of the exceptional
points is possible using the local harmonic inversion analysis
of the time evolution of the condensate extension during the
collapse, and we propose the application of this method also
for an experimental observation of exceptional points in BECs.

All computations in this paper are based on the Gross-
Pitaevskii equation obtained with a mean-field approximation.
In calculations with a multiorbital approach fragmented
metastable states have been observed in the region Na <

(Na)cr [55,56]. An interesting question is whether the identifi-
cation of exceptional points in this work can be related beyond
the mean-field approach to the splitting of the ground state into
multiple fragmented states.

In future studies it will also be interesting to detect critical
phenomena in various time-dependent nonlinear systems by
application of the local harmonic inversion analysis. The
method may even be extended to observe bifurcation points or
higher-order exceptional points related to the coalescence of
more than two stationary states in the dynamics of nonlinear
systems.
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APPENDIX: GAUSSIAN INTEGRALS

For the ansatz with coupled Gaussian functions given in
Eq. (2) the integrals required in Eq. (4) read

〈gk|gj 〉 = e−(Bj +B̄k )π3/2

(Aj + Āk)3/2
, (A1)

〈gk|r2|gj 〉 = 3e−(Bj +B̄k )π3/2

2(Aj + Āk)5/2
, (A2)

〈gk|r4|gj 〉 = 15e−(Bj +B̄k )π3/2

4(Aj + Āk)7/2
, (A3)

〈gk||ψ |2|gj 〉 =
Ng∑

l,m=1

e−(Bj +B̄k+Bl+B̄m)π3/2

(Aj + Āk + Al + Ām)3/2
, (A4)

〈gk|r2|ψ |2|gj 〉 =
Ng∑

l,m=1

3e−(Bj +B̄k+Bl+B̄m)π3/2

2(Aj + Āk + Al + Ām)5/2
. (A5)

The bars indicate the complex conjugate.
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